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Calibration and Adjustment of 
Weigh-in-Motion Data 

RALPH GILLMANN 

Several methods have been used for calibrating weigh-in-motion 
(WIM) systems. One difference between the met~ods is in th.e 
formula used to make the calibration. A systematic approach 1s 
taken here in deriving and comparing four calibration methods. 
Adjustments of WIM data beyond calibration may be used to 
more closely emulate the properties of static weig~t data, such 
as in equivalent axle load calculations. Sev~ral adjustment~ of 
WIM data are also derived. Examples are given of the vanous 
methods of calibrating and adjusting WIM data. 

The accuracy of weigh-in-motion (WIM) data depends on 
many factors, including calibration of the WIM system. The 
many reports received at FHW A show a vari~ty of appr~ach~s 
to WIM system calibration. One way in which they differ 1s 
in the formula used to make the calibration. It does not seem 
to be appreciated how calibration affects the accuracy o~ the 
WIM data. The underlying criteria for four different calibra
tion methods are examined and guidelines in their application 
are given. One of the main points is that the way i~ wh.ich 
WIM is evaluated should guide the selection of a calibration 
method. 

WIM data are often used in place of static weight data 
because of their relatively low cost and convenience. What is 
then desired is to minimize the differences between WIM and 
static weight data. In particular, ways in which WIM data can 
be made to approximate static data in the determination of 
equivalent axle loads are examined here. Although other a~
proaches are briefly mentioned, the main approach taken 1s 
to adjust the WIM data. The results of calibrating and ad
justing three data sets are shown as examples of the method~. 

ASTM standard specification E 1318-90 states that WIM 1s 
"the process of measuring the dynamic tire forces of a moving 
vehicle and estimating the corresponding tire loads of the 
static vehicle" (1). Note that WIM measures dynamic weights 
and estimates static weights. All too often these two aspects 
have been combined or confused. One reason for this is that 
static weights are the reference standard for WIM data. An
other reason is that WIM weights are often taken as a proxy 
for static weights. 

The purpose of WIM data collection determines whether 
static or dynamic weights are desired. For weight enforcement 
purposes, WIM is only a proxy for static weig~ts. Weight 
regulations are aimed at the static weight of individual axles, 
axle groups, and vehicles. For most other purpose~, su~h as 
pavement design and management, however, dynalTilc weights 
may be acceptable, if not preferred. The actual for~es of 
moving vehicles that affect the roadway are more meamngful 
than the static weights. 

FHWA, 400 Seventh Street, S.W., Washington, D.C. 20590. 

CALIBRATION METHODS 

A WIM sensor produces a signal whose value depends on the 
instantaneous dynamic wheel loads of a moving vehicle. When 
the output for the sensor is properly calibrated, a dynamic 
load measurement is produced. This dynamic load may then 
be used to estimate a static weight. Calibration is the process 
of adjusting the outputs of a WIM sensor to match the mea
surements of a static scale. 

Some devices can function as both static scales and WIM 
systems, and thus can be calibrated static~lly. Ho~ever, ~IM 
systems usually have to be calibrated with movmg vehicles. 
If a test vehicle could be instrumented in such a way as to 
record the dynamic wheel forces as it moves, than a WIM 
system could be calibrated to these dynamic weights. But in 
the absence of any dynamic weight measurements to compare 
with, the static weights derived from a nearby scale are the 
only standard for comparison. . 

One calibration method involves passing the same vehicle 
or group of vehicles over the WIM sensor repeatedly. Then 
an average WIM measurement for each vehicle can be c~l
culated and related to the static weight. The problem with 
this approach has been that it is costly to get appropriate test 
vehicles and the calibration is keyed to a small group of 
vehicles' that may not be representative of the general traffic 
stream. 

The calibration methods examined here use the gross ve
hicle weight from a sample of vehicles that have been weighed 
with both a static scale and a WIM system. The vehicles may 
include test vehicles as well as the general traffic stream (1) 
but should be representative of the heavy vehicle traffic at 
the WIM site. The vehicles should also cover the range of 
weights expected to avoid extrapolating the calibration. 

