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Structural Evaluation of Base Layers in 
Concrete Pavement Systems 

ANASTASIOS M. lOANNIDES, LEV KHAZANOVICH, AND 

JENNIFER L. BECQUE 

A theoretically sound and practical approach is described for 
determining maximum responses in concrete pavement systems 
that incorporate a base layer. Equations are pr~se~ted that rr.iay 
be used with either an elastic solid or a dense hqmd foundation 
under any of the three fundamental loading condition~. These 
formulas are extensions of available closed-form solutions and 
account for the compressions in the two placed layers that are 
ignored by plate theory. The proposed methodology may be easily 
implemented in a personal computer spreads~eet or o~ .a P.ro
grammable calculator. Research activit.ies for •.ts ful~ ~enf1cation 
and refinement are continuing at this time. It is anticipated ~h~t 
such theoretically based investigations will encourage the ehm1-
nation of theoretically questionable empirical concepts, such as 
that of deriving a composite "top-of-the-base" subgrade modulus. 

Conventional analysis and mechanistic-based design proce
dures for portland cement concrete (PCC) pavement systems 
use closed-form analytical solutions that have been developed 
over the last 75 years on the basis of quite restrictive as
sumptions. The idealizations that led to the formulation of 
the well-known Westergaard equations (1) for a slab on a 
dense liquid foundation and of the less often quoted expr~s
sions by Losberg (2) and loannides (3) for the correspondmg 
slab on an elastic solid subgrade treat a pavement system that 

1. Considers a slab of infinite dimensions (no slab size effects), 
2. Consists of only one slab panel (no load transfer), 
3. Includes only one placed layer (no base or subbase), 
4. Employs a semiinfinite foundation (no rigid bottom), 
5. Is acted upon by a single tire print (no multiple wheel 

loads), and 
6. Experiences no curling or warping (i.e., flat slab, no 

temperature or moisture differential condition). 

Each of these restrictions is violated in actual concrete pave
ment construction, which dictates that analytical considera
tions be adjusted or "calibrated" before a reasonable engi
neering design can be made. In particular, the treatment of 
the concrete pavement as incorporating only one placed layer, 
namely, the PCC slab, has been a pervasive obstacle in th.e 
effort to arrive at a mechanistic design that would permit 
comparisons with alternative designs involving asphalt con
crete. The inability of conventional plate theory solutions to 
accommodate multiple placed layers is often cited as one of 
the primary reasons calling for its abandonment in favor of .a 
unified analysis and design procedure based on layered elastic 
theory ( 4_). 
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Use of layered elastic theory (5) in addressing the single
placed-layer (SPL) limitation of conventional plate theory 
solutions is not new. In fact, it is the oldest of at least three 
main approaches to the problem posed by bases underneath 
concrete pavement slabs. Even before the development of 
computer codes allowing the analysis of multilayered axisym
metric pavement systems, layered elastic theory was suggested 
by Odemark (6)-in the form of his celebrated method of 
equivalent thicknesses-as a theoretically sound m~th~dcil
ogy for extending (not replacing) plate theory apphcat10ns. 
The reason for not calling for the outright elimination of plate 
theory as an analytical tool for concrete pavement systems 
was a recognition by early investigators of the reciprocal in
ability of layered elastic theory to consider the all-important 
phenomena pertaining to the edges and corners of concrete 
slabs. 

With the advent of sophisticated finite-element codes, a 
second approach to the SPL problem emerged exemplified in 
the treatment of a concrete pavement system as a two-layered 
composite plate resting on an elastic foundation. This ap
proach was implemented in computer programs such as ILLI
SLAB (7). Although treating both placed layers (slab and 
base) as plates does address the noted SPL shortcoming
particularly in the case of cement-treated (stiff) bases-p~e
dictions on the basis of plate theory are often found to m
corporate a significant error. This error arises from the ne
glected compression experienced by the two layers (especially 
when softer, granular bases are employed). 

