
TRANSPORTATION RESEARCH RECORD 1375 61 

Statistical Method for Identifying 
Locations of High Crash Risk to 
Older Drivers 

GARY A. DAVIS AND KoNSTANTINos KouTsouKos 

Effective use of finite roadway improvement budgets to accom
modate an increasing number of older drivers requires that we 
be able to identify locations where older drivers appear to have 
a heightened accident risk. Ideally, the accident records _from a 
location (such as a particular intersection) should provide the 
information needed to assess the risk experienced there by a given 
group of drivers, but the lack of location and age-specific measure 
of exposure coupled with the relatively small accident samples 
available for. particular locations makes the standard methods of 
high-hazard identification inapplicable'. The way in which, by 
using an induced exposure approach, it is possible to test for the 
equality of group-specific accident rates at a given site by testing 
for the equality of two binomial probabilities arising from a_ ~ar
ticular type of contingency table is described. How an Empmcal 
Bayesian approach to computing point and i~terval esti?I~tes f?r 
binomial probabilities, which has appeared m the statistical lit
erature, can be adapted to this problem is described next. The 
resulting computational procedures are relatively straightforwar_d 
and can be implemented on a microcomputer. The method is 
illustrated using accident data for a set of signalized intersections 
located on a Minnesota highway. 

It is a well-established demographic fact that individuals born 
between 1947 and 1957 constitute a substantial fraction of the 
current U.S. population, and as these "baby-boomers" age, 
older drivers will make up an increasingly significant propor
tion of roadway users. Current road design standards and 
traffic engineering practice, however, developed during times 
when older drivers constituted a small minority of the driving 
population, so that roadway managers have begun to consider 
whether anticipatory roadway improvements might be needed 
to block a future increase in traffic accidents (1). The value 
of such improvements depends first on whether older drivers 
actually have more difficulty with the existing roadway than 
do younger drivers and, second, on being able to reliably 
identify locations that actually cause the difficulty. There is 
mounting evidence that after about the age of 55 or 60, the 
accident rate for drivers tends to increase (1,2). The problem 
of identifying locations showing increased accident rates for 
older drivers is the subject of this paper. 
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The Minnesota Department of Transportation (MNDOT) 
has projected that the proportion of older drivers in the state's 
driving population will increase during the next 20 years and 
that older drivers appear to be overrepresented in traffic crashes 
(3). This has led to a proposed program of roadway improve
ments intended to enhance older driver safety, including in
creased use of channelization and control at intersections, 
improved visibility of roadway markings and signing, and im
proved positive guidance. Efficient use of limited resources, 
however, requires identifying those areas where older drivers 
are at greatest risk and improving these locations first. During 
the spring of 1990, the authors of this paper began a research 
project aimed at identifying locations where older drivers were 
overrepresented in the accident records, but it soon became 
apparent that statistical identification of such high-risk areas 
from accident records was a nontrivial task, for which appro
priate statistical tools were not available. In response to this 
problem, we have been able to combine the induced exposure 
model for estimating group-specific accident risk with an Em
pirical Bayesian (EB) estimation procedure, producing a flex
ible and computationally tractable statistical tool. 

CLASSICAL AND EMPIRICAL BAYESIAN 
HAZARD IDENTIFICATION 

Traffic accidents are fortunately "rare events" compared with 
the amount of travel done by the population generating them, 
so the Poisson distribution provides the statistical model for 
much accident analysis. More formally, if nk denotes the ac
tual number of accidents counted over some time period (typ
ically 1 or more years) at a location k, nk is assumed to be a 
Poisson random variable with mean value mk = A.kEk, where 
A.k is the accident rate at location k and Ek is the exposure of 
the traveling population at k. 

The accident rate A.k is thus a measure of the proclivity of 
location k to produce accidents, with locations having higher 
values of A.k being more dangerous. The exposure Ek is a 
measure of the size of the population at risk, with stal)dard 
measures of exposure used in traffic accident analysis b.eing 
the total traffic count at a location, used primarily for analysis 
of intersections, and vehicle miles of travel, used for roadway 
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sections. Given a count of the number of accidents over a 
period of time at some location and exact knowledge of the 
exposure during the same time period, the maximum likeli
hood (ML) estimator of the accident rate is 

(1) 

"High-hazard" locations can be identified by computing the 
estimated rate for each location of interest and then selecting 
those locations where the estimated accident rates are large 
compared with some regionwide average. Two common meth
ods for high-hazard identification, the accident rate method 
and the rate quality control method ( 4), are based on the 
estimator of Equation 1. 