INVERSE PREDICTION 

Regression analysis determines a functional relationship be
tween independent and dependent variables that expresses 
their statistical relationship. A particular regression function 
is chosen according to given criteria that evaluate the differ
ence between the dependent variable and its estimate by the 
regression function. Once it is determined, the regression 
function may be used to predict values of the dependent var
iable for new values of the independent variable. 

For calibration, inverse prediction is needed (2 ,3). The in
verse of the regression function is used to predict values of 
the independent variable given new values of the dependent 
variable. This is done because the independent variable repre-



Gil/mann 

Y axis y = f(X) 

X axis 

FIGURE 1 Inverse prediction. 

sents the reference values that need to be estimated from the 
dependent variable that is being calibrated. 

Let X, be the reference values, Y, the measured values to 
be calibrated, and f(X) the regression function , where the 
index i ranges from 1 to n , the size of the data set (this same 
index will be used throughout) . Then fit Y = f(X) according 
to the regression criteria (see Figure 1) . Finally, use the in
verse of the regression function for the inverse prediction of 
X given a new value of Y: 

(1) 

For WIM calibration, static weights are the reference values 
X ;, and WIM weights are the measured values Y;. Through 
inverse prediction, the static weight corresponding to a WIM 
weight may be estimated. The WIM system may then be 
adjusted to automatically produce these static weight esti
mates . 

REGRESSION MODELS 

A regression model specifies the type of function to be fitted 
and the criteria to be used to select the particular regression 
function. The functional form of the regression function may 
be determined by examining the way in which it is used. WIM 
calibration involves transforming the original WIM values of 
a sample data set , Y,, into the calibrated values in a way that 
depends on the relation of WIM data to static weight data as 
defined by the regression model. 

The gross vehicle weight is normally used for calibration 
because it varies less than the dynamic axle or wheel loads. 
The calibration is then applied to the wheels, axles, and axle 
groups. Thus the transformation that arises from calibration 
must be the same whether it is applied to the gross vehicle 
weight or the individual wheels, axles, or axle groups. That 
means the regression function must satisfy the functional 
equation 

(2) 

where y1 and y2 represent, for example, WIM axle weights, 
and (y1 + y 2) represents the gross weight. The general so-
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lution of this equation for nonnegative functions is 

g(y) = k. y (3) 

where the coefficient k is a nonnegative constant (4, p. 8). 
This constant is called the calibration factor (CF). This cali
bration function is the inverse of the regression function: 

g(y) = CF· y = J- 1 (y) 

so that 

x 
f(x) = - =A · x 

CF 

(4) 

(5) 

where A is the coefficient derived from the regression analysis. 
The CF is thus the inverse of the regression coefficient A . 
We seek to minimize the error of the equation 

Y; =A ·X, (6) 

by an appropriate choice of A. The errors are supposed to 
be in the WIM weights, not the static weights, so the regres
sion of WIM on static data is used . 

The CF is applied to the original WIM values Y; to yield 
calibrated values Z;: 

Z, =CF· Y, (7) 

which approximate the static weights X, for each vehicle i in 
the data set. 

To derive the CF, there must be some criteria for deter
mining the particular regression function. The regression cri
teria should match the criteria that will be used to evaluate 
the accuracy of the WIM system. The type of calibration will 
be determined by the regression criteria employed. If the 
calibration criteria are inconsistent with the evaluation cri
teria, then the calibration will be inaccurate. 

A particular regression function is chosen by optimizing a 
property of the residuals, which are the differences between 
the uncalibrated WIM and the regression estimate: 

Y, -A ·X, (8) 

We will consider two approaches here: making the sum of 
the residuals equal zero, and minimizing the sum of the squares 
of the residuals. We will also apply these two approaches to 
the relative residuals, which are the residuals divided by the 
regression estimates: 

Y, - A ·X, 
A·X, 

(9) 

The mean of the differences between calibrated WIM and 
static weights is called the systematic difference and the stan
dard deviation is called the random difference. This difference 
may be an absolute or relative difference as we shall see. 

