Left-Turn Adjustment Factors for Saturation Flow Rates of Shared Permissive Left-Turn Lanes

Feng-Bor Lin

For capacity analysis of signalized intersections, a left-turn adjustment factor is used in the 1985 Highway Capacity Manual (HCM) to account for the effect of left turns on saturation flow rates. When shared permissive left-turn lanes are the subject of analysis, the HCM uses a theoretical model to determine the related adjustment factors. Questions concerning the reliability of this model have been raised, and a recent study sponsored by the Federal Highway Administration has suggested that the HCM model be replaced by a set of new models. The new models, however, have serious flaws. An improved model that provides logical explanations of the causal relationships between the leftturn adjustment factor and its contributing factors is described. The contributing factors include opposing flow rate, number of opposing lanes, flow rate in the lane adjacent to the shared lane, proportion of left turns in the shared lane, proportion of left turns in opposing flow, proportion of opposing vehicles arriving in red interval, cycle length, green interval, and change interval. A numerical example is given to illustrate the applications of the improved model.

In the capacity analysis of signalized intersection, the 1985 Highway Capacity Manual (HCM) (1) requires that the saturation flow rate of a lane or a lane group be determined from the following formula:
$S=S_{o} N F f_{L T}$
where
$S=$ saturation flow rate (vphg) (vehicles per hour of effective green interval);
$S_{o}=$ ideal saturation flow rate, taken to be 1,800 vphg per lane;
$N=$ number of lanes in a lane group;
$F=$ the product of seven adjustment factors related respectively to lane width, heavy vehicles, approach grade, parking, blocking effects of local buses, area type, and right turns; and
$f_{L T}=$ adjustment factor for left turns.
When an analysis involves shared permissive left-turn lanes, the determination of the left-turn adjustment factor becomes a rather difficult problem.

A shared permissive left-turn lane refers to a lane from which opposed left-turn vehicles and vehicles of other directional movements can move into the intersection in a permissive left-turn signal phase. The presence of opposed left

[^0]turns in such a lane disrupts vehicular movements and complicates the determination of $f_{L r}$. The 1985 HCM relies on a theoretical model to deal with this problem. The HCM concept in estimating $f_{L T}$ has been used by Levinson (2) to develop a model for estimating the capacity of shared left-turn lanes. Questions concerning the reliability of the HCM model have been raised, however, and a set of new models was recommended in a recent study sponsored by FHWA (3). The new models were developed from regression analysis of field data. They are easy to use but do not properly account for the causal relationships between $f_{L T}$ and its contributing factors. For example, $f_{L T}$ can be expected to vary with opposing flow rate, yet the model recommended for single lane approach assumes implicitly that $f_{L T}$ is independent of opposing flow rate. This flow may be partially responsible for the fact that the estimates obtained on the basis of that model have little correlation with observed values (3).

To provide an alternative, this paper describes an improved model that explains logically the causal relationships between $f_{L T}$ and its contributing factors. This model deals with the leftturn adjustment factors for shared lane only (i.e., $N=1$); it is developed on the basis of theoretical reasonings, field data, and computer simulation. A numerical example is provided to illustrate the applications of the model.

RESEARCH APPROACH

Equation 1 indicates that, if the saturation flow rate for a given F can be determined under a wide range of conditions, then a data base can be established for modeling $f_{L T}$. Because the vehicular movements in a shared left-turn lane can be interrupted by blocked left-turn vehicles, their saturation headway cannot be meaningfully defined and measured in the field to estimate the corresponding saturation flow rate. This problem can be overcome by taking advantage of the following relationship for $N=1$ and for conditions represented by $F=1.0$:
$f_{L T}=\frac{S}{S_{o}}=\frac{C Q_{\max }}{G_{e} S_{o}}$
where
$Q_{\max }=$ capacity of a shared lane for $F=1.0$ (level, 12 -ftwide approach lane and ideal conditions for other factors related to F),
$C=$ cycle length (sec), and
$G_{e}=$ effective green (sec).

For a given combination of C and G_{e}, Equation 2 shows that finding $f_{L T}$ is the same as finding $Q_{\max } . Q_{\text {max }}$ can be determined by estimating the number of vehicles per cycle that can move out of an intersection. This expected number of departures includes the following components: early left turns, M_{1}; unblocked straight-through departures, M_{2}; departures in leftover green, M_{3}; and departures after green interval, M_{4}. Details of these components will be discussed later.

The modeling of $Q_{\text {max }}$ is divided into two parts. The first part concerns a basic flow pattern as shown in Figure 1 (top). The notations used in this figure are defined as follows: $Q_{01}=$ flow rate in the inside opposing lane (vph), $Q_{02}=$ flow rate in the outside opposing lane (vph), and $Q_{a}=$ flow rate in the lane adjacent to the shared lane (vph). The opposing lanes of the basic pattern do not contain left-turn vehicles. Such a situation may exist at a T-intersection or at a four-leg intersection where left turns from the inside opposing lane are prohibited. The maximum number of opposing lanes considered in this study is two.

