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Car-Following Model Based on Fuzzy 
Inference System 

SHINYA KIKUCHI AND p ARTHA CHAKROBORTY 

Car-following theory has been receiving renewed attention for its 
use in the analysis of traffic flow characteristics and vehicle sep
aration control under the IYHS. A car-following model that uses 
the fuzzy inference system, which consists of many straightfor
ward natural language-based driving rules, is proposed. It pre
dicts the reaction of the driver of the following vehicle (acceleration
deceleration rates) given the action of the leading vehicle. A range 
of possible reaction is predicted and expressed by the fuzzy mem
bership function. The model is applied to the analysis of traffic 
stability and speed-density relationship. For traffic stability, the 
results are compared with those derived from the deterministic 
approach. The speed-density relationship derived from the model 
is compared with a set of actual flow data. The predicted range 
is found to be reasonable. The proposed fuzzy approach helps 
explain the scatter of the actual data as possibility rather than 
random variation. 

For the past several decades traffic flow has been generally 
analyzed under the premise that all drivers behave in a similar 
manner and that a general law exists governing the flow char
acteristics in the traffic stream. On the basis of this premise, 
characteristics of flow have been analyzed from both the mi
croscopic and the macroscopic standpoints. Most studies have 
considered that a deterministic relationship exists between the 
action of a vehicle and the reaction of the vehicles that follow. 
Whereas the existence of this cause and effect relationship is 
not disputable, the reactions of a driver to the actions of other 
drivers are perhaps not based on a deterministic one-to-one 
relationship, but on a set of vague driving rules developed 
through experience. The way in which the rules are applied 
may differ with different drivers, and even for the same driver, 
it differs with different conditions. The rules are not rigid but 
are natural language based. For example, if the leading vehicle 
(L V) decelerates, then the following vehicle (FY) should de
celerate; or, if the distance between the LY and FY becomes 
very short, the FY should decelerate and try to increase the 
distance. Such a linguistic reasoning pattern is suited for an 
analysis using fuzzy logic and approximate reasoning tech
niques. Fuzzy set theory and logic allows the mathematical 
treatment of subjective judgment and inference, and in recent 
years fuzzy logic has been applied to many practical problems 
involving controls and decisions under the environment of the 
imprecise human reasoning process. 

This paper proposes a fuzzy rule-based car-following model 
that assumes that a decision made by a driver is the result of 
a fuzzy reasoning process and then predicts the possibilities 
of the reaction of the FY. 

Civil Engineering Department, University of Delaware, Newark, Del. 
19716. 

CAR-FOLLOWING MODELS: 
TRADITIONAL APPROACH 

This section is divided into two subsections. The first subsec
tion describes the car-following models developed by the 
General Motors research group (GM Model) and their as
sumptions. The second subsection discusses traffic stability 
and speed-density relationships in the car-following context. 

The car-following theory evolved in the 1950s. Among the 
researchers who pioneered in the field, Pipes (J, pp. 164-
166) developed a microscopic model that assumed that the 
minimum safe distance between vehicles was a function of 
speed. His work was followed by that of Forbes (1, pp. 116-
167). While Pipes modeled the traffic flow assuming that 
drivers maintain a constant distance headway, Forbes as
sumed that drivers maintain a constant time headway. How
ever, by far the largest contribution was made by the GM's 
research team (2-5). Some of the GM models are discussed 
here. 

Models and Assumptions 

The GM models were based on the premise that the reaction 
of the FY at time t depends on the sensitivity of the FY and 
the strength of the stimulus given by the L V at time t - l:lt, 
where the strength of the stimulus is measured in terms of 
the relative velocity between the L V and the FV, the reaction 
of the FV is measured by the acceleration or deceleration 
rate, the time difference, l:lt, is equal to the perception/ 
reaction time, and the sensitivity term maps the unit of a 
stimulus to a reaction. The GM team developed five models 
that have the same general structure but differ from one an
other in the sensitivity term. The fifth model is a generalized 
representation of the first four models: 

X,, + I (f + f:l f) 

0:1. ,,,Cx .. + , r1 + A1))"' . [ . < ) _ . < )l 
[xn (t) - x,, + I (t)]I x,, t x,, + I t 

where 

x,, + 1 (t + l:lt) = acceleration or deceleration rate of 
(n + l)th car at time t + !lt, 

x,,(t) = speed of nth car at time t, 
x,.(t) = position of nth car at time t, 

(1) 

e = parameter for sensitivity to distance x,,(t) 
- X,,+ 1(t), 



Kikuchi and Chakroborty 

m = parameter for sensitivity to speed 
in + l (t + iii), and 

ct1,m = constant . 