Evaluating a WIM system for accuracy and ensuring that 
it is within tolerance are two approaches to WIM evaluation. 
For accuracy the systematic difference is the most important 
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consideration, but for tolerance the random difference may 
be more important. This is because accuracy is usually mea
sured by an average value, whereas tolerances are concerned 
with keeping within a certain range of values. 

A WIM regression model implicitly answers the question 
whether WIM deviations from static weights are considered 
measurement errors or dynamic differences. That is, does 
WIM measure static weight or dynamic weight? If WIM weights 
are expected to match static weights, then any differences are 
errors that should not be allowed to cancel one another. The 
first calibration approaches the residuals as errors. 

LEAST-SQUARES CALIBRATION 

A least-squares (LS) regression model focuses on the squares 
of the residuals and seeks to minimize their sum by an ap
propriate choice of the regression coefficient A: 

LS; = (Y; - A · X;)2 (10) 

All errors in the LS model are nonnegative, so negative errors 
cannot cancel out positive errors. To derive the LS calibration 
factor, take the derivative with respect to A of the total LS 
error and set it equal to zero: 

d 
- "' (Y - A · X)2 = 0 dA L, I I 

(11) 

or 

"' XY = A · "' X 2 
L.J I I ~ l 

(12) 

so that A is (3,5) 

(13) 

Since the coefficient A is the inverse of the CF, 

1 2: x; 
CF=- = --

A 2: X;Y; 
(14) 

In other words, the LS calibration factor is the sum of the 
squared static weights divided by the sum of the product of 
static and WIM weights. 

When the errors are assumed to be uncorrelated and nor
mally distributed with mean zero, the least-squares method 
gives the maximum likelihood estimator (3). However, sev
eral of the desirable properties of the least-squares estimator 
with intercept do not apply when there is no intercept. The 
sum and mean of the residuals do not equal zero. The sum 
of the observed values does not equal the sum of the fitted 
values. The regression line does not go through the center of 
the data points. LS calibration minimizes the variance, not 
the mean, of the residuals. When the sum or the mean of the 
residuals is made to equal zero, a different calibration method 
results. 
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ABSOLUTE DIFFERENCE CALIBRATION 

If WIM is considered as a measurement of dynamic weight, 
then differences with static weights will be expected. WIM 
values will vary about the corresponding static values, but 
WIM should vary as much above static weights as below static 
weights. Thus, an average of the differences would be ex
pected to equal zero as positive and negative differences can
cel each other. Two models result from this approach, de
pending on which type of difference is used. 

An absolute difference (AD) model evaluates WIM using 
the difference between the WIM and static weights (6,7): 

(15) 

This means that the regression line uses the residuals, not 
their squares. The sum of residuals is made to equal zero, 
which means that the sum of WIM and WIM estimates are 
equated. Thus 

(16) 

so that 

(17) 

and the CF is the ratio 

1 2: X; 
CF=-=--

A 2: Y; 
(18) 

The AD calibration factor is the ratio of the sum of the static 
weights and the sum of the WIM weights. Geometrically, the 
AD calibration line goes through the origin and the center of 
the data points. The mean of AD-calibrated WIM equals the 
mean static weight, and the mean AD is zero. This calibration 
has the properties mentioned above that least squares without 
an intercept lacks. 

PERCENT DIFFERENCE CALIBRATION 

Instead of the absolute difference, the relative difference (RD) 
between WIM and static weights may be more important (8): 

RD= Y,- X 
, X1 (19) 

The relative difference is usually expressed as a percent dif
ference (PD) (1,6,7): 

PD; = 100 · RD; (20) 

The RD and PD are related to the impact factor (IF), which 
is the ratio of corresponding WIM and static weights (6,9): 

Y PD1 
IF=___!=RD+l= - +1 

I ~ I 100 (21) 
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In this case, the regression line uses the relative residuals. 
The sum of the relative residuals is made to equal zero 

0 = " Y; - A · X, = .!_ "' IF. _ n 
L.J A·X

1 
AL.. ' (22) 

which implies that A equals the mean impact factor. Since 
the CF is the inverse of A, 

( )

- 1 
1 1 y -

CF = - = - 2: __!. = (IF) - 1 

A n X; 
(23) 

the CF is the inverse of the mean impact factor ( 8). The mean 
of the impact factor for PD-calibrated WIM equals 1 and the 
mean PD is zero. 