The second part of the modeling effort involves the development of a mechanism to transform a flow pattern that contains left turns in Q_{01} into an equivalent basic flow pattern. This transformation involves the conversion of Q_{01} into an equivalent straight-through opposing flow $\left(Q_{01}\right)_{e}$ for the estimation of the capacity of a shared lane. The transformation process is shown in Figure 1 (bottom). In this figure, P_{o} represents the proportion of left turns in the inside opposing lane.
$Q_{\text {max }}$ is considered to be a function of such variables as Q_{01}, Q_{02}, Q_{a}, P_{o}, cycle length C, green interval G, signal change interval Y, proportion of left turns in shared lane P_{s}, and so forth. This study employs a combination of theoretical considerations, field data, and computer simulation to identify the causal relationships between $Q_{\text {max }}$ and its contributing variables. The simulation model used in this study is a microscopic model developed at Clarkson University. This model can realistically simulate the stochastic movements of vehicles at intersections controlled by a variety of traffic signals. Details of this model are described elsewhere (4). An example comparison of the simulation outputs and field observations is given in Table 1.

One concern in modeling $Q_{\text {max }}$ and its related $f_{L T}$ is whether the effects of signal coordination should also be considered.

FIGURE 1 Basic flow pattern (top) and pattern transformation (bottom).

A simulation analysis reveals that the capacity of a shared left-turn lane may be affected by the presence of prominent cyclic platoons in the opposing lanes as a result of signal coordination. Nevertheless, as shown in Figure 2, the capacities of shared left-turn lanes when the arrivals are random tend to lie mostly within 50 vph of the values for coordinated signal operations. Such discrepancies are not alarmingly large in the context of capacity analysis. To avoid unnecessary complications, the arrivals will be assumed to be random for the purpose of modeling $Q_{\max }$ and $f_{L T}$. To account partially for the fact that arrivals are not necessarily random, the proportion of arrivals in red interval is included as a variable in the modeling process.

MODEL FOR BASIC FLOW PATTERN

Given the four components of departures per cycle, M_{1}, M_{2}, M_{3}, and M_{4}, the capacity of a shared lane for $F=1.0$ can be determined as
$Q_{\text {max }}=\left(\sum_{n=1}^{4} M_{n}\right) \frac{3,600}{C}$
The modeling of each of the departure components is discussed.

Early Left Turns, M_{1}

Early left turns refer to those leading left-turn vehicles in various cycles that turn in front of the leading opposing vehicle shortly after green onset. Given the proportion of left turns in a shared left-turn lane $\left(P_{s}\right)$ and the probability of early left turn α for a leading left-turn vehicle, the expected number of early left turns per cycle can be estimated as
$M_{1}=\alpha P_{s}$
The values of α are often less than 0.5 . Therefore, when P_{s} is much smaller than $1.0, M_{1}$ becomes negligibly small.

Unblocked Straight-Through Departures, M_{2}

After the green onset, those straight-through vehicles ahead of the first left-turn vehicle can move out without facing the possibility of being blocked. To facilitate the estimation of such departures, the directional movements of the vehicles in a shared left-turn lane are classified into a series of events as shown in Figure 3. In this figure, K_{2} represents the expected maximum number of straight-through vehicles that can move into the intersection before the green interval G expires. The value of K_{2} can be determined as
$K_{2}=\frac{G-L_{s}}{H_{s}}$
where L_{s} is lost time due to starting delays (sec), and H_{s} is saturation headway when only straight-through vehicles are present (sec).

TABLE 1 Comparison of Observed and Simulated Signal Operations

		Average Green, sec				Average Stopped Delay, sec/veh	
		Observed		Simulated			
Case	Phase	Mean	S.D. ${ }^{1}$	Mean	S.D.	Observed	Simulated
A	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 6.5 \\ 32.4 \end{array}$	$\begin{array}{r} 2.6 \\ 25.2 \end{array}$	$\begin{array}{r} 5.1 \\ 30.3 \end{array}$	$\begin{array}{r} 2.1 \\ 24.6 \end{array}$	7.7^{2}	6.6
B	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 33.8 \\ 5.4 \\ 24.0 \end{array}$	$\begin{array}{r} 18.2 \\ 2.1 \\ 0.0 \end{array}$	$\begin{array}{r} 31.9 \\ 5.1 \\ 24.0 \end{array}$	$\begin{array}{r} 17.6 \\ 2.3 \\ 0.0 \end{array}$	$11.1{ }^{3}$	10.7
C	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 12.4 \end{aligned}$	$\begin{array}{r} 12.8 \\ 6.3 \end{array}$	$\begin{aligned} & 27.6 \\ & 13.0 \end{aligned}$	$\begin{array}{r} 12.1 \\ 6.3 \end{array}$	$14.7{ }^{3}$	14.9
D	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 5.8 \end{aligned}$	$\begin{array}{r} 17.5 \\ 9.5 \end{array}$	$\begin{aligned} & 8.1 \\ & 5.2 \end{aligned}$	Not available	Not available
E	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 29.3 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 30.2 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 0.9 \end{aligned}$	$42.3{ }^{4}$	43.7
F	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 12.9 \\ 9.2 \\ 33.6 \end{array}$	$\begin{aligned} & 3.9 \\ & 4.1 \\ & 7.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.6 \\ 9.4 \\ 32.1 \end{array}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & 6.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0^{3} \\ & 3.1^{5} \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 2.7 \end{gathered}$
G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 30.0 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 12.1 \\ & 30.0 \\ & 19.2 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 0.0 \\ & 0.0 \end{aligned}$	$25.1{ }^{6}$	25.6
H	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 30.0 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 0.2 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 30.0 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 0.1 \\ & 2.0 \end{aligned}$	41.9^{7}	41.6