It turns out, however, that X.k is often a poor predictor of 
future accident rates due to its failure to correct for a statistical 
phenomenon called regression-to-the-mean (RTM) (5). In plain 
terms, RTM refers to the tendency of extreme random values 
to be followed by less extreme values, even when no change 
has occurred in the underlying mechanism generating these 
values. Since the variance of the estimator X.k is inversely 
proportional to the exposure Ek, the RTM effect will be more 
pronounced for those locations with low exposures, and a 
hazard identification method based on a ranking of the esti
mates X.k will tend to confound genuinely hazardous sites with 
locations whose extreme values are due to chance alone, lead
ing to an overemphasis of the hazard at sites with lower ex
posures. 

Beginning with Hauer (5), a number of accident researchers 
have worked at improving the ability to identify high-hazard 
locations through the application of "shrinkage" or EB sta
tistical techniques, and this work has reached a useful degree 
of maturity in the EBEST methodology developed at the 
Texas Transportation Institute (6). This methodology begins 
with a Bayesian model in which accidents are assumed to be 
generated by a two-step probabilistic process. First, a common 
underlying gamma random variable with mean A. and variance 
A.IE generates the accident rates A.k for each ·site, and then the 
actual accident counts are generated as Poisson outcomes as 
described above. If, in addition to knowing the exposures Ek 
and the accident counts nk, one also knows the values of the 
gamma parameters A. and E, it can be shown that the Bayes 
estimator of the accident rates is given by 

x_; = (~)x.k + (-E )A 
Ek + E Ek + E 

(2) 

The Bayes estimator is a convex combination of the ML 
estimator given in Equation 1 and the underlying gamma 
mean. For those sites with high exposures (and hence lower 
variances for A.k) the Bayes estimator tends to weight the ML 
estimator more heavily, whereas sites with low exposures are 
"shrunk" more toward the gamma mean. The parameter E 

measures the degree of relatedness among the site-specific 
accident rates, with E = 0 being the case where the individual 
A.~ haye no relation (so that X.Z = X.,J, whereas E = oo cor
responds to the case A.k = A. (i.e., all the individual accident 
rates are equal to the gamma mean). For intermediate values 
of E, the Bayes estimators will tend to be closer (in the mean-
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square 'sense) to the true accident rates than will the ML 
estimator. In most practical situations however, the values of 
A. and E will be unknown and also require estimation. EB 
methods attempt to capitalize on the desirable properties of 
the Bayes estimator by first replacing E and A. in Equation 2 
with efficient estimates, such as ML estimates, and second, 
by accounting for the increased uncertainty that results from 
having less than perfect knowledge of these parameters (7,8). 

INDUCED EXPOSURE MODEL 

In principle, the preceding method of analysis could be ex
tended to the identification of locations where older drivers 
are overrepresented by simply allowing each age group of 
drivers to have differing accident rates and exposures at each 
location of interest. Thus we can define 

A;k accident rate or risk for age group i at location k, 
E;k exposure of age group i at location k, and 
n;k observed number of accidents for age group i at lo

cation k (n;k is assumed to be a Poisson random 
variable with mean m;k = A;kE;k). 

Given observations of n;k and E;k for all groups and locations, 
one could not only identify those locations where older drivers 
are overrepresented (indicated by high values of m;k) but also 
attribute the overrepre~entation to overexposure (indicated 
by high values of E;k), greater risk (indicated by high values 
of A;k), or a combination of these effects. This methodology 
is strictly appropriate, however, only when the exposures E;k 
can be treated as known constants in the analysis. In practice 
such measures of exposure are derived from a location's av
erage daily traffic (ADT), which in turn is usually estimated 
from randomly varying traffic count data, so that ADT (and 
hence exposure) is more properly treated as an additional 
parameter to be estimated, rather than as a known constant. 
The current state of the art is such that the statistical prop
erties of various methods for estimating ADT are not well 
understood, whereas the relationship between ADT estimates 
and the resulting estimates of accident risk such as Equation 
1 are even less clear. These statistical questions are academic, 
however, since disaggregated measures of exposure for single 
locations are not generally available- and can only be obtained 
by the expensive and time-consuming expedient of stopping 
and sampling vehicles at the location. 