RELATIVE LEAST-SQUARES CALIBRATION 

The relative least-squares (RLS) calibration is derived in a 
manner similar to LS calibration, except that the relative re
siduals are used instead of the residuals. First, the derivative 
of the sum of the squares of the relative residuals is set equal 
to zero: 

(24) 
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or 

(25) 

Therefore , 

1 2: Y,IX L IF, 
CF=-= =--

A L Yr! X f 2: IF[ 
(26) 

That is, the RLS calibration factor is the sum of the impact 
factors over the sum of the squares of the impact factors. This 
calibration method appears to be new. 

EXAMPLES 

Examples of these calibration methods are given in Table 1, 
which is based on data sets provided to FHW A from Kansas 
and Utah plus a test data set that we generated. Only five
axle tractor trailers (3S2s) were selected from the data. There 
are 81 trucks in the resulting Kansas data set, 327 in the Utah 
data set, and 21 in the test data set. The tolerance levels used 
in Table 1 are plus or minus 5,000 lb and 10 percent for the 
test data and Kansas data and plus or minus 15 ,000 lb and 25 
percent for the Utah data. 

TABLE 1 Examples of Weigh-in-Motion Calibrations 

Percent Percent 
Mean Mean Outside Outside 

Type of Absolute Percent Absolute Percent 
Calibration Data Set Difference Difference Tolerance Tolerance 

None Kansas -0.26 -1.17 3.70 4.94 

Utah 6.06 10.24 18.04 16.82 

Test -0.23 4.81 0.00 19.05 

Absolute 
Difference Kansas 0.00 -0.68 4.94 4.94 

Utah 0.00 0.42 6.73 8.26 

Test 0.00 5.23 4.76 23.81 

Percent 
Difference Kansas 0.36 0.00 4.94 6.17 

Utah -0.26 0.00 6.42 8.26 

Test -2.98 0.00 38.10 14.29 

Least 
Squares Kansas -0.29 -1.22 3.70 4.94 

Utah 0.21 0.76 6.73 8.26 

Test 1.20 -7.33 4.76 23.81 

Relative 
Least 
Squares Kansas 0.24 -0.24 4.94 4.94 

Utah -1.59 -2.14 7.65 7.03 

Test -3.85 -1.52 42.86 23.81 



190 

The good news is that the accuracy of various calibrations 
with the two "real world" data sets varied less than 2 percent. 
The bad news is that it is not hard to generate a data set in 
which the difference is 5 to 7 percent as the test data set 
illustrates. Table 1 also shows that LS calibration does the 
best for two of the three data sets with an absolute tolerance. 
Similarly RLS calibration does the best for two of the three 
data sets with a percent tolerance. 

Supposing that the best approach for calibration with a 
tolerance level is the direct approach, find the CF with the 
most points within tolerance. The problem is that there may 
be more than one CF that does this. An algorithm that picked 
one would be arbitrary. The particular tolerance level chosen 
would also have a significant effect on the CF. 

Another approach is to minimize the variance of the resid
uals. For an AD tolerance level this leads to LS calibration. 
For PD tolerance levels this leads to RLS calibration. How
ever, minimizing the variance without minimizing the mean 
of the residuals can produce skewed results. The systematic 
difference should be minimized before the random differences 
are addressed. That is why AD calibration is best for absolute 
tolerances and PD calibration is best for percent tolerances. 

By choosing an inappropriate calibration method, accuracy 
may be needlessly lost. The calibration should at least work 
right on the calibration data set. It is the WIM regression 
model that determines what "right" means. This in turn de
pends on what criteria are used to make the evaluation of 
accuracy. For slow-speed WIM where high accuracy is ex
pected, choosing the right calibration method is critical. 

CALIBRATION STANDARDS 

ASTM E 1318-90 specifies the evaluation of a WIM system 
in terms of tolerance levels for a test data set (1) . A given 
percentage (95 percent) of the data must have an error within 
the tolerance interval. For most cases, the tolerance level is 
defined as plus or minus a certain percentage difference. For 
some cases, the tolerance is plus or minus an absolute value . 