The third and most predominant means for accounting for 
the presence of a base, however, has been by increasing the 
value of the subgrade modulus, k. Thus, in contrast to the 
finite-element formulation that considers the base as a struc
tural element reinforcing the upper placed layer, namely, the 
PCC slab, the more conventional approach has been to regard 
the base as contributing exclusively to the stiffness of the 
subgrade. It may be argued that the philosophical basis for 
this approach is to be found in the work by Odemark (6), 
who suggested increasing the subgrade modulus of elasticity, 
E to account for the contribution of the base. It appears, 
h~~ever, that the popularity of this approach is due more to 
the practical expediency and ease of solution it offers than to 
its theoretical merits. A literature survey conducted at the 
outset of this investigation identified at least 12 different ways 
of "bumping the k-value," or defining a composite or "top
of-the-base" subgrade modulus. According to a review of 
current methods for determining the compos.ite modulus of 
subgrade reaction conducted by Uzan and Witcz~k (8), "t~e 
equivalent kcomp-values for granular bases [obtamed by d1f-
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ferent methods] are essentially the same," but for "stabilized 
materials ... the k-values can vary within a factor of two." 

Of the three approaches to dealing with the SPL assumption 
outlined above, the process of increasing the value of the 
subgrade modulus depending on the type and thickness of the 
base is the least attractive from a theoretical viewpoint. Its 
origins may be traced to tests conducted in the 1950s by the 
Portland Cement Association (PCA) and by the Corps of 
Engineers (9). At that time, the "bump the k-value" approach 
appeared as a minor extrapolation of Methods 2 and 3 de
scribed by Teller and Sutherland (JO) for the determination 
of the subgrade modulus. It should be remembered, however, 
that both of these methods (namely, the volumetric approach 
and the backcalculation approach) aimed at defining a prop
erty of the natural subgrade, just as did the plate load test 
(Teller and Sutherland's Method 1), rather than the property 
of an "equivalent" supporting medium. It is precisely the 
development of computerized backcalculation procedures based 
on matching theoretical and observed deflection basins (by 
determining the area or volume of the basin) that has revealed 
the extent of errors that may be committed through the use 
of top-of-the-base k-values. Such composite values are quite 
often much higher than those reported in earlier literature 
(11), so much so that the definition of the medium they pur
port to describe as a dense liquid is brought into question. 

This paper offers a theoretically sound yet practical solution 
to the problem posed by the SPL assumption. Simple equa
tions are presented that may easily be implemented on a 
personal computer or hand-held calculator and that may be 
used to calculate with sufficient accuracy maximum responses 
in concrete pavement systems incorporating a base layer. The 
formulas presented have been obtained through application 
of dimensional analysis concepts in interpreting a data base 
of numerical results from two computer codes, one based on 
plate theory (ILLI-SLAB) and one using layered elastic anal
ysis [BISAR (12)]. It is hoped that such solutions, which are 
essentially extensions of well-known analytical equations, will 
eliminate the need to use empirical and theoretically ques
tionable concepts, such as that of the composite top-of-the
base subgrade modulus, thereby preventing any associated 
errors and miscalculations in the future. 

SCOPE OF INVESTIGATION 

The proposed analysis procedure for three-layer concrete 
pavements begins by considering the two placed layers as a 
composite plate and postulating that there exists an imaginary, 
homogeneous "effective" plate resting on the same elastic 
foundation that deforms in the same manner as the real two
layer plate. The purpose of the analysis presented below is 

1. To verify the existence of the "effective" plate, that is, 
ascertain that it is possible to define its properties in terms of 
the corresponding properties of the two layers in the original 
composite plate; 

2. To obtain elastic solutions for the response of the "ef
fective" plate using available analytical equations; 

3. To relate the "effective" plate responses determined in 
this manner to the corresponding unknown composite plate 
responses; and 
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4. To extend the applicability of the formulas developed in 
Item 3 to the case of a three-layer concrete pavement system 
of any arbitrary stiffnesses, subject only to the assumption 
that one of the two placed layers is much stiffer than the 
foundation. 