${ }^{1}$ S.D. $=$ Standard deviation
${ }^{2}$ single-lane flow with right turns and left turns
${ }^{3}$ exclusive left-turn flow
${ }^{4}$ shared-permissive left-turn flow (85% left turns)
${ }^{5}$ exclusive right-turn flow with right-turn-on-red
${ }^{6}$ shared-permissive left-turn flow (93% left turns)
${ }^{7}$ shared-permissive left-turn flow (95% left turns)

FIGURE 2 Capacities with cyclic platoon arrivals in opposing lanes versus capacities with random arrivals.

FIGURE 3 Classification of arrival sequences.

The expected number of unblocked straight-through departures per cycle can be estimated as

$$
M_{2}=\left\{\begin{array}{l}
K_{2} \quad \text { if } P_{s}=0 \tag{6a}\\
\sum_{n=0}^{K_{2}-1} n\left(1-P_{s}\right)^{n} P_{s}+K_{2}\left(1-P_{s}\right)^{K_{2}}= \\
{\left[1-P_{s}-\left(1-P_{s}\right)^{K_{2}}\right] / P_{s} \quad \text { if } P_{s}>0}
\end{array}\right.
$$

Departures in Leftover Green, M_{3}

In Figure 3, the green interval G is divided into two components: G_{1} and $G_{2} . G_{1}$ is the average portion of the green interval consumed by the queueing vehicles in the opposing lanes before these vehicles cross the conflicting point. The conflicting point can be considered to be a representative location at which a leading left-turn vehicle that is blocked would come to a stop to wait for a suitable gap in the opposing flow. On the basis of G_{1}, the events shown in the figure are grouped into Set A and Set B. Set A events allow a maximum of K_{1} straight-through vehicles to move into the intersection before a left-turn vehicle becomes the leading vehicle in the shared lane. The number of straight-through vehicles ahead of the first left-turn vehicle in Set B ranges from $K_{1}+1$ to K_{2}. The value of K_{2} is determined from Equation 5, and K_{1} can be determined in a similar manner as
$K_{1}=\frac{G_{1}-L_{s}}{H_{s}} \geq 0$
After the departures of unblocked straight-through vehicles, a mix of left-turn and straight-through vehicles can move out by using leftover green intervals. For each of the Set A events, the leftover green interval is G_{2}. For the Set B events, the leftover green intervals depend on the portion of the green interval already consumed by the unblocked straight-through vehicles.