Standard E 1318-90 has much detail about the calibration 
sample and tolerance level but little about calibration calcu
lations, simply (1), 

Make the necessary adjustments to the WIM-system settings 
which will make the mean of the respective differences for each 
basic measurement equal zero. 

Earlier in E 1318-90 "difference" is defined as percent dif
ference. This would imply that the recommended calibration 
is based on percent differences. However , for absolute tol
erances a calibration based on absolute differences makes 
more sense. 

ADJUSTMENTS WITH INTERCEPT 

If wheels or axles are calibrated separately, then Equation 2 
does not apply. In that case the intercept term need not equal 
zero. Although it is just possible that the dynamic weight of 
an axle could be zero, a WIM system reading of zero should 
mean that no axle is present. But by allowing a nonzero in-
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tercept within a certain range, another condition may be in
cluded with the calibration criteria. In this way, both the 
systematic difference and the random difference may be min
imized. 

Let Z; be the adjusted data, AF the adjustment factor, and 
AI the adjustment intercept. Adjustments may be derived by 
inverting the regression equation: 

f(x) =A· x + B 

(compare Equation 5) so that 

1 
AF= -

A 

and 

B 
AI= 

A 

(27) 

(28) 

(29) 

If the mean absolute difference is made to equal zero and the 
standard deviation of the AD distribution is minimized, the 
result is the standard least-squares regression line with inter
cept. Because of the intercept term, the adjustment is applied 
either to the individual axles or to the gross weights but not 
to both. If the mean percent difference is made to equal zero 
and the standard deviation of the PD distribution is mini
mized, a different adjustment results. 

There are other approaches to reducing the random dif
ference. One may try to control the factors that give rise to 
the random difference in the first place. These are factors 
that make the dynamic weights differ from static weights, such 
as pavement condition and vehicle speed. If these can be 
avoided or limited at the WIM site, then the systematic dif
ference should be reduced. 

A list of factors causing dynamic weight to differ from static 
weight has been compiled by Lee (10). These include the 
vehicle factors of gross vehicle load, distribution of gross ve
hicle weight, suspension, tires, and aerodynamic character
istics. However, control of these variables and, hence, of the 
random difference, is limited. 

Other approaches to reducing random differences involve 
the postprocessing of WIM data. We briefly look at the use 
of multiple calibration factors and then examine adjustments 
to WIM data . 

MULTIPLE CALIBRATION FACTORS 

Another approach to minimizing both systematic and random 
differences is the use of multiple calibration factors. Known 
sources of random difference can be accounted for by separate 
calibration factors . Different vehicle types, for example, might 
have their own calibration factor. Since WIM is normally used 
in conjunction with automatic vehicle classification (A VC) 
devices, the vehicle type should be known. 

Standard E 1318-90 notes that some WIM systems allow 
various calibration factors for each wheel, axle, or axle group 
on a vehicle (1) . For example, the steering axle usually weighs 
light with WIM systems because of the torque associated with 
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the drive train (11, p. 340). A calibration that includes the 
steering axle weights will therefore be too high, making the 
other axles weigh heavier than they should. Having a separate 
CF for the steering axle would compensate for this. The CF 
derived from the other axles' weights would then be lower. 
There is also evidence that drive tandems and trailer tandems 
have different dynamic properties (12) and so might have 
separate calibration factors. In any case, more research needs 
to be done to separate out the sources of random difference. 

ADJUSTMENT FOR ESALs 

The calculation of equivalent single axle loads (ESALs) from 
WIM data requires special treatment. Unadjusted WIM data 
in ESAL calculations usually will overestimate ESALs be
cause the standard deviation of WIM data is usually greater 
than that of the corresponding static weight data, and ESAL 
calculations are related approximately as a fourth-power func
tion of the static axle weights (13). (This is also addressed in 
an unpublished paper by Tony Esteve of FHWA entitled An 
Analysis of WIM versus Static Truck Weight Data.) Minimiz
ing both systematic and random differences should help al
leviate this problem. Multiple calibration factors would be 
better than an adjustment with intercept because various ad
justments would be needed for the axles and axle groups used 
in ESAL calculations because of the adjustment intercept. A 
more direct approach is to use ESALs calculated from static 
and WIM data instead of gross vehicle weights in a manner 
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similar to calibration. Then the adjustment factor is defined 
in a manner similar to the calibration factor and is applied to 
the WIM ESALs instead of the weights: 