CLOSED-FORM SOLUTION FOR THREE-LA YER 
SYSTEM WITH UNBONDED LAYERS 

Plate Theory Solution 

According to medium-thick plate theory (13), when a flat 
plate of uniform cross section is subjected to elastic bending, 
the following moment-curvature relationships apply, ex
pressed in polar coordinates (r,<J>): 

[
a2 w (1 aw 1 a2w)] M=-D-+µ--+--

r ar 2 r ar r2 a<1>2 

(
1 a2w 1 aw) M =(1-µ)D-----

rq, r ara<J> r2 a<1> (1) 

in which w(r ,<!>) denotes the vertical displacement from the 
originally horizontal neutral axis of the plate. The flexural 
stiffness of the plate, D, is defined by 

£h3 
D = -----

12(1 - µ 2) 
(2) 

where E, µ,and hare the Young's modulus, Poisson's ratio, 
and thickness of the plate, respectively. 

Equations 1 may be rewritten in a compact form as 

{M} = - D{L(µ)} [ w(r, <!> )] (3) 

in which {L(µ)} is a vector operator depending on the value 
ofµ. 

Consider now a composite plate consisting of two dissimilar 
plate layers resting on an elastic foundation, for example, a 
dense liquid or an elastic solid. Assuming that during bending 
the two plate layers do not experience any separation, their 
respective deflected shapes will be identical; that is, 

(4) 

Subscripts 1 and 2 denote here plate layers 1 and 2, respec
tively, in the original composite two-layer plate, and subscript 
e denotes an imaginary, homogeneous "effective" plate rest
ing on the same elastic foundation. The "effective" plate is 
required to deform in the same manner as the real composite 
plate. 

At this point, the assumption that the two plate layers in 
the composite plate act independently, that is, that their in
terface is unbonded and free of shear stress, is introduced. 



22 

Application of Equations 3 and 4 to each of these plate layers 
yields the following moment expressions: 

{M1 } = -D1 {L(µ 1)}[we(r, <t>)] 

{M2 } = - D 2{L(µ 2)}[ we(r, <t>)] 

(5) 

(6) 

The corresponding equation for the moment acting on the 
"effective" plate is 

(7) 

The assumption is also introduced that 

(8) 

and it is noted that the composite as well as the "effective" 
plates are subjected to the same applied loads, experience the 
same deflections, and therefore are acted upon by the same 
foundation reactions. Thus, it is evident that 

(9) 

where {MT} denotes the total moment acting on the composite 
plate. Equation 9 yields upon substitution from Equations 5 
and 6: 

(10) 

Comparison of Equation 10 with Equation 7 results in 

(11) 

Equation 11 verifies that the "effective" plate postulated by 
Equation 4 exists and that its structural parameters can be 
defined in terms of the corresponding parameters of layers 1 
and 2 in the original composite plate. Furthermore, it follows 
from Equations 7 and 11 that 

{M,) = ( 1 + ~:){M,} (12) 

Thus, the generalized stresses, {ae}, in the "effective" plate 
are written in terms of the corresponding stresses, {a1}, in 
plate layer 1 as 

(13) 

or 

(14) 

= hf (E1h~ + E2h~) { } 
hz E h3 a1 

e 1 I 
(15) 

It follows from Equations 8 and 11 that 

(16) 
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Substituting Equation 16 into Equation 15 leads to 

(17) 

whence 

(18) 

Setting Ee = Ev this yields 

(19) 

(20) 

Furthermore, the thickness of the "effective" plate, he, is 
obtained from Equation 16 as 

(21) 

Note that Equation 20 implies, in particular, that the maxi
mum bending stress, a 1, developing at the bottom of plate 
layer 1 in the composite plate may be obtained by multiplying 
the corresponding maximum bending stress, ae, arising at the 
bottom of the imaginary, homogeneous "effective" plate (of 
modulus Ee = E 1) by the thickness ratio (h/he), with he 
defined by Equation 21. For example, considering the case 
of an elastic solid foundation, Equation 20 implies that 