To facilitate the estimation of G_{1} and the leftover green intervals, let us define the following additional variables:
$i=$ inside opposing lane $(i=1)$ or outside opposing lane ($i=2$),
$S_{0 i}=$ saturation flow rate of the i th opposing lane (vph),
$x_{i}=$ number of queueing vehicles in the i th opposing lane at green onset,
$m_{0 i}=$ average number of queueing vehicles in the i th opposing lane at green onset,
$q_{0 i}=$ arrival rate in the i th opposing lane during green and signal change intervals (vph),
$q_{12}=q_{01}+q_{02}=$ sum of arrival rates q_{01} and $q_{02}(\mathrm{vph})$,
$R_{o}=$ proportion of arrivals in red in opposing lanes, and
$\beta=$ time required for queueing vehicles to go from the stop line until they clear the conflicting point (sec).
On the basis of these definitions, $m_{0 i}$ and $q_{0 i}$ can be determined as
$m_{0 i}=\frac{Q_{0 \mathrm{i}} R_{o} C}{3,600}$
and
$q_{0 i}=\frac{Q_{0 i}\left(1-R_{o}\right) C}{G+Y}$
If there are x_{i} queueing vehicles in the i th opposing lane at the green onset, the portion of the green interval t_{i} consumed by these and subsequent queuing vehicles before they all cross the conflicting point may be estimated as
$t_{i}=\left\{\begin{array}{l}0 \quad \text { if } x_{i}=0 \\ \frac{3,600 x_{i}+L_{s} q_{0 i}}{S_{0 i}-q_{0 i}}+L_{s}+\beta \leq G \quad \text { if } x_{i}>0\end{array}\right.$
Therefore, if $t_{2} \leq t_{1}$, the queuing vehicles in the inside opposing lane would govern the time required to discharge all queueing vehicles in a given cycle. Otherwise, the queueing vehicles in the outside lane would govern. In other words, the queuing vehicles in the inside lane would govern if the following inequality holds:
$\frac{3,600 x_{1}+L_{x} q_{01}}{S_{01}-q_{01}} \geq \frac{3,600 x_{2}+L_{s} q_{02}}{S_{02}-q_{02}}$
This inequality can be rewritten as
$x_{2} \leq \frac{1}{3,600}\left[\frac{3,600 x_{1}+L_{s} q_{01}}{S_{01}-q_{01}}\left(S_{02}-q_{02}\right)-L_{s} q_{02}\right]$
Let X be the largest integer of x_{2} that satisfies Equation 12 and $P\left(x_{i}\right)$ be the probability of having x_{i} queueing vehicles in Lane i at the green onset. For a given x_{1}, the portion of the green interval consumed by opposing queueing vehicles would be t_{1} if x_{2} has a value equal to or less than X. On the other hand, the portion of the green interval consumed by opposing queueing vehicles would be t_{2} if x_{2} has a value larger than X. Therefore, the expected value of G_{1} can be estimated as
$G_{1}=\sum_{x_{1}=0}^{\infty} P\left(x_{1}\right)\left[t_{1} \sum_{x_{2}=0}^{X} P\left(x_{2}\right)+\sum_{x_{2}=X+1}^{\infty} t_{2} P\left(x_{2}\right)\right]$
If the arrivals in red are random, the $P\left(x_{i}\right)$ in Equation 13a can be determined from the following Poisson distribution:
$P\left(x_{i}\right)=\frac{m_{0 l}^{x_{i}} e^{-m_{i j}}}{x_{i}!}$
When only one opposing lane is present and arrivals are random, Equation 13a can be reduced to

$$
\begin{align*}
G_{1}= & \frac{3,600 m_{01}}{S_{01}-q_{01}} \\
& +\left(\frac{L_{s} q_{01}}{S_{01}-q_{01}}+L_{s}+\beta\right)\left(1-e^{-m_{01}}\right) \leq G \tag{14}
\end{align*}
$$

If two opposing lanes are present, Equation 13a can be approximated by a simplified equation. Let Q_{H} be the larger one of Q_{01} and Q_{02}. And, if $q_{01} / S_{01} \geq q_{02} / S_{02}$, let $m_{H}=m_{01}$,
$q_{H}=q_{01}, S_{H}=S_{01}, S_{L}=S_{02}$, and $q_{L}=q_{02}$. Otherwise, let $m_{H}=m_{02}, q_{H}=q_{02}, S_{H}=S_{02}, S_{L}=S_{01}$, and $q_{L}=q_{01}$. Then the simplified equation can be written as

$$
\begin{align*}
G_{1}= & \frac{3,600 m_{H}}{S_{H}-q_{H}}+\left(\frac{L_{s} q_{H}}{S_{\mathrm{H}}-q_{\mathrm{H}}}+L_{S}+\beta\right)\left(1-e^{-m_{H}}\right) \\
& +2 \gamma_{1} e^{\gamma_{2}-\gamma_{3}\left(1-\gamma_{1}\right)} \leq G \tag{15a}
\end{align*}
$$

where
$\gamma_{1}=\frac{q_{L} S_{H}}{q_{H} S_{L}}$
$\gamma_{2}=\frac{\left(0.042+0.01 R_{o}\right) Q_{H} C}{3,600}$
and
$\gamma_{3}=e^{\frac{08 Q_{H} C}{3,600}}-1$
Equation 15a is the same as Equation 14 when only one opposing lane is present.
Twelve samples of field data were collected from three intersections to test Equations 13a and 15a. The observed values of G_{1} and the estimates obtained from these equations are given in Table 2. The discrepancies between the observed and the estimated values were small.
Two other models have been recommended for estimating G_{1} in the HCM and in the FHWA study (2). For comparison, the estimated values of G_{1} obtained from these models are also given in Table 2. The model recommended in the FHWA study measures G_{1} in terms of the time required for the front end of the last queueing vehicle to reach the stop line after green onset. Therefore, the estimates obtained from this model
are increased by an amount equal to β. The reference line used in the model given in the HCM is unknown, and therefore no adjustments are made.