The difficulties inherent in obtaining good estimates of ex
posure have been known for some time and have motivated 
a number of researchers to develop measures of exposure that 
rely only on data contained in the accident records themselves 
(9). The basic idea of this "induced exposure" method is that 
for a majority of two-vehicle accidents, one driver can be 
identified as at fault, whereas the other is an innocent victim. 
At-fault drivers are assumed to be subject to accidents ac
cording to the above Poisson model, whereas victims are as
su~ed to be randomly selected in proportion to their expo
sures at a location. Thus the proportion of an age group in 
the victim total gives a measure of the relative exposure of 
that age group at a location and offers a method for untangling 
the contributions of risk and exposure for particular age groups. 
This idea appears to have originated with Thorpe (10), en
joyed intense but brief research· interest in the early 1970's 
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(11-13), and more recently has been resurrected by research
ers at the University of Michigan to investigate the relative 
hazard for older drivers at different types of intersection (2). 
The Michigan methods are essentially deterministic proce
dures, however, and though they are useful when dealing with 
large aggregations of accident records, the lack of a foun
dation in statistical theory makes them inappropriate in small 
sample situations. Fortunately, there does exist a natural con
nection between the induced exposure model and statistical 
theory, which will now be made explicit. · 

To simplify the resulting notation, we will treat the case 
where the population of interest has been divided into only 
two age groups, "younger" and "older," with Ayk and Eyk 
denoting the risk and exposure for the younger group at lo
cation k and A0 k and E0 k denoting the corresponding quantities 
for the older group. This covers most cases of interest, but 
extension to more complicated classifications appears possible 
through the use of multinomial and Dirichlet random varia
bles in place of the binomial and beta random variables used 
here. We then define the following quantities: 

rk = E0 ,)(Eyk + E0 k), the relative exposure of the older 
group at location k; 

Pk = A0 kE0 kl(A0 kEok + AykEyk), the relative involvement of 
the older group at location k; 

xk the total number of two-vehicle accidents at location 
k for which an older driver was the at-fault driver; 

yk the total number of two-vehicle accidents at location 
k for which an older driver was the innocent victim; 
and 

nk = the total number of two-vehicle accidents at location 
k. 

Under the induced exposure hypothesis, rk gives the prob
ability that a driver who has an accident "selects" an older 
driver as the victim, and pk gives the probability that a given 
two-vehicle accident has an older driver as the at-fault party. 
When the two-vehicle accidents at a location are cross
classified by the ages of the drivers involved, the resulting cell 
counts will also have Poisson distributions, and by exploiting 
well-known properties of Poisson and multinomial random 
variables it can be shown that when the accident total nk is 
given, the cross-classification counts form a multinomial ran
dom vector. The marginal total xk is now a binomial random 
variable with parameters nk and pk, and the marginal total yk 
is binomial with parameters nk and rk. Next, from the defi
nitions of Pk and rk it is straightforward to verify that the 
condition A0 k = Ayk is true if and only if the condition pk 
= rk is also true, so that under the induced exposure model, 
the problem of testing whether two age groups have the same 
accident rate at a given location reduces to the problem of 
testing whether two binomial probabilities arising from a cross
classification table are equal. The ML estimators of pk and rk 
are given by 

(3) 

and if the number of accidents at a site is large (i.e., 50 or 
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more) the hypothesis pk = r k can be tested using asymptotic 
likelihood ratio methods (or equivalently, asymptotic meth
ods for contingency table analysis) (14). In practice, however, 
nk ;::::::: 50 is likely to be the rare exception rather than the rule, 
so that asymptotic methods of hypothesis testing become sus
pect, and the ML estimators pk and fk become subject to more 
pronounced RTM effects. Since our problem is essentially 
one of hypothesis testing rather than point estimation, EB 
procedures such as those described above are not directly 
applicable. In the statistical literature, though, Albert (15) 
has presented methods for computing both point and interval 
EB estimates of binomial probabilities. This methodology can 
be adapted to produce not only EB point estimates of the 
quantity (pk - rk) for each location but also approximate EB 
confidence intervals for these differences. A decision rule for 
identifying which sites satisfy pk = rk (and hence A0 k ·= Ayk) 
can then be based on whether a confidence interval for the 
difference (pk - rk) contains the value zero. Before pro
ceeding to methods for computing these confidence intervals, 
we note that the ratio p,)rk can be interpreted as the "in
volvement ratio" used in other studies using induced exposure 
methods (2). Our preference for the. difference (pk - rk) stems 
from the fact that, as will be shown later, the probability 
distribution of this difference can be readily approximated by 
a normally distributed random variable, allowing the use of 
z tables in determining probability values. The distribution 
of the ratio p,)rk, on the other hand, is less tractable. 