This model has the following characteristics: 

1. The interaction between stimulus and reaction has a one
to-one correspondence. The notion that a driver's reaction 
pattern is imprecise is not fully represented. Ceder (6) ex
pressed a similar concern. Representation of a human be
havioral pattern may be better explained by an approximate 
reasoning process than a deterministic equational model. 

2. The FV reacts even to minute changes in relative velocity 
between the L V and FV in a deterministic manner. 

3. Sensitivities of the FV to the positive and negative rel
ative velocities are the same. Equation 1 suggests that if the 
FV accelerates at y ft/sec2 when the relative speed is {3 ft/sec, 
then it decelerates at - y ft/sec2 when the relative speed is 
- f3 ft/sec . It has been observed that drivers react differently 
when the distance between cars is increasing or decreasing. 
Leutzbach (7) also states that "drivers pay closer attention to 
spacing decrea es (decrements) than to spacing increases (in
crements) simply on the basis of their own safety." 

Applications of GM Model 

This section discusses two topics to which the car-following 
models have been applied: traffic stability and macroscopic 
speed-density relationships. 

Traffic Stability 

Traffic stability is a study of how stability is restored in the 
traffic flow after the leader of a platoon "destabilizes" the 
flow by accelerating or decelerating. The traffic stabili ty anal
yses have focused on how tile vehicle spacing changes with 
time . Two types of stability patterns have been studied in lhe 
past: local stability and asymptotic stability. Extensive anal
yses of local stability patterns were conducted for different 
car-following models (i .e., different combinations of m and 
e in Equation 1) by Herman et al. (5), Chandler at al. (2), 
and Hem1an and Potts (8). Herman and Potts (8) present the 
results from three diffe rent cases: (a) m = e = 0, (b) m = 
e = 0 but with two values of ex, and (c) m = 0 and e = 1. 
Only the first case (m = f = 0) has been analyzed mathe
matically. 

While these analyses provide insight into what happens in 
reality, each has its own limitations. For example, the constant 
sensitivity case (m = C = 0) implies that the reaction to a 
given relative velocity is independent of the distance between 
LV and FV. Though an improvement over the previous one, 
even the reciprocal spacing (m = 0, e = 1) model has short
comings; one of them is that no difference between the stimuli 
of positive and negative relative velocity is made in the sen
sitivity term. Another drawback of this model is that the FV's 
reaction is independent of the velocity of the FV. It can be 
argued that as velocity increases the reaction to positive rel
ative velocity is subdued and negative relative velocity en
hanced. The model represented in Equation 1, though still 
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deterministic in nature , is the closest to reality. However, 
with nonzero coefficients of m and e, the difference differ
ential equation of Equation 1 becomes difficult to solve. 

Asymptotic stability is concerned with how the instab!lity 
introduced by the L V propagates down a line of traffic. T his 
is an interesting topic in the sense that it may explain certain 
causes of accidents and congestion. Herman et al. (5) and 
Herman and Pott. (8) have also presented results from their 
study on asymptotic stability, and these remain the most ex
tensive study on this topic. 

Speed-Density Relationship (u-k Relationship) 

The bridge built by Gazis et al. ( 4) between the microscopic 
car-following model with m = 0 and C = 1 and Greenberg's 
macroscopic speed-density relationship was a significant step 
toward unifying the microscopic and macroscopic approaches. 
This effort has made it possible to show that other macro
scopic speed-density models can also be derived from different 
assumed values of m and e in Equation 1: m = 0 and e = 2 
for Greenshields; m = 1 and C = 2 for Underwood; and m 
= 1 and e = 3 for Northwestern's (1, p. 304). 