Given G_{1}, the leftover green interval for Set A events is $G_{2}=G-G_{1}$. To facilitate further analysis, this leftover green interval is modified into an effective leftover green T_{a}, where

$$
T_{a}=\left\{\begin{array}{l}
G-G_{1} \quad \text { if } G_{1} \geq L_{s} \tag{16a}\\
G-G_{1}-L_{s}\left(1-\frac{G_{1}}{L_{s}}\right) \quad \text { if } G_{1}<L_{s}
\end{array}\right.
$$

This equation implies that if G_{1} is greater than or equal to the lost time L_{s}, there is no need to adjust for starting delays because the lost time is completely accounted for by G_{1}. When G_{1} is smaller than L_{s}, however, G_{1} may not fully account for the starting delays associated with the vehicles in the shared lane. Equation 16b provides an adjustment for such a situation.
For the determination of the average leftover green interval for Set B events, one may proceed with the determination of the probability of an event being in Set B. This probability is $\left(1-P_{s}\right)^{K_{1+1}}$, where P_{s} is the proportion of left turns in the shared lane. Therefore, for the Set B events and $0<P_{s}<1$, the average number of straight-through vehicles \bar{K}_{b} that can move out before a left-turn vehicle becomes the leading vehicle in the shared lane can be determined as

$$
\begin{align*}
\bar{K}_{b}= & \frac{1}{\left(1-P_{s}\right)^{K_{1}+1}}\left\{\left[\sum_{n=K_{1}+1}^{K_{2}-1} n\left(1-P_{s}\right)^{n} P_{s}\right]\right. \\
& \left.+K_{2}\left(1-P_{s}\right)^{K_{2}}\right\} \\
= & \frac{1}{P_{s}}\left[1+K_{1} P_{s}-\left(1-P_{s}\right)^{K_{2}-K_{1}}\right] \tag{17}
\end{align*}
$$

TABLE 2 Observed and Estimated Values of \boldsymbol{G}_{1}

Case	Q_{01}	Q_{02}	C	G	R_{o}	Actual	Eq. 13a	Eq. 15a	HCM	FHWA
1	323	266	81.8	23.0	.79	20.0	20.0	20.2	13.0	23.0
2	278	246	81.8	23.0	.88	19.3	19.2	20.4	11.3	23.0
3	350	360	81.8	23.0	.75	20.4	21.6	23.0	16.4	23.0
4	388	0	70.6	30.0	.67	19.1	-	18.9	11.2	19.2
5	415	0	72.2	30.0	.68	19.4	-	20.6	12.6	20.3
6	502	0	71.2	30.0	.62	22.4	-	23.5	15.9	21.0
7	494	0	72.3	30.0	.71	24.7	-	24.4	16.0	24.6
8	440	0	68.9	30.0	.52	19.9	-	18.4	12.6	16.2
9	356	0	80.0	22.4	.80	21.5	-	21.0	14.2	22.2
10	274	0	103.7	19.2	.92	19.2	-	19.2	15.2	19.2
11	274	0	82.8	17.2	.72	17.2	-	17.2	11.8	17.2
12	218	0	84.0	18.2	.78	13.4	-	14.8	9.1	16.4

Note: $\mathrm{L}_{\mathrm{a}}=2.0 \mathrm{sec}$ (assumed value)
$\beta=2.2$ to 3.8 sec
Saturation flow rate: 1500 to 1750 vphg
Lost time per phase $=4 \mathrm{sec}$ (assumed for HCM model)

The corresponding values of \bar{K}_{b} for $P_{s}=0$ and $P_{s}=1$ are
$\bar{K}_{b}= \begin{cases}K_{2} & \text { if } P_{s}=0 \\ 0 & \text { if } P_{s}=1\end{cases}$
The average portion of the green interval consumed by these \bar{K}_{b} vehicles is approximately $\bar{K}_{b} H_{s}+L_{s}$. The corresponding effective leftover green interval T_{b} for the Set B events becomes
$T_{b}=G-\bar{K}_{b} H_{s}-L_{s}$
With the exception of the last event shown in Figure 3, a leftturn vehicle becomes the leading vehicle in the shared lane after unblocked straight-through vehicles have moved out. This leading vehicle has to use the gaps in the opposing flow to move out. Assuming that a waiting left-turn driver will only accept those gaps longer than $\tau \sec$, the average number of gaps J that will be rejected before a gap is accepted can be estimated as
$J=\sum_{n=0}^{\infty} n Z(h \leq \tau)^{n}[1-Z(h \leq \tau)]$
where $Z(h \leq \tau)$ is the probability that a gap h in the opposing flow is less than or equal to τ.

It can be shown that, for random arrivals, the average number of rejected gaps can be approximated as
$J=e^{\frac{q_{12} \tau}{3.600}}-1$
The value of τ can be considered to be equal to the median of the lengths of accepted gaps. Typical values of τ are between 4.5 and 5.5 sec . For such values of τ, the average length of each rejected gap can be approximated as $\tau / 2$ without incurring significant errors in estimating the capacity of a shared left-turn lane. On the basis of this approximation, a waiting left-turn driver will wait an average of $J_{\tau} / 2 \mathrm{sec}$ before accepting a gap. After a decision is made to accept a gap, it will take an additional $\delta \mathrm{sec}$ for the left-turn vehicle to cross the conflicting point and for the next vehicle to move up. Typical values of δ are between 2.0 and 2.5 sec .

