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Development of New Criteria for Control of 
Hot-Mix Asphalt Construction 

FRAZIER PARKER, JR., E. RAY BROWN, AND ROBERT L. VECELLIO 

Statistically based quality control/quality assurance procedures 
are designed to control accuracy in achieving target values and 
variability. Properties of construction materials, such as hot-mix 
asphalt, are known to be normally distributed, and this is used 
in the establishment of limiting criteria. However, the use of 
nuclear asphalt content and nuclear density gauges has increased 
the potential for process manipulation to achieve average values 
approximating target values. Owner agencies often resort to the 
use of the mean of absolute deviations from target values instead 
of the mean of arithmetic deviations to control process manip­
ulation. Distributions of absolute deviations are not normally 
distributed (for small sample sizes) and, therefore, properties of 
normal distributions cannot be used directly to establish criteria 

· limits. Distributions of absolute values from target values were 
examined and statistics of the distributions computed. Procedures 
for using the statistics of distribution of absolute deviations to 
produce consistent mathematically correct limiting criteria are 
demonstrated. These procedures are simple and control both 
central tendency and variability, thus reducing possibilities for 
process manipulation. 

The move toward statistically based quality control/quality 
assurance (QC/QA) construction specifications is motivated 
by the desire to control the quality of the finished product 
while maintaining reasonable costs. Quality is judged by ac­
curacy and precision of selected properties of the finished 
product. Accuracy is measured in terms of the proximity of 
average measured values to target values. Precision is mea­
sured in terms of variability of measured values. 

An important part of QC/QA specifications is the limiting 
criteria for controlling central tendency and variability. Sta­
tistical concepts applied to historical construction data are 
used to set specification limits, and the methodology devel­
oped must control both central tendency and variability. 

As applied by some agencies, "mean deviation" or "vari­
ability known" procedures do not control variability and may 
lead to process manipulation. The proposed methodology uses 
absolute deviations from target values and will control vari­
ability and prevent process manipulation. The quality level 
analysis as proposed by FHWA (1) and adopted by the West­
ern Association of State Highway and Transportation Offi­
cials (WASHTO) (2) controls both central tendency and vari­
ability. However, some agencies have been reluctant to adopt 
these procedures. Reasons given include the complexity of 
required computations and a lack of understanding of the 
consequences of application of the procedures. Contractors 
should reasonably expect to know the standards by which they 
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are to be judged (acceptable or achievable accuracy and pre­
cision) and be able to understand the consequences of perfor­
mance above or below the accepted norm. 

This paper is focused on the construction of hot-mix asphalt 
pavements, but the principles are applicable to the production 
and placement of any construction material. The concepts of 
statistical QC/QA procedures and the process of developing 
limiting criteria will be discussed. Examples of procedures 
used to set limiting criteria for hot-mix asphalt construction 
will be examined. A simple but statistically correct method 
that maintains consistent levels of control for both central 
tendency and variability of absolute deviations from the job 
mix formula (JMF) will be presented. 

STATISTICAL QC/QA CONCEPTS 

The objective of the use of construction control procedures 
is to ensure that quality products are produced. A critical 
aspect of these procedures is the selection of control prop­
erties that are important in determining product performance. 
All properties that influence product performance cannot be 
measured during construction, but if advantage is taken of 
the interrelationships among properties, a practical, manage­
able subset may be selected. For example, asphalt content, 
gradation, voids, and voids filled with asphalt are important 
properties of hot-mix asphalt. However, because of their 
interrelationship, it is not necessary to control all of these 
properties. 

Historical data and experience provide the basis for deter­
mining (a) properties that are important, (b) realistically 
achievable quality (central tendency and variability), and ( c) 
at least qualitatively, how quality level influences product 
performance. These three factors may be used to determine 
which properties are controlled and their limiting criteria. 

Limiting criteria should be designed to achieve target values 
(central tendency) and to control variability. These concepts 
are shown in Figure 1. Figure 1 (top) shows two distributions 
with means equal to the target value, but with different stan­
dard deviations. The second distribution, with a smaller vari­
ability, represents a higher level of control. Figure 1 (bottom) 
shows two distributions, each with different means and stan­
dard deviations. The first distribution, with mean equal to the 
target value, has better central tendency control, but the sec­
ond distribution, with the smaller standard deviation, has bet­
ter variability control. 

Criteria with limits set about target values are designed to 
control the mean as well as variability. Two-sided limits around 
either side of the target value are shown in Figure 2. However, 
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FIGURE 1 Central tendency and variability control: top, 
distributions with same mean and different variabilities; 
bottom, distributions with different means and variabilities. 

one-sided limits may be applicable in instances where values 
higher or lower than the target are undesirable. Symmetrical 
criteria about the target are shown in Figure 2, but unsym­
metrical crit~ria may be applicable if the underlying distribu­
tion is skewed or if there is reason to believe that high or low 
values affect product performance differently. 

Allowable deviation about the target value is set at CCT, 
where C is a constant and CT is the standard deviation of the 
measured property. The standard deviation, based on histor­
ical data, provides a basis for the variability that can be real­
istically achieved. The value of C selected is a rather subjec­
tive management decision, but should be supported by available 
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FIGURE 2 Criteria limits. 
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historical data and knowledge of statistical procedures. In­
tuitively, the decrease in product performance should be re­
lated to the deviation from the target value, larger than his­
torical variability, or both. Quantification of this decrease has 
not been established, and selection of C is often based on 
tolerable probabilities for pay reduction. For example, limits 
for 100 percent pay are often set from ± 2CT to ± 3CT. If the 
average of all test data is equal to the target value J(.r. and if 
variability is consistent with historical data, limits of ± 2CT to 
± 3CT will mean probabilities for pay reductions of 4.55 to 0.27 
percent, respectively. The hatched areas in the tails of the 
distribution in Figure 2 represent these probabilities. The 
hatched areas also represent the seller's risk (ex), which is the 
probability that a satisfactory product will be rejected. If the 
average of all test data is not equal to the target value or 
actual variability is greater than historical variability or both, 
the probabilities for pay reductions will be greater. Likewise, 
if actual variability is less than historical variability, proba­
bilities for pay reductions may be smaller or larger depending 
on the magnitude of differences between mean and target 
values. 

To decrease the buyer's risk (13) and to break production 
into manageable size portions (LOTs) for application of pay 
adjustments, limiting criteria are included for the mean of 
multiple samples. Buyer's risk is the probability that an un­
satisfactory product will be accepted. Consistent criteria for 
multiple samples are based on the concept that the variability 
of distributions of mean values can be calculated from the 
variability of the distribution of individual values using the 
following equation: 

where 

CT n = standa_rd deviation of mean values, 
CT = standard deviation of individual values, and 
n = sample size. 

The reduced variability of means is shown in Figure 3. 

(1) 

Limits for consistent seller's risk (ex) may be set for the 
mean of multiple samples by using Equation 1. For example, 
if limits for 100 percent pay are set at ± 2CT for individual 
values, consistent criteria for the mean of multiple samples 
will be ± 2CTn. These criteria will give the same probability for 
a pay reduction (4.55 percent) and represent the same area 
in the tails of the distribution means. 

µ 

FIGURE 3 Distribution of individual values and means. 
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The use of multiple samples is desirable to reduce buyer's 
risk. Limits set at ± 2CT or ± 2CT" provide the same level of 
seller's risk (i.e., ex