ESAL(Z;) = AF· ESAL(Y;) (30) 

(compare with Equation 7). Since ESALs are added together, 
it would seem appropriate that the AD criteria be used. In 
that case the AD ESAL adjustment factor is similar to the 
AD calibration factor: 

L ESAL(X,) 
AF = -----

L ESAL(Y,) 
(31) 

(compare with Equation 18). If one uses the PD criteria, then 
the PD ESAL adjustment factor is similar to the PD calibra
tion factor: 

(32) 

(compare with Equation 23). Since the ratio of ESALs is 
approximately as the fourth power of the ratio of the corre
sponding axle weights (14), a PD adjustment factor may be 
derived that is applied to the axle weights: 

(33) 

TABLE 2 Examples of Weigh-in-Motion Adjustments 

Type of 
Adjustment 

Unadjusted 
Static Weight 

Unadjusted 
WIM 

ADESAL 
Adjusted WIM 

PD ESAL 
Adjusted WIM 

PD Axle 
Adjusted WIM 

• Not applicable 

Data Set 

Kansas 

Utah 

Test 

Kansas 

Utah 

Test 

Kansas 

Utah 

Test 

Kansas 

Utah 

Test 

Kansas 

Utah 

Test 

Equivalent Single Axle Load 

Mean Absolute Mean Percent 
Mean Difference Difference 

0.929 - • - • 
1.426 - • - • 
1.979 - • - • 

0.984 0.054 -0.86 

2.328 0.902 59.66 

3.366 1.380 85.65 

0.929 0.000 -6.35 

1.425 0.000 -2.22 

1.979 0.000 9.37 

0.992 0.063 0.00 

1.460 0.032 0.00 

1.809 -0.170 0.00 

0.949 0.020 -4.33 

1.339 -0.086 -8.00 

1.504 -0.475 -13.17 
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so that 

[ ( )
4]-1/4 

AF= ~L i (34) 

which is the inverse of the fourth power mean of the impact 
factor. The adjusted axle weights would then be used to es
timate the ESALs. 

The data set used for deriving the ESAL adjustment factors 
that are applied to the WIM ESALs should be representative 
of the ESALs experienced at the WIM site. Because making 
adjustments is difficult to do in practice, it may be preferable 
to adjust the WIM axle weights instead of the WIM ESALs. 

Table 2 gives examples of WIM adjusted for ESALs for 
the same data sets used in Table 1. This was done using a 
sensitivity index of 2.5 and a structural number of 3 on flexible 
pavement. The second and third axles as well as the fourth 
and fifth axles were combined into tandems since only 3S2s 
were included in the data set. 

The 60 percent average percent difference in the unadjusted 
Utah data set shows the need for adjusting WIM ESALs. The 
form of the PD adjustment applied to the WIM axle weights 
is less accurate than the other adjustments. Further research 
is needed in this area. The calculation of ESALs directly from 
dynamic, rather than static, loads may be the best solution. 

CONCLUSIONS 

• The WIM calibration method should correspond to the 
following evaluation criteria: 

-AD calibration should be used for WIM when the eval
uation is based on absolute differences; 

- PD calibration should be used for WIM when the eval
uation is based on percent differences; 

-AD calibration is preferable for slow-speed WIM with 
absolute tolerances; 

-PD calibration is preferable for WIM with percent tol
erances; and 

-LS and RLS calibrations should be used with caution. 
• Adjustment of calibrated WIM data may be useful for 

the following special purposes: 
-To minimize both systematic and random differences; 

and 
-To approximate static ESALs. 

• Further research is needed 
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- To quantify the factors that make dynamic weights differ 
from static weights; 

- To determine the advantages of using multiple calibra
tion factors; and 

-To use dynamic weights directly in ESAL calculations. 
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