Let H_{x} represent the expected portion of the green interval consumed by the first left-turn vehicle. Then, H_{x} can be determined as
$H_{x}=\frac{\tau}{2}\left(e^{\frac{412 \tau}{3.600}}-1\right)+\delta$
After the first left-turn vehicle has moved out, the vehicle following can be either a straight-through or a left-turn vehicle. The expected time H_{y} needed by either of such vehicles to move out is not amenable to simple analytical modeling. Nevertheless, when the opposing flow does not exist, the saturation headway H_{o} of the vehicles in the shared lane can realistically be estimated as
$H_{o}=\left(1-P_{s}\right) H_{s}+P_{s} H_{e}$
where H_{e} is saturation headway only when unopposed leftturn vehicles are present and H_{s} is saturation headway when only straight-through vehicles are present.

When opposed left turns exist, the average departure headway can be expected to exceed H_{o} and to increase with the proportion of left turns in the shared lane P_{s} and the opposing flow rate q_{12}. A logical model characterizing this relationship between H_{y}, P_{s}, and q_{12} is
$H_{y}=H_{o} e^{A\left(\frac{q_{12}}{100}\right)^{B}}$
For random arrivals, simulation reveals that the coefficients A and B in this equation can be estimated as
$A=0.18 P_{s}^{0.68}$
and
$B=1.02 P_{s}^{-0.15}$
The first left-turn vehicle in a Set A event consumes H_{x} sec of the effective leftover green T_{a}, and the subsequent vehicles consume an average of $H_{y} \mathrm{sec}$ each. Thus, the expected number of departures W_{a} related to Set A events is
$W_{a}=\left\{\begin{array}{l}\frac{T_{a}}{H_{x}} \quad \text { if } T_{a} \leq H_{x} \\ 1.0+\frac{T_{a}-H_{x}}{H_{y}} \quad \text { if } T_{a}>H_{x}\end{array}\right.$
Similarly, the expected number of departures W_{b} related to Set B events is
$W_{b}=\left\{\begin{array}{l}\frac{T_{b}}{H_{x}} \quad \text { if } T_{b} \leq H_{x} \\ 1.0+\frac{T_{b}-H_{x}}{H_{y}} \quad \text { if } T_{b}>H_{x}\end{array}\right.$
Set A events and Set B events account for a total probability of $1-\left(1-P_{s}\right)^{K_{1+1}}$ and $\left(1-P_{s}\right)^{K_{1+1}}$, respectively. Therefore, the total expected departures during the effective leftover green in a cycle is
$M_{3}=W_{a}\left[1-\left(1-P_{s}\right)^{K_{1}+1}\right]+W_{b}\left(1-P_{s}\right)^{K_{1}+1}$

Departures After Green Interval, $\boldsymbol{M}_{\mathbf{4}}$

For capacity analysis of signalized intersections, the 1985 HCM assumes implicitly that two blocked vehicles can move out of the intersection after the green interval expires. On the basis of this assumed condition, simulation data generated in this study show that the following equation can provide reasonable estimates of M_{4} :
$M_{4}=1.3+0.0033 e^{-0.007 G P_{s}^{0.2} q_{12} \leq 2.0}$
This equation implies that M_{4} varies from 1.3 to 2.0 vehicles. The value of M_{4} is 1.3 vehicles when opposed left turns
do not exist ($P_{s}=0.0$ or $q_{12}=0.0$), and it reaches 2.0 vehicles when blocked vehicles are present in virtually every cycle after the green interval expires.

STRAIGHT-THROUGH EQUIVALENT OF Q_{01}

The present of left-turn vehicles in the inside opposing lane can increase the number and the size of the gaps usable to the drivers in a shared left-turn lane. Therefore, when the proportion of the left-turn vehicles in the opposing lane increases, the capacity of a shared left-turn lane also increases. The increase in capacity can be affected by several other factors. This phenomenon is shown in Figure 4 on the basis of simulation data. By comparing such data as shown in this figure with data for an inside opposing flow Q_{01} that contains no left turns, one can determine the straight-through equivalent $\left(Q_{01}\right)_{e}$ of Q_{01}. An example of $\left(Q_{01}\right)_{e}$ expressed as a ratio to Q_{01} is shown in Figure 5.

FIGURE 4 Effects of left turns in Q_{01} on capacity of shared left-turn lanes.

FIGURE 5 Characteristic relationships between Q_{01} and its straight-through equivalent $\left(Q_{01}\right)_{e}$.

In general, the relationship between $\left(Q_{01}\right)_{e}$ and Q_{01} can be represented by
$\left(Q_{01}\right)_{e}=Q_{01}\left(1-\beta_{1} P_{o}\right) e^{-\beta_{2} P_{o}}$
where β_{1} can be treated as a constant coefficient with a value of 0.97 and β_{2} is a function of several variables.