(22) 

The corresponding expression for a dense liquid foundation 
is 

(22a) 

The notation a(h;, Ej, F) in Equations 22 and 22a denotes 
the maximum bending stress predicted by plate theory at the 
bottom of a plate of thickness h; and modulus Ej resting on 
a subgrade characterized by generalized stiffness parameter 
F, that is, Young's modulus, Es, for an elastic solid foundation 
or modulus of subgrade reaction, k, for a dense liquid foun
dation. Furthermore, Equation 20 implies that the thickness 
ratio (h/he) is the constant that relates the bending stress at 
any point (r, <t>) in layer 1 of the composite plate to the bending 
stress arising at the corresponding point in the "effective plate." 
Having thus obtained a 1 , the maximum bending stress at the 
bottom of plate layer 2 may also be calculated using plate 
theory as follows, subject to the assumption of Equation 8: 

(23) 
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The value of CJ"e = rr(he, EI, F) in Equations 22 and 22a 
may be obtained using available closed-form analytical so
lutions pertaining to the particular foundation type and load
ing condition of interest. An equation for the maximu~ b~~d
ing stress arising at the bottom of a homogeneous mfimte 
plate on an elastic solid foundation loaded by an interior load 
has been presented by Losberg (2). More recently, Ioannides 
(3) considered the edge and corner loading conditions for the 
same plate-foundation system and provided simple formulas 
for the calculation of the maximum bending stress pertaining 
to these loading conditions as well. The corresponding equa
tions for a plate on dense liquid foundation were given by 
Westergaard (1) for all three fundamental loading conditions. 

With respect to deflections, it is noted that Equation 4 
implies that the maximum deflection in the two-layer com
posite plate is equal to the maximum deflection experien~ed 
by the "effective" plate. The latter may be calculated usmg 
the pertinent formulas given in the publications cited above. 
Similarly, the maximum subgrade stress under the composite 
plate is equal to the corresponding stress under the "effective" 
plate. 

Elimination of Plate Theory Restrictions 

To extend the applicability of the proposed approach to layers 
of any arbitrary stiffness-subject only to the assumption that 
one of the two layers is much stiffer than the foundation
responses calculated must be adjusted for the compression 
that occurs within the two layers of the original composite 
plate and that is ignored by plate theory. To illustrat~ how 
such a corrective may be applied, the case of the maximum 
bending stress, CJ"IL' occurring at the bottom of layer 1 in a 
three-layer system of any arbitrary stiffnesses will be consid
ered. This response may be written in the following form: 

(24) 

where CJ" I is the corresponding stress according to plate theory 
given by Equation 22 and[{} ~rr] is a "correction increment." 
The contribution to this increment of the compression of the 
second layer is usually of overriding importance. In a typical 
pavement system, the second layer has a lower modulus than 
the first layer and may therefore be expected to diverge from 
plate behavior (no compression) more significantly than ~he 
first layer. For this reason, an expression for ~rr accountmg 
only for the compression in the second layer is derived first 
(i.e., {} = 1). Considering the case of an elastic so~id f~un
dation, the following assumption is introduced at this pomt: 

(25) 

That is, it is assumed that ~rr (as well as the compression of 
the second layer) is largely insensitive to changes in the subgrade 
modulus, Es. This assumption is a reasonable approximation 
for material moduli in the range of those typically encountered 
in concrete pavements, for which E 1 is much higher than Es. 
If the assumption of Equation 25 is accepted, the case may 
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be considered in which Es = E2 , which reduces the three
layer system to a two-layer system. Then, for this case, 

in which the parameters listed in parentheses define the prop
erties of the layered system considered in determining ~CJ". 