The relationship between the microscopic and macroscopic 
models allows the examination of the validity of the micro
scopic model by the observed u-k relationship. The facts that 
the observed data points in the u-k relationship are scattered 
and the observed and predicted characte ri tics have significant 
discrepancies suggest that a problem might lie in the deter
ministic approach. 

This has been pointed out by some. For example, Ross (9) 
states, "The idea that there is deterministic relationship be
tween speed and density, be it straight line or curve, is simply 
untenable. The most obvious problem is that speed-density 
observat ions alway have much more scatter than can be ex
plained by any reasonable amount of experimental error." 
This concern was echoed by Gilchrist and Hall (JO): "The 
scatter in the traffic data is sufficient to cast ·doubt on the 
narrow linear representation of any relationship between traffic 
flow variables." Underwood (Jl) developed probability dis
tributions for speed for different volumes . 

These comments, combined with the belief that drivers do 
not behave in a rigid deterministic manner, lead us to consider 
a model based on a fuzzy inference system. 

FUZZY RULE-BASED MODEL FOR THE CAR
FOLLOWING PROBLEM: RATIONALE 

In the car-following situation, one follows a set of driving 
rules built over time through experience. Examples of the 
rules that the FV might apply are as follows: (a) accelerale 
if the L V accelerates, and (b) decelerate and keep longer 
distance if the L V decelerates and the distance between cars 
is short. 

Each rule is built on natural language, and no exact bound
ary for the applicability of the rule is defined. Hence, many 
of the rules may be applied (or "fired") simultaneously in the 
mind of the driver, and the driver may not be completely 
certain of the appropriateness of his action. The probability 
approach , which has traditionally been used to analyze un-
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certainty , however, cannot deal with linguistic variables such 
as " fast " and "slow" ; further , it must follow a rigid set of 
rules defining the properties of the probability function. 

If we postulate that a driver's reaction is one of several 
possible actions available, the variation of the reaction· pattern 
and the scatter of the observed u-k relationship may be ex
plained. A fuzzy set, which will be explained later, is actually 
the set of elements with the possibility of being in the set of 
discourse (12). In recent years, fuzzy sets have been used to 
represent the approximate reasoning and decision process. 
This approach may offer an alternative explanation of the car
following phenomenon. 

ELEMENTS OF FUZZY SET THEORY 

This section presents elements of fuzzy set theory that are 
relevant to the construction of the proposed model. More 
detailed explanation of fuzzy theory can be found elsewhere 
(13-15). 

Fuzzy Sets 

A fuzzy set is a set for which the criterion for belonging to 
the set is not dichotomous . The membership of the set is 
defined by a grade (or degree of compatibility or degree of 
truth) whose value is between 0 and 1. A membership function 
determines the grade and is defined as 

(2) 

where A is a fuzzy set defined on the universal set X. 
The notion of "high speed" or "low speed," for example, 

can be represented by fuzzy sets whose membership functions 
define the perception of high or low in terms of numerical 
value of speed. Similarly, an approximate integer constitutes 
a fuzzy set that is normal and convex. "Approximately 5" 
may have the following membership function: 

"Approximately 5" = 310.4 + 4/0.8 + 5/1.0 + 610.6 + 7/0.4 

Arithmetic operations on fuzzy numbers are defined using 
the extension principle . For a detailed description of fuzzy 
arithmetic, readers are referred to Dubois and Prade (16) and 
Kaufmann and Gupta (17) . 

Operations of Fuzzy Sets 

Among the set operations relevant to the subsequent discus
sions are union, intersection, and complement, defined by 
Equations 3, 4, and 5, respectively. 

(3) 

(4) 

(5) 

In these equations, f\ indicates the minimum and V the max
imum of the operands [h,i(x) and h0 (x) , in this case]. 
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Fuzzy Inference 

Under fuzzy logic, the inference process includes fuzzy input 
and a fuzzy relationship, as follows: 

Input: x is somewhat A (x = A') 

Rule: if x is A then y is B (R:x = A ~ y = B) 

Conclusion: y is somewhat B (y ::: B') (6) 

where all or some of A, A', B, and B' are fuzzy sets, and the 
rule represents a fuzzy cause-and-effect relation between x 
and y. The first part of the rule, "xis A," is called the premise, 
and the second, "y is B," is called the consequence. The 
validity of the consequence depends on the compatibility be
tween the input and the premise of the rule. In other words, 
the degree to which "y is B" is true is dictated by .the degree 
of match between "x is somewhat A" and "x is A." 