To identify the relationship between β_{2} and the influencing variables, a very large number of simulation runs were performed to develop a data base. On the basis of these simulation data, an analysis was carried out to isolate the effects of each variable on β_{2}. This effort produced a set of equations for determining β_{2}.

To facilitate the determination of β_{2}, let us define two functions, δ_{1} and δ_{2}, as follows:

$$
\begin{equation*}
\delta_{1}=-\left(e^{1.39 \frac{G+Y}{C}}-1\right) P_{s} \tag{29b}
\end{equation*}
$$

and
$\delta_{2}=\left(0.0006+0.00233 \frac{G+Y}{C}+0.0021 P_{s}\right) Q_{a}$
Then, for $Q_{01} \leq 400 \mathrm{vph}$, the value of β_{2} is
$\beta_{2}=1.5 e^{-2.7 P_{s}}+\frac{0.9 Q_{01}}{400} e^{\delta_{1}+\delta_{2}}$

And, for $Q_{01}>400 \mathrm{vph}$, the value of β_{2} is

$$
\begin{align*}
\beta_{2}= & 1.5 e^{-2.7 P_{s}}+0.9 e^{\delta_{1}+\delta_{2}} \\
& +\frac{Q_{01}-400}{400}\left(4.5-3.6 \frac{G+Y}{C}-0.5 P_{s}\right) \tag{29e}
\end{align*}
$$

The straight-through equivalent of each vehicle in Q_{01} (i.e., $\left(Q_{01}\right) / Q_{01}$ as determined from Equation 29a through 29e) has several characteristics that are worth noting. First, larger Q_{a} and P_{o} increase the chance of an opposing left-turn vehicle being blocked and, thus, allow more vehicles in a shared leftturn lane to move out. Under such conditions each opposing vehicle becomes less of a factor affecting the capacity of a shared left-turn lane. This is the reason why, as shown in Figure 5, $\left(Q_{01}\right)_{e} / Q_{01}$ decreases with Q_{a} and P_{o}. An increase in the opposing flow Q_{01} has similar effects. In contrast, $\left(Q_{01}\right)_{e} /$ Q_{01} increases with P_{s} and $(G+Y) / C$.

APPLICATIONS

In general, the applications of the analytical model described involves the transformation of Q_{01} into a straight-through equivalent, the determination of $Q_{\text {max }}$ for the basic flow pattern resulting from the transformation, and the use of Equation 2 to determine $f_{L T}$. A numerical example is given in Table 3 to illustrate the applications of the model. The example involves a flow pattern that has $Q_{a}=400 \mathrm{vph}, Q_{01}=200$ vph with $P_{o}=0.2, Q_{02}=350 \mathrm{vph}, R_{o}=0.32$, and $P_{s}=0.8$. The related signal control has a cycle length C of 50 sec , a green interval G of 30 sec for the permissive left-turn phase,

TABLE 3 Estimation of $Q_{\text {max }}$ and $f_{L T}-$ An Example
A. Transformation of Q_{01} into $\left(Q_{01}\right)_{e}$

$$
\begin{aligned}
& \beta_{1}=0.97 \text { (in Eq. 29a); } \delta_{1}=-1.26 \text { (Eq. 29b); } \delta_{2}=1.55(\text { Eq. 29c); } \\
& \left.\beta_{2}=0.77 \text { (Eq. 29d); } \text { Q }_{01}\right)_{\mathrm{e}}=138 \mathrm{vph}(\text { Eq. 29a) }
\end{aligned}
$$

B. Estimation of $Q_{\text {max }}$ [set Q_{01} to $\left.\left(Q_{01}\right)_{e}=138 \mathrm{vph}\right]$

> Determination of M_{1} $$
\mathrm{M}_{1}=0.16 \mathrm{veh} / \mathrm{cycle} \text { (Eq. 4) }
$$