By referring to Equations 24 and 22, the following expression 
may be written: 

(27) 

If E 1 > > E2 , rrIL may be evaluated according to plate theory, 
or 

(28) 

It is noted that in writing this equation, the effect of an un
bonded surface at depth h2 into the elastic half-space of mod
ulus E2 is assumed to be negligible. Thus, 

(29) 

That is, the correction increment ~CJ" may be calculated as the 
difference between two stresses, each of which is evaluated 
using available closed-form solutions, such as those by Los
berg (2) or Ioannides (3), for the parameters indicated by 
Equation 29. 

The value of ~rr obtained as explained above accounts only 
for the compression of the second layer; that is, it applies 
when E2 < < EI. This would be the case, for example, of a 
PCC slab placed on a soft base. As E2 tends to EI, Equation 
28 becomes increasingly inaccurate. Noting that for such pave
ments plate theory would apply without the need for correc
tions (since in this case both E 1 and E2 are much higher than 
E) the correction increment should tend to zero. In addition, 
wh~n E2 > EI, the correction increment must be negative, 
reflecting the effect of the compression in the first layer. This 
corresponds to the case, for example, of an asphalt concrete 
overlay on a PCC slab. For these reasons, therefore, the value 
of ~rr obtained above is multiplied by a factor {}. Considering 
the interior loading condition, the following formula was de
veloped for {} on the basis of comparisons of the proposed 
closed-form solution with the results of several three-layer 
runs of the BISAR computer program: 

(30) 

Thus, substituting rr1 from Equation 22 and ~rr from Equation 
29 into Equation 24, the general solution for the maximum 
bending stress, rrIL, arising at the bottom of the upper layer 
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in an arbitrary three-layer system may be written as 

(31) 

with he as defined by Equation 21 and -0 as given by Equation 
30. Each of the three bending stress~s a(h;, Ej, Es) in Equation 
31 may be calculated using Losberg's formula for the interior 
load-elastic foundation case, as follows: 

a= 
-6P(l + µ) 

hf 

x [ - 0.0490 + 0.1833 logw(~) - 0.0120(~)'] (32) 

where 

(33) 

µj,µs = Poisson's ratios for the plate and foundation, 
respectively, 

P = total applied load, and 
· a = radius of applied load. 

The proposed procedure for calculating a IL is well suited 
for incorporation into a personal computer spreadsheet and 
may be used to assess the effect on the maximum bending 
stress of the introduction of a base under a PCC slab. 

GRAPHICAL SOLUTION FOR THREE-LAYER 
SYSTEM WITH UNBONDED LAYERS 

Plate Theory Solution 

An alternative graphical solution was also developed in this 
study. Its derivation proceeds from Equation 22, which may 
be rewritten as 

(34) 

where 

(35) 

Noting that as TJ; tends to hf, Me tends to M 1 and a 1 tends 
to a(h 1 , E 1 , F1)-the latter being the plate theory prediction 
for the maximum bending stress in the PCC slab resting di
rectly on the subgrade-it may be expected that the stress 
ratio [a/a(h 1 , E 1 , F)] diverges from unity as the ratio 
( TJ;lhi) decreases. This assertion has recently been verifie~ by 
Salsilli (14), who considered the results of plate theory for a 
small factorial of unbonded, three-layer, edge-loading cases 
using the WINKLER option in ILLI-SLAB (15). He dem-
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onstrated that the relationship between the two dimensionless 
parameters defined above shows little sensitivity to the di
mensionless load size ratio (all) and provided the following 
best-fit equation for its description: 

( (J'l k) = 0.0477629 + 0.265264 (q_1) 
a h1, E1, 

+ 0.953195 (~:)-' 

- 0.26083 ( 7) (~:)-' (36) 

In this expression I denotes the radius of relative stiffness of 
the slab-dense liquid system (h 1 , E 1 , k), which is defined by 

(37) 

The value predicted by the Westergaard edge-loading equa
tion (1) may be substituted for a(h 1, E 1 , k) in routine appli
cations of Equation 36. 

Elimination of Plate Theory Restrictions 

A drastically different picture is obtained when the compres
sions in the two placed layers are accounted for. Interior 
loading results from computer program BISAR were used to 
establish the relationship between dimensionless ratios 
[a 1)a(h1 , E 1, Es)] and (TJ;lhi) without plate theory restric
tions. Interpretation of these numerical results on the basis 
of the principles of dimensional analysis showed that for a 
wide range of practical applied load radius values, the rela
tionship between the two ratios could be defined uniquely for 
each value of (E/E2). Thus, Figure 1 was prepared. This can 
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FIGURE 1 Reduction factor for determining maximum 
bending stress in a three-layer concrete pavement system 
(elastic solid foundation). 
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be used to obtain a reduction factor that when multiplied by 
the available analytical slab-on-grade solution for a(h 1 , E 1 , 

Es) given by Los berg (2) provides an estimate for the maxi
mum interior loading bending stress at the bottom of the top 
layer in a three-layer system. 

SOLUTIONS FOR THREE-LAYER SYSTEM WITH 
BONDED LAYERS 

Analytical Solution 

The closed-form solution derived above for unbonded layers 
may be applied, with relatively few modifications, to the case 
of bonded layers as well. The most significant change is in 
the definition of the "effective" thickness, he (cf. Equation 
21). Recall that for unbonded layers, he was defined using the 
condition of equality between flexural stiffnesses of the orig
inal composite two-layer plate and of the imaginary, homo
geneous "effective" plate. Equation 16, however, applies only 
to unbonded layers. In the case of bonded layers, the flexural 
stiffness of the original composite plate may be determined 
using the parallel axes theorem. This results in the following 
alternative condition to Equation 16: 

Eeh~ _ E1hf Eh ( _ h 1)

2 

12 - 12 + I I X 2 

( )

2 

E2h2 h2 +--+Eh h -x+-12 2 2 I 2 (39) 

Equation 39 assumes that the neural axis of the composite 
system lies within layer 1 at a distance x from the top of layer 
1, but the same expression is obtained if the neutral axis is 
assumed to lie within layer 2 (x is still measured from the top 
of layer 1). As done for the unbonded layers, it is assumed 
here that Ee = E 1 and that µe = µ 1 = µ 2 , which leads to the 
following expression for the thickness of the "effective" plate 
for the case of bonded layers: 

{ h3 + E2 h3 + 12[ (x - h1)2h 
i E1 2 2 i 

+ ~: ( h, ~ x + ~2 )' h, Jr' (40) 

The depth to the neutral axis, x, is determined by considering 
the first moment of area of the original composite plate, as 
follows: 

E,h, ~ + E 2h, (h, + ~) 
x 

E1h1 + E2h2 

(41) 

Noting that the derivation of Equations 39 through 41 follows 
the same reasoning as that used by Tabatabaie et al. (7), 
Equation 40 may be rewritten as 

(42) 

where h 1F and h2 F are defined by 

h2F = ( hl + l2a2h2) •G 

with 

and 
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(43) 

(44) 

(45) 

(46) 

It is observed that Equation 42 is identical to the correspond
ing Equation 21 for he for unbonded systems, the only sub
stitution necessary being the introduction of the "fictitious" 
thicknesses, h 1F and hm which are somewhat higher than the 
original thicknesses h1 and h2 • It is also clear that the flexural 
stiffness of the original composite two-layer bonded plate is 
equal to the stiffness of an unbonded two-layer plate in which 
the plate layers retain the moduli E 1 and E 2 but are assigned 
"fictitious" thicknesses h 1F and h2F. The fact that h 1F > h1 

and that h2 F > h2 counterbalances the effect of "removing" 
the bond between the two plate layers. 

A relationship between the bending stres~ at the bottom of 
the "effective" plate, a e' and that acting at the bottom of 
layer 1 of the original composite two-layer plate, a 1 , is then 
sought. This is obtained with reference to the geometry of 
the stress distribution diagrams pertaining to the two systems 
and recognition of their common slope above the neutral axis. 
As indicated in Figure 2, 

(47) 

but 

Y = (h1 - x) (48) 

x 
E, E1 

he/2 h, 
N.A. 

Ez he/2 

h2 

Es or k 

E5 or k 

(a) (b) 

FIGURE 2 Stress distribution in bonded plate on elastic 
foundation system: (a) original composite two-layer plate; 
(b) "effective" homogeneous plate. 
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where 

(49) 

This formula is similar in form to the corresponding Equa
tion 22 valid for unbonded systems, with the term 2(h 1 - x)I 
he replacing (h/he)· The stress ue may be evaluated using the 
available plate theory solutions pertaining to the loading con
dition and foundation type of interest. Since plate theory 
ignores the compression in each of the two layers, a 1 should 
be corrected as indicated in Equation 24. For the interior 
loading-elastic solid case, the necessary corrections are given 
by Equations 29 and 30. Note that the substitution of (h 1/he) 
by 2(h 1 - x)lhe is also performed in Equation 29. Thus, the 
following expression is obtained for u 1L, corresponding to 
Equation 31: 

(50) 

with he as defined by Equation 42. 

Graphical Solution 

An alternative graphical solution is also possible. Using h1F 

and h2F instead of h1 and h2 , the ratio [TJ;,JhiF] may be cal
culated from Equation 35. Thus, Figure 1 may be used to 
calculate u 1L in terms of u(h 1F, E1 , Es). 

VERIFICATION AND IMPLICATIONS OF 
PROPOSED APPROACH 

The applicability of the proposed closed-form and graphical 
solutions for the maximum bending stress, u 1L, occurring at 
the bottom of the top layer in a three-layer system was verified 
by comparing predicted values with the corresponding bend
ing stresses from numerous analyses using computer program 
BISAR. It is noted that these verification runs were different 
from those included in the derivation of Equation 30 and of 
Figure 1. The predictions of the proposed procedures were 
also compared with the results of Odemark's method of equiv
alent thicknesses. These comparisons are shown in Figures 3 
and 4 for the unbonded and bonded cases, respectively. It is 
observed that predictions are generally more reliable for the 
unbonded rather than the bonded cases. Furthermore, the 
proposed closed-form approach exhibits somewhat less scatter 
than the graphical approach, especially for the bonded cases. 
Both proposed procedures lead to improved estimates of cr1L 

compared with Odemark's approach, verifying the wisdom of 
treating the base as primarily reinforcing the PCC slab rather 
than the subgrade. Odemark's solution leads to stresses that 
generally compare more favorably with BISAR stresses as
suming unbonded layers. 

It is noted that in writing Equation 31, no assumptions were 
made that would restrict it to the interior loading condition 
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alone, with the exception of the fact that the axisymmetric 
program BISAR was used in the development of Equation 
30 for the factor -fr. Since, however, Equation 30 is valid for 
both unbonded and bonded layers, it is reasonable to assume 
that it is also applicable to edge and corner loading. Thus, it 
is suggested that Equation 31 may be used in the analysis of 
three-layer concrete pavement systems under these loading 
conditions as well. For this purpose, the plate theory expres
sions given by Ioannides (3) may be employed. Verification 
of this proposal would require the execution of a three
dimensional finite-element code (16). 

Furthermore, it may be argued that it is possible to interpret 
the assumption of Equation 25 as also implying that the cor-
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rection increment is independent of the nature of the foun
dation as well. Thus, Equation 31 may be applied to the case 
of a dense liquid foundation, the only necessary change being 
in the calculation of the plate theory stress using a(he, £ 1 , k) 
instead of a(he, E1 , £ 5 ), where k is the modulus of subgrade 
reaction. The correction increment, ~a, is calculated using 
Losberg's equation as before. This proposal dispenses with 
the need to define a "top-of-the-base" k-value, a procedure 
that often leads to erroneous conclusions (17). It is possible 
to examine the accuracy of the proposed procedure for the 
dense liquid-interior loading case using a general purpose two
dimensional finite-element code such as FINITE (18). That 
effort is continuing at this time. Verification of this proposal 
for the edge and loading conditions would require three
dimensional finite-element analysis. 