EB ESTIMATION FOR THE INDUCED EXPOSURE 
MODEL 

To illustrate how Albert's formulas can be applied to the 
problem at hand, we will discuss, in some detail, the problem 
of estimating the probabilities pk for a set of locations, and 
then simply note that estimation of the r k is exactly parallel. 
As with the·preceding model for accident rates, the EB pro
cedure assumes that the values xk are generated by a two
step random mechanism, only this time the parameters pk are 
assumed to be assigned to locations as the outcomes of a beta 
randorp. variable with mean value p and variance p(l - p )/ 
(m1 + 1). Given pk and nk, xk is then assumed to be a binomial 
outcome. If the parameters p and m1 are known, the Bayes 
estimator of Pk takes the form 

(4) 

Albert then places "noninformative" prior distributions on 
the parameters p and m1 , producing a three-step pure Bayes
ian procedure. In principle, all quantities of interest, such as 
point and interval estimates, can be computed through inte
gration of this Bayesian model's full joint probability distribu
tion, but a computationally simpler approach results by using 
an EB estimator of the form 

(5) 

where p =' ("i.x,)'i.nk) is an unbiased estimator of p, and Albert 
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estimates m 1 using an approximate Bayesian procedure. Rather 
than use Albert's estimator of m 1 , which for our problem 
would apply the same degree of shrinkage to each location 
regardless of the individual accident counts, we propose es
timating m 1 as the value .that maximizes the function 

f(m) 

Jk
CT= 

1 

[ (~:) 13(mp + xk> m(l - p) + nk - xk)] dp 
13(mp, m(l - p)) p(l - p) 

m 
(6) 

Here J3(a, b) denotes the beta integral evaluated at the values 
a and b, and sine~ the function f(m) is proportional to the 
posterior probability density of m 1 based on Albert's nonin
formative prior distributions for the parameters p and m 1 (15, 
p. 137), m1 is, in fact, a maximum a posteriori (MAP) esti
mator. Albert also provides an approximation to the posterior 
variance of pk given the data xk, which takes the form 

(7) 

Formula 7 is used rather than the estimated posterior beta 
variance (pk(l - fh)l(m 1 + nk + 1) to partially account for 
the added uncertainty. incurred by using estimates of p and 
m 1 instead of their true values. Finally, approximate EB con
fidence intervals for the Pk can be computed by treating the 
posterior density of pk given the data (x 1, ... , xN) as a beta 
density with mean given by Equation 6 and variance given by 
Equation 7, and then using a routine that computes the inverse 
of a beta distribution function. Such routines are commonly 
available in scientific subroutine packages such as IMSL or · 
NAG. 

By treating the rk as outcomes of a beta random variable 
with parameters r and m2 , EB estimates for the rk can be 
computed in a manner analogous to the pk case. An EB es
timate of the difference dk = (pk - rk) is then given by 

(8) 

and the variance of this estimator is estimated via 

vdk = vpk + vrk (9) 

Confidence intervals for the differences dk could now be 
computed using the probability distribution for the difference 
between two beta random variables, but the resulting need 
for numerical integration and special software can be avoided 
by exploiting the fact that the difference between two beta 
random variables is approximately a normal random variable. 
That is, conditional upon available data (x 1, y 1 , ••• , xN, YN), 
the random variable dk = (pk - rk) is approximately normally 
distributed with mean given by Equation 8 and variance given 
by Equation 9. Approximate EB confidence intervals can then 
be computed easily using the standard normal distribution. 
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EXAMPLE APPLICATION 

To illustrate these methods, we present the following exam
ple. Accident records for the years 1988-1990 were obtained 
from MNDOT for the 29 signalized intersections on Minne
sota Trunk Highway (MNTH) 65 running from the city of 
Columbia Heights northward into Anoka County. Minneso
ta's accident reporting form allows the investigating officer to 
identify, for each driver involved in an accident, one or more 
actions believed to have contributed to the occurrence of the 
accident, and so from the data set we selected the records for 
all two-vehicle accidents for which (a) the ages of both drivers 
were known and (b) one driver had one or more contributing 
factors cited and the other had "no improper driving" cited. 
The driver with contributing factors cited was then identified 
as the "at-fault" driver, and the other was identified as the 
"innocent victim." The ages of both at-fault and innocent 
drivers were divided into three groups: "younger" corre
sponding to ages 15-24, "middle" corresponding to ages 25-
54, and "older" corresponding to ages 55 or more, and EB 
estimation methods were used to identify locations of in
creased risk both for older versus middle drivers and for younger 
versus middle drivers. All computations were performed using 
MATHCAD, an interactive formula processing program, on 
an IBM PS/2 55SX microcomputer. The most computationally 
demanding task was maximization of the function f(m) to 
produce MAP estimates of the parameters m 1 and m 2 • This 
was done by using a closed form expression for the ratio of 
beta integrals appearing in Equation 6: 

13(mp + xk, m(l - p) + nk - xk) 
J3(mp, m(l - p)) 

lY (mp + i) nTr' cmc1 - p) + i) 
i=O i=O 

lf (m + i) 
i=O 

(10) 

This permitted use of a univariate numerical integration rou
tine to compute the right-hand side of Equation 6 for any 
given value of m. Maximization of this expression with respect 
to m was then accomplished using a dichotomous line-search 
method. 

Before proceeding to the identification of the high-risk lo
cations, we believed it desirable to test whether the assump
tion that Pk and rk are generated by beta random variables 
was in fact plausible for this data set. Following Box (16) 
these tests were based on the marginal distributions for the 
data xk and yk obtained by integrating out the pk and rk from 
their respective joint distributions. For instance, the marginal 
distributions of the random variables xk are given by 

Pk(j) = Prob[xk = jlm1, p] 

= (nk)J3(m1 + j, m1(l - p) + nk - j) 
j J3(mJP, m 1(l - p)) 

(11) 

whereas the means and variances of the ML estimates pk 
= (xk/nk) are given by 

(12) 
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TABLE 1 Parameter Estimates and Goodness-of-Fit for Younger 
Driver Data 

Involvement Parameters (Qkl Exposure Parameters <r kl 

p=.408 m1=36.9 r=.274 m2 =39.4 

t=-0.38 p>.10 t=-0.27 p>.10 

X2 =23.0 p>.10 X2 =21.4 p>.10 

Now in principle, the predictive distribution, Equation 11, 
and its consequences provide a means for checking the ade
quacy of an underlying statistical model, but, in practice, the 
theory for model checking is less well understood than that 
for parameter estimation and hypothesis testing (17). For
tunately, it is still possible to provide some rough tests of 
model adequacy. First, if the underlying beta model is valid, 
then by replacing the p and m 1 in Equation 12 with estimates, 
it should be possible to transform the sequence of pk (and 
similarly the sequence of fk) into a sequence of random var
iables with means equal to 0 and variances equal to 1, and 
tests for the~e properties can be performed using standard t 
and chi-squared statistics (18). Second, Box (16) has suggested 
that the adequacy of a beta-binomial model, such as that used 
here, could be checked using the statistic 

'(13) 

where P k(j) is the predictive distribution given in Equation 
11. From the. definition given in Equation 13, it follows that 
Spk attains its maximum value of 1.0 when xk equals the mode 
of the predictive distribution, and that, under the null hy
pothesis that xk is an outcome of the predictive distribution, 
Spk is its own significance level. For example, Spk = .05 can 
be interpreted as meaning that if xk actually follows the pre
dictive distribution, the probability of obtaining a value of spk 

less than or equal to .05 by chance is equal to .05. Computing 
the statistic Spk for each location k then allows us to not only 
assess the general compatibility of the prior distribution with 
the data but also to identify locations that may be "outliers" 
with respect to the prior. . · 

Table 1 presents the estimates of p, r, m 1, and m 2 obtained 
for the younger versus middle data, along with the above 
described goodness-of-fit tests computed for both the pk and 
the f k· Table 2 gives similar information for older versus mid
dle data. Figures 1 and 2 show the statistics Spk and Srk for 
the two data sets .. The horizontal lines in Figures l and 2 
correspond to significance levels of a = .05. For the most 

TABLE 2 Parameter Estimates and Goodness-of-Fit for Older 
Driver Data 

Involvement Parameters <'1kl Exposure Parameters <r kl 

p=.240 m1=46.5 r=.192 m2 =16.9 

t=0.39 p>.10 t=-0.07 p>.10 

X2 =21.4 p>.10 X2 =24.2 p>.10 
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FIGURE 1 Comparison of predictive and data 
probabilities for younger driver data. 
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part, it appears that the beta priors placed on the pk and r k 

are tenable, although Intersections 3 and 5 for the older driver 
data and Intersections 5 and 8 for th~ younger driver data 
might be considered atypical compared with the other loca
tions, and thus candidates.for a more detailed investigation. 

Next, to check the accuracy of the normal approximation 
used in computing EB confidence intervals, the upper and 
lower bounds of a nominal 90 percent confidence interval were 
computed· using the normal approximation for each intersec
tion and each data set. Using numerical integration, it was 
then possible to compute the confidence level that Albert's 
bet£!, approach would assign to these same intervals. Table 3 
gives the computed beta confidence levels for the two data 
sets. In almost all cases the difference between the nominal 
and computed confidence levels is less than or equal to 2 
percentage points, and we concluded that the normal ap
proximation showed acceptable accuracy. 

Finally, Figure 3 shows the EB interval estimates for the 
difference (pk - rk) for each intersection along with the ML 
estimated differences (pk - fk). In all cases, the confidence 
interval is an approximate 90 percent interval computed using 
the normal approximation. Inspection of Figure 3 shows first 
that the EB estimates have considerably less scatter than do 
the ML estimates and that the EB estimates eliminate certain 
counterintuitive cases from consideration (such as Intersec-
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FIGURE 2 Comparison of predictive and data 
probabilities for older driver data. 

I-

tion 4, where tlie ML estimate indicates that middle drivers 
have higher accident rates than do older dri~ers). Second, the 
tendency for younger. drivers to have higher accident rates 
seems to be a somewhat pervasive feature of the entire road
way segment, whereas the increased accident rates for older 
drivers, if present at all, appear to be localized around In
tersections 5 through 7 and Intersections 23 through 25. As
suming that some older driver-oriented improvement of this 
roadway was desirable, these two sections would be candi
dates for first consideration. 

CONCLUSION 

We have presented a statistical method for location-specific 
testing of the equality of accident rates experienced by two 
different groups of drivers. To sidestep the need for location
and group-specific measures of exposure, we have based the 
method on the induced exposure model, and to improve the 
estimation in the face of the RTM effects inherent in the small 
samples generally available, we have used an EB estimation 
procedure. The most computationally demanding feature of 
our method is the combined numerical integration and uni
variate line-search needed to compute MAP estimates of the 
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TABLE 3 Beta-Derived Confidence Levels for Nominal 90 percent 
Confidence Intervals 

Intersection 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Y oum:er Driver Data 

.893 

.901 

.904 

.911 

.901 

.896 
.. 905 
.911 
.904 
.910 
.913 
.901 
.885 
.906 
.902 
.889 
.914 
.905 
.915 
.902 
.901 
.902 
.883 

.. 879 
.905 
.898 
.899 
.902 
.882 

Older Driver Data 

.899 

.897 

.884 

.897 

.908 

.893 

.886 

.907 

.887 

.895 

.915 

.889 

.903 

.912 

.907 

.888 

.894 

.905 

.895 

.903 

.894 

.910 

.891 

.899 

.898 

.888 

.900 

.900 

.892 

parameters m~ and m2 • Since a closed form expression can be 
given for the ratio of the beta integrals appearing in Equation 
6, this optimization problem can be solved on a microcom
puter using either commonly available computer languages or 
commercially available mathematical spreadsheet software such 
as MA TH CAD. All other computations require no more than 
a hand calculator. Thus the method should be easy to incor
porate in any accident analysis system capable of matching 
accident recor~s to specific locations and potentially could be 
used for cost-effective screening of a large number of locations 
as to their pazard for particular driver groups, such as older 
drivers. 

Before recommending widespread implementation of the 
method, however, we believe that three issues require further 
study. First and foremost, the question as to whether the 
method is robust with respect to different choices for the 
noninformative prior distributions placed on the hyperpa
rameters p, r, m 1 , and m2 needs investigation. Second, the 
robustness of the method with respect to different procedures 
for estimating the hyperparameters should also be investi
gated. Third, it may be possible to reduce the computational 
effort required by the current implementation of this method 
through the use of more efficient search routines such as 
Golden Section search or less demanding approximations to 
the numerical integrals used here. Given suitable answers to 
these questions, the combination of EB statistical method
ology with the induced exposure model should provide a use
ful addition to the safety engineer's analytic toolbox. 



Davis and Koutsoukos 

pk-rk 

pk-rk 

.8 

.... . 
I 

• 

Younger Driver Data 

I I 

• 

- .8L.-__ __._1 ___ _,1 ____ ..__1 __ __,_, ___ __.1 ___ -::-:' 

0 
5 10 15 20 25 

30 

Intersection Number 

Older Driver Data 

.8 I I 

• • • 

-rrirIIIrrIIIIrirIIIIIIIIIJIII-

• 
5 10 15 20 25 

Intersection Number 

FIGURE 3 Comparison of 90 percent EB confidence intervals 
(I) and ML point estimates (+)of the differences Pk - rk. 

ACKNOWLEDGMENTS 

The authors thank Dave Miller of MNDOT for developing 
the accident data files used in this research. They also thank 
Robert Johns of the Center for Transportation Studies at the 
University of Minnesota for the initial contact work that re
sulted in this research project. 

67 

REFERENCES 

1. Special Report 218: Transportation in an Aging Society. TRB, 
National Research Council, Washington, D.C., 1988. 

2. F. McKelvey, T. Maleck, N. Stamatiadis, and D. Hardy. High
way Accidents and Older Drivers. In Transportation Research 
Record 1172, TRB, National Research Council, Washington, D.C., 
1987, pp. 47-56. 

3. Minnesota Roadway Safety Initiatives for 1990.and Beyond. Office 
of Traffic Engineering, Minnesota Department of Transporta
tion, St. Paul, Minn., 1989. 

4. C. Zegeer. Highway Accident Analysis Systems. TRB, National 
Research Council, Washington, D.C., 1982. 

5. E. Hauer. Bias-by-Selection: Overestimation of the Effectiveness 
of Safety Countermeasures Caused by the Process of Selection 
for Treatment. Accident Analysis and Prevention, Vol. 12, 1980, 
pp. 113-117. 

6. 0. Pendleton and C. Morris. A New Method for Accident Anal
ysis. Presented at 69th Annual Meeting of the Transportation 
Research Board, Washington, D.C., 1990. 

7. C. Morris. Parametric Empirical Bayes Inference: Theory and 
Applications. Journal of American Statistical Society, Vol. 78, 
1983, pp. 47-65. 

8. P. Carlin and A. Gelfand. Approaches for Empirical Bayes Con
fidence Intervals. Journal of American Statistical Association, Vol. 
85, 1990, pp. 105-114. 

9. F. Haight. Induced Exposure. Accident Analysis and Prevention, 
Vol. 5, 1973, pp. 111-126. 

10. J. Thorpe. Calculating Relative Involvement Rates in Accidents 
Without Determining Exposure. Australian Road Research, Vol. 
2, 1964, pp. 25-36. 

11. F. Haight. A Crude Framework for Bypassing Exposure. Journal 
of Safety Research, Vol. 2, 1970, pp. 26-29. 

12. H. Joksch. A Pilot Study of Observed and Induced Exposure to 
Traffic Accidents. Accident Analysis and Prevention, Vol. 5, 1973, 
pp. 127-136. 

13. M. Koonstra. A Model for Estimation of Collective Exposure 
and Proneness from Accident Data. Accident Analysis and Pre
vention, Vol. 5, 1973, pp. 157-173. 

14. Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate 
Analysis. MIT Press, Cambridge, Mass., 1975. 

15. J. Albert. Empirical Bayes Estimation of a Set of Binomial Prob
abilities. Journal of Statistical Computing and Simulation, Vol. 
20, 1984, pp. 129-144. 

16. G. Box. An Apology for Ecumenism in Statistics. In Scientific 
Inference, Data Analysis and Robustness (G. Box et al., eds.), 
Academic Press, New York, 1983, pp. 51-84. 

17. J. Hill. A General Framework for Model-Based Statistics. Bio
metrika, Vol. 77, 1990, pp. 115-126. 

18. V. Rohatgi. An Introduction to Probability Theory and Mathe
matica/ Statistics. Wiley and Sons, New York, 1976. 

This research was sponsored by the Minnesota Department of Trans
portation, but all opinions and conclusions expressed here are solely 
the responsibility of the authors. 

Publication of this paper sponsored by Task Force on Statistical Meth
ods in Transportation. 