A fuzzy inference system can be composed of more than 
one rule with each rule consisting of more than one premise 
variable , as follows : 

Input: x 1 = A' and x2 = B' 

Rule 1: 

Rule 2: If x 1 = A 2 and x2 = B2 , then y C2 

Rule i: If x 1 = A; and x 2 = B;, then y C1 

Conclusion: y = C' (7) 

The compatibility between the input and the premise of a 
rule i, W;, is examined as follows: 

(8) 

When n different rules are applied (or "fired") for the given 
input, the degree of compatibility between the input and the 
premise is computed for each rule, and then the conclusion 
is the average of the individual consequences, C;'s, weighted 
by W;'s : 

c = :L w, · c, 
:L w, 

where C' is still a fuzzy number. 

(9) 

This operation is, in fact , an interpolation of C;'s. This 
method is an extension of the one proposed by Takagi and 
Sugeno (18) where their consequence C/s are crisp numbers. 

Expression 9 is computed as follows : 

1. Normalize the values of W;: 

(10) 

2. Multiply fuzzy number C1 by T/; to obtain a new fuzzy 
number D;: 
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ho;(A.) = max h0 (y) (11) 
"-= .' 'X T)j 

3. Add Di's for all i's for which the rules apply: 

hc(y) = max {h 01 (A. 1), ho:>.( A.:>.),. . ., 
y=>..1 +1\2 + ••• +>..N 

(12) 

where hc(y) is the membership function of the conclusion. 
A comprehensive discussion of fuzzy logic is given by 

Zimmermann (14) . 

FUZZY RULE BASED CAR-FOLLOWING MODEL 

The model consists of two modules: a fuzzy inference system 
and a system that executes the inference system. 

Fuzzy Inference System 

The inference system infers the reaction of the FV in accel
eration (or deceleration) rates in response to the action of 
the LV. Using the following notation, the structure of the 
system is presented. 

d : distance between L V and FV (in specific 
value) 

s : relative speed between L V and FV (in spe
cific value) 

a : rate of change of speed of L V (in specific 
value) 

DS; : perceived distance (in fuzzy number) 
RS; : perceived relative speed (in fuzzy number) 

AL V; : perceived rate of change of speed of L V (in 
fuzzy number) 

AFV; : reaction of FV in acceleration (or deceler
ation) rate (in fuzzy number) 

AFV' : predicted reaction of FV in acceleration (or 
deceleration) rate given the input (in fuzzy 
number) 

Input : x1 = d, x2 = s, x3 = a 
Rule i : If x1 = DS;, and x2 = RS;, and x3 = AL V;, 

then y = AFV; 

Rule n : If x 1 = DS;, and x2 = RS;, and x3 = AL V;, 
then y = AFV; 

Conclusion : y = AFV' 

In the following, input, rules (the premise, consequence, 
and structure), and the conclusion of the inference system of 
the proposed model are discussed. 

Input. Since the purpose of the model is to predict the 
behavioral pattern of the FV when a specific condition is 
given, the input is a set of parameter values that would affect 
the FV decision. They are 

•Distance between FV and LV (ft), 
• Speeds of FV and LY (ft/sec) (to obtain the relative speed), 

and 
• Acceleration or deceleration rate of the LV (ft/sec2

). 
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Rule: premise . The premise variables of a rule are the 
distance between the LV and FV (DS), relative speed of the 
vehicles (RS), and the acceleration (or deceleration) rate of 
the L V (AL V). The quantity of each of the first two variables 
is grouped into 6 natural language-based categories, while 
the last variable is grouped into 12 such categories (6 for 
acceleration and 6 for deceleration). Each of these categories 
is a fuzzy set. They are presented in Table l. 

For all categories, triangular membership functions are as
sumed. For categories that represent DS, the membership 
function varies with the speed of the FV because it is believed 
that the notion of safe distance is relative to the speed at 
which the FV is traveling. 

The reason for considering acceleration and deceleration 
separately is based on our belief that the intensity of FV's 
reaction is different when the L V is accelerating and de
celeration, as discussed in the second section. 

Rule: consequence. The consequence of a rule is the FV's 
reaction in terms of acceleration or deceleration rate ex
pressed in fuzzy quantity (AFV). Each fuzzy quantity can be 
represented by a natural language term such as VERY 
STRONG DECELERATION. The reaction of FV should be 
similar in nature to that of L V since FV wishes to maintain 
the relative speed near zero. Thus, the membership function 
of AFV should be similar to that of AL V, but it is modified 
by the categories chosen for DS and RS in the premise. 

If the category of DS in a rule is ADEQUATE, the AFV 
(in fuzzy number) is computed as follows: 

{(RS; + AL V; • llt)ll'} = AFV; (13) 

where flt is the time interval at which the rules are applied 
(or the time intervals at which the inference is run; in our 
model /:J,.t = 1 sec); I' is the time in which FY wishes to "catch 
up" with LY. We choose I' = 2.5 sec, which keeps the FV's 
acceleration and deceleration rates within a realistic range 
(less than approximately 10 ft/sec2). 

The numerator of Equation 13 represents the relative speed 
at time t + /J,.t, Dividing it by)', we obtain the rate of speed 
change required for FY to restore zero relative speed. RS;, 
AL V;, and AFV; are all fuzzy numbers. 

If the category of DS in Rule i is different from ADE
QUATE, the value of AFV; is modified. The modification is 
done by sliding the membership function of AFV; to the right 
or to the left (making it larger or smaller) according to DS,.'s 
deviation from the category ADEQUATE. For each devia
tion to a shorter distanct! catt!gory, AFV; is reduced by -1 
ft/sec2

; for each deviation to a longer distance category AFV; 

TABLE I Categories (Fuzzy Sets) of Premise Variables 

LJi! ta.nce btwn. R.ela.t.ive Actioo> of LV IALVl 
LV and FV (DS) speed (RS) Accelerat1ou Decelera.t100 

(!) very small FY slower strong strong 

(2) sma.11 FV slighUy slower somewhat stroag somewhat stroag 

(3) adequate near zero aonna.l normal 

(4) more than adequate FV slightly faster mild mild 

(5) large FV quite fa.st.er very mild very mild 

(6) very large FV faster none none 
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is increased by + 1 ft/sec2 • That is, AFV, is determined by 

{(RS, + ALV, • M)ly} + /305, • </> = AFV, (14) 

where f3os; is the number of categories for which DS, deviates 
from ADEQUATE (it can be a positive or negative number 
depending on whether the deviation is to a longer distance 
or a shorter distance, respectively), and </> in this case is 1 
ft/sec2 • 

Rule: structure. Each rule is a conditional statement in the 
sense that, given a set of conditions represented by the prem
ise variables, the consequence is predicted. The following is 
an example: 

If Distance (DS): ADEQUATE, 

Relative Speed (RS): NEAR ZERO, and 

Acceleration of LV (ALY): MILD, 

then FV should accelerate MILDLY. 

The selection of categories of the premise variables and 
consequences are based on the method discussed previously. 
Figure 1 shows how a combination of the categories of the 
premise variables results in a particular consequence (which 
should lie between STRONG ACCELERATION and 
STRONG DECELERATION). For instance, the rule in the 
example could be represented by Line 1 in the figure. It is 
interesting to observe that a line connecting the upper circles 
of the premise leads to the very large acceleration of FV, and 
the line connecting the bottom circles leads to very large 
deceleration, thus setting the two extreme cases. 

The conclusion. The level of compatibility between the in
put and premise of a rule i, W,, is determined by the operation 
shown in Equation 8, except that in this case there are three 
premise variables. For all the rules for which the value of W, 
is greater than zero, the conclusion is computed according to 
Equation 9 (or Equations 10, 11, and 12) where Cs are the 
FV's acceleration (or deceleration) rate expressed in fuzzy 
number. The process of deriving the conclusion according to 
Equation 9 is shown in Figure 2 for the case in which two 
rules are applied to the same input. (In our example, on the 
average, three to four rules were fired for the same input). 

Execution of the Model 

The model executes the inference system at small time incre
ments (1 sec in our example). At each time increment, the 
action of LV can be changed; for example, in one time in
crement, it accelerates at a given rate; at the next time in
terval, it accelerates at another rate. The speed and position 
of the FV relative to the L V are then updated after each time 
increment. The time delay between the actions of the L V and 
FV due to the perception and reaction process is assumed to 
be 1 sec in our example. 

ANALYSIS: TRAFFIC STABILITY AND SPEED
DENSITY RELATIONSHIP 

This section applies the model to the analyses of traffic sta
bility and speed-density relationships, representing applica-
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tion to microscopic and macroscopic analyses of traffic flow, 
respectively. The output of the model is a fuzzy number. The 
lines that will be shown as model output in Figures 3, 4, 5, 
and 6 represent the values whose membership grade is 1. Lines 
A and Bin Figure 7 correspond to the value at a membership 
grade of 0.2. 

Traffic Stability 

Traffic stability is examined from the local and asymptotic 
stability standpoint. 

Local Stability 

After an initial disturbance, the distance between L V and FV 
stabilizes into a pattern; this pattern is examined for different 
input conditions. 

Figure 3 compares traffic stability obtained from the GM 
model (form = 0, e = 1) with the one obtained from the 
pr'oposed model. The two models are compared under the 
following conditions. 

• Initial distance between L V and FV, 133 ft; 
•Speed change of LV: Case 1, LV decelerates from 44.1 

to 28.1 ft/sec in 2 sec and remains constant; Case 2, LV de
celerates from 52.1 to 28.1 ft/sec in 3 sec and remains constant. 

Case 1 corresponds to the example presented by Herman 
and Potts (8). Figures 3a and 3b differ in the assumed value 
of ex in the GM model: ex = 25.1 ft/sec in Figure 3a, ex = 17 
ft/sec in Figure 3b. Lines 1 and 2 represent the results of the 
GM model for Cases 1 and 2, and Lines 3 and 4 represent 
the results of the proposed model for Cases 1 and 2, respec
tively. Line 1 of Figure 3a is actually the same as the one 
presented by Herman and Potts (8, Figure 15). 

Since the final speeds are the same in Cases 1 and 2, the 
results of Cases 1 and 2 should converge as time increases. 
This is the case in the proposed model (Lines 3 and 4 even
tually merge). However, in the GM model, Lines 1 and 2 
remain separate both in Figures 3a and 3b. Figure 3b shows 
that, for an arbitrarily chosen value of ex = 17 ft/sec in the 
GM model, the result of Case 2 is almost identical to the one 
derived from the proposed model. As seen in the forthcoming 
figures in this section, for the same final speed the proposed 
model yields the same stable distance between L V and FV 
regardless of the initial condition. 

Figure 4 shows how the speed change of L V affects the 
distance D between L V and FV in the proposed model. L V 
changes its speed from 60 to 50 ft/sec in 2 sec, changes back 
to 60 ft/sec in 2 sec, and thereafter continues to travel at 60 
ft/sec. Each of the four lines represents a different initial 
distance between LV and FV (100, 120, 150, and 180 ft). It 
is seen that D settles to approximately 125 ft regardless of 
the initial distance. However, the way D settles to 125 ft differs 
with the initial distance. When the initial distance is near 125 
ft (final stable distance), D fluctuates more before settling to 
the stable distance. This suggests that the model can represent 
the susceptibility of the FV to the action of L V. 
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FIGURE 3 Comparison of the traditional car-following model with the proposed 
model. 
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Initial speed (ft/s) 
Final speed 
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FIGURE 5 Local traffic stability: different initial and final speeds. 

Figure 5 show how D. the distance between L V and FY , 
depends on the LV's final speed u ing the proposed model. 
In all ca e , the initial distance is 100 ft. Line Groups l , 2, 
3. and 4 present the final peed of 30, 40, 60, and 70 ft/sec 
respectively. The three lines in each group represent different 
initial speeds as noted in the figure . For all cases, the L V i 
a sumed to attain the final speed in 3 sec. Regardless of the 
initial speed, D approaches a higher con tant value for a 
higher final speed. 

Asymptotic Stability 

Figure 6 shows how the distance between individual cars in 
a platoon can vary when the first car in the platoon decelerates 
and then accelerates under the proposed model. In this ex
ample, the platoon consists of five cars. The first car dece
lerates from 50 to 40 ft/sec in 2 sec, then accelerates back to 
50 ft/sec in 2 sec, and thereafter travels at a constant speed 
of 50 ft/sec. Line 1 repre ents the variation in di tance be
tween the first and second cars, Line 2 between the second 
and third cars, and so forth. It is interesting to note that the 
pattern of variation in distance between the third and fourth 
car (Line 3) is different from the rest. 

Speed-Density Relationship 

After the distance between L V and FY settles to a stable 
value, D*, the speed-density (u-k) relationship is analyzed. 

This was performed for different final stable speeds. Density 
is computed in the number of vehicles per mile . Since the 
value of D* obtained from the model is a fuzzy number, the 
density obtained from D* is also a fuzzy number, and thus 
the predicted u-k relationship is a fuzzy relationship. The 
computed fuzzy u-k relationship is compared with the plot of 
observed data in Figure 7. 

Ia the figure the band formed by Lines A and B is the range 
of possible densities for the speed. The range corresponds to 
tbe density who e membership grade is 0.2 or greater. The 
value 0.2 is chosen only for the purpose of reference in this 
paper. Line C corresponds to the locus of the density whose 
membership grade is 1. 

When density is high, the vehicles are expected to travel 
in the car-following pattern. Therefore, a reasonable match 
between the predicted and ob erved u-k relationships is ex
pected. This notion is supported by the figure for the range 
where density is greater than approximately 40 vehicles per 
mile (vpm). 

When density is low, the vehicles are expected to travel 
independent of one another. Therefore the car-following pat
tern (stimulus-response interaction) is not likely to be sus
tained, and hence , the proposed model would not be valid; 
thus the lines A, B, and Care shown only for density value 
greater than 40 vpm, the region where flow is reasonably 
dense. 

The data points in the previous figure are derived from the 
speed-occupancy data obtained from Queen Elizabeth Way, 
Ontario, Canada (courtesy of Fred Hall). The com•ersion 
from the occupancy measure to the density mea ure is per
formed on the basis of an average vehicle length of 20 ft. 
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CONCLUSIONS 

Decision. and actions of a driver are believed to follow a 
reasoning process based on vague logic. The model propo ed 
in this paper applies the fuzzy inference system and imulates 
the car-following phenomenon. The outpu.t of the inference 
system i the FV' reaction (acceleration or dec::e leration rate) 
in fuzzy number in small time increments. By integrating this 
output over time, the movements of FY r lative to L V are 
simulated. The purpose of the paper is lo present tbe meth
odology of building the model. The shapes of specific mem
bership functions used in the model must still be verified 
through field data collection. 

The propo ed model is a response to the concern that driv
ers do not exercise the dichotomous deci ion criteria assumed 
in the traditional determini ti car-following models. The model 
proposed has the following characteristics: 

1. Driver's decision criteria are handled by fuzzy inference 
logic, which allows several decision rules w fire at the . ame 
time for a given set of input. As a result the fin al output 
incorporates the ambiguity of the decision process . 

2. The inference rules are a collection of natural language
based straightforward driving rule . The number of rules can 
be adjusted, and each rule can be independently modified to 
suit tbe decision cr iteria . 

3. The output is a fuzzy number that represen ts a range of 
possible acceleration (or deceleration) rates of che FV. T bus , 
it capture the characteristics of traffic Dow as the conglom
eration of an individual driver' po ible acti ns. Under the 
deterministic models, the variation of data points is viewed 
a random variation from a norm . 

4. The result is realistic and consistent with the general 
expectation from a car-following model : for the same final 
speed, the distance between L V and FY eventually converges 
to the same value regardless of the initial condition. The 
" drift ," oscillation of the distance between LV and FV, can 
also be captured. 

The proposed approach to the car-following problem should 
have a number of app.lications, including control of vehicle 
separation under the lVHS. for the traffic flow analysis the 
model can be extended to derive a possibility-based speed
volume relationship. Such a relationship would allow us to 
analyze the capacity as a fuzzy number and to recognize tile 
level of service a.s the fuzzy measure of traffic conditions, 
instead of as the traditional rigidly bounded measure. 
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