Some evidence for the validity of the proposals pertaining 
to unbonded layers is provided by a comparison of plate the
ory maximum responses to finite-element results from the 
WINKLER option in ILLI-SLAB. For this purpose, a data 
base of 41 "typical" three-layer interior loading runs was as
sembled. It was found that Equation 22 yields the same stress 
as that calculated using ILLI-SLAB if µ, 1 = µ, 2 ; if µ, 1 = µ, 2 , 

the predicted stress is about 5 percent lower. Furthermore, 
it was verified that these plate theory results can be predicted 
with sufficient accuracy by Equation 36, which was developed 
by Salsilli (14) for edge loading. This supports the assertion 
that the proposals above are applicable to all three funda
mental loading conditions for both elastic solid and dense 
liquid foundations. Verification of the plate theory proposals 
for the elastic solid foundation is possible using the 
BOUSSINESQ option in ILLI-SLAB (15). 

The maximum deflection calculated using ILLI-SLAB was 
found to be the same as that predicted by plate theory con
sidering the "effective" plate (thickness, he; modulus, £ 1). It 
is therefore suggested that the maximum deflection be taken 
as equal to the value computed using plate theory for any of 
the three fundamental loading conditions and for both elastic 
solid and dense liquid foundations. These plate theory pre
dictions should be corrected for the compression of the two 
placed layers. An effort in this direction is also under way. 

CONCLUSION 

Analysis and design of concrete pavement systems have long 
been hampered by the restrictive assumption of available an
alytical solutions that the PCC slab rests directly on an elastic 
foundation. In reality-more often than not-concrete pave
ment slabs are placed on prepared bases, which are sometimes 
granular and sometimes bound. A number of approaches have 
been used in the last 40 years to overcome the "one placed 
layer" limitation. Most notable among these have been 

1. Analyzing multilayered concrete pavement systems us
ing Burmister's layered elastic analysis for axisymmetric con
ditions; such applications include Odemark's method of 
equivalent thicknesses and, more recently, computerized 
techniques as implemented, for example, in the program 
BISAR; 

2. Analyzing three-layer concrete pavement systems using 
a finite-element program based exclusively on plate theory, 
for example, ILLI-SLAB; 
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3. Assigning an increased top-of-the-base subgrade mod
ulus purporting to reflect the structural contribution of the 
base layer and analyzing three-layer concrete pavement sys
tems using the available analytical or numerical procedures. 

Such methodologies invariably suffer from considerable 
shortcomings and may in several cases lead to wrong conclu
sions. To remedy this situation, practical solutions to the prob
lem posed by a three-layer concrete pavement system are 
presented in this paper based on sound theoretical precepts 
and interpretation of numerical results using dimensional 
analysis. The main difference of the proposed procedure from 
the popular "bump-the-k-value" approach is that the base 
layer is treated as a placed layer whose major structural con
tribution is to reinforce the upper placed layer-the PCC 
slab-rather than the natural supporting subgrade. The pro
posed closed-form and graphical solutions allow the calcula
tion of maximum responses in concrete pavement systems
namely, deflection~ bending stress, and subgrade stress-for 
all three fundamental loading conditions and for both dense 
liquid and elastic solid foundations. It is shown that responses 
obtained on the basis of plate theory alone must be corrected 
for the compression experienced by the two placed layers. 
The implications of the proposed approach with respect to 
current analysis and design methodologies are far reaching. 
Research activities for its full verification and refinement are 
continuing at this time. Most noteworthy among these efforts 
are those focusing on the development of a computerized 
model for a mutlilayered system supported by a dense. liquid 
foundation (19). 
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