Determination of M_{2}
$\mathrm{K}_{2}=14$ (Eq. 5); $\mathrm{M}_{2}=0.25 \mathrm{veh} /$ cycle (Eq. 6 b)
Determination of M_{3}
$m_{01}=0.61$ (Eq. 8); $m_{02}=1.56$ (Eq. 8); $q_{01}=138$ (Eq. 9);
$\mathrm{q}_{02}=350$ (Eq. 9); $\mathrm{q}_{12}=488$; In Eqs. 15a through $15 \mathrm{~d}, \mathrm{~S}_{01}=\mathrm{S}_{02}=1,800$;
$\mathrm{m}_{\mathrm{H}}=1.56 ; \mathrm{S}_{\mathrm{H}}=\mathrm{S}_{\mathrm{L}}=1,800 ; \mathrm{q}_{\mathrm{H}}=\mathrm{q}_{02}=350 ; \mathrm{q}_{\mathrm{L}}=\mathrm{q}_{01}=138 ; \mathrm{Q}_{\mathrm{H}}=\mathrm{Q}_{02}=350 ;$
$\gamma_{1}=0.39 ; \gamma_{2}=0.22 ; \gamma_{3}=0.475 ; \mathrm{G}_{1}=8.5$ (Eq. 15a); $\mathrm{T}_{\mathrm{a}}=21.5(\mathrm{Eq} .16 \mathrm{a}) ;$
$\mathrm{K}_{1}=3.3$ (Eq. 7); $\overrightarrow{\mathrm{K}}_{\mathrm{b}}=4.6$ (Eq. 17); $\mathrm{T}_{\mathrm{b}}=18.8$ (Eq. 19); $\mathrm{H}_{\mathrm{x}}=5.5$ (Eq. 22);
$\mathrm{H}_{\mathrm{o}}=2.08$ (Eq. 23); $\mathrm{A}=0.155$ (Eq. 24b); $\mathrm{B}=1.055$ (Eq. 24c);
$\mathrm{H}_{\mathrm{y}}=4.7($ Eq. 24 a$) ; \mathrm{W}_{\mathrm{n}}=4.40\left(\right.$ Eq. 25b) $\mathrm{W}_{\mathrm{b}}=3.83$ (Eq. 26b);
$M_{3}=4.40$ veh/cycle (Eq. 27)
Determination of M_{4}
$\mathrm{M}_{4}=2.6>2.0$ (Eq. 28); set $\mathrm{M}_{4}=2.0$ veh/cycle
Determination of $Q_{\text {max }}$
$Q_{\max }=490 \mathrm{vph}$ (Eq. 3)
C. Estimation of f_{LT}
$f_{L T}=0.45$ (Eq. 2 with $G_{e}=G=30 \mathrm{sec}$)
and a change interval of 4 sec . The saturation flows for straightthrough movements and unopposed left turns are, respectively, $1,800 \mathrm{vphg}\left(H_{s}=2.0 \mathrm{sec}\right)$ and $1,700 \mathrm{vphg}\left(H_{e}=2.1\right.$ sec). In addition, the following parameters are used: $\tau=5.5$ $\mathrm{sec}, \delta=2.5 \mathrm{sec}, \beta=2.5 \mathrm{sec}, \alpha=0.2$, and $L_{s}=2.0 \mathrm{sec}$. The model gives an estimated $Q_{\text {max }}$ of 490 vph and a $f_{L T}$ of 0.45 . In comparison, direct simulation gives a $Q_{\max }$ of 442 vph.

Over a wide range of conditions, the values of $Q_{\text {max }}$ estimated from the analytical model and those determined from direct simulation are mostly within 50 vph of each other. This characteristic is shown in Figure 6. Figure 7 further shows the ability of the model to estimate $Q_{\text {max }}$ and the related $f_{L T}$ when a lane is changed from a straight-through-only lane ($P_{s}=0.0$) to a shared left-turn lane $\left(0.0<P_{s}<1.0\right)$ and, finally, to an exclusive left-turn lane ($P_{s}=1.0$).

FIGURE 6 Capacities estimated from analytical model versus capacities determined from direct simulation.

FIGURE 7 Simulated capacities and estimates obtained from analytical model for basic flow patterns with 90 -sec cycle and 42 sec green interval.

CONCLUSIONS

The left-turn adjustment factor for a shared left-turn lane is a complex function of a number of variables. Reflecting this complexity, the analytical model developed in this study is much more complicated than the HCM and FHWA models. The added sophistication enables the resulting model to provide better explanations of the causal relationships between the adjustment factor and its contributing factors.

In comparison with elaborate microscopic simulation, the analytical model developed in this study can yield equally realistic estimates. Field data may be collected in future studies to test and modify the constant coefficients associated with the model.

ACKNOWLEDGMENTS

This paper is based on work supported in part by the New York State Science and Technology Foundation. The author
wishes to thank John F. Edwards, a graduate student at Clarkson University, for his assistance in collecting the data presented in this paper.

REFERENCES

1. Special Report 209: Highway Capacity Manual. TRB, National Research Council, Washington, D.C., 1985.
2. H. S. Levinson. Capacity of Shared Left-Turn Lanes-A Simplified Approach. In Transpartation Research Record 1225, TRB, National Research Council, Washington, D.C., 1989, pp. 45-52.
3. R. P. Roess, J. M. Ulerio, and V. N. Papayannoulis. Modeling the Left-Turn Adjustment Factor for Permitted Left Turns Made from Shared Lane Groups. In Transportation Research Record 1287, TRB, National Research Council, Washington, D.C., 1990, pp. 138-150.
4. F.-B. Lin. Knowledge Base on Semi-Actuated Signal Control. Journal of Transportation Engineering, ASCE, Vol. 117, No. 4, 1991, pp. 398-417.

Publication of this paper sponsored by Committee on Highway Capacity and Quality of Service.

[^0]: Department of Civil and Environmental Engineering, Clarkson University, Potsdam, N.Y. 13699-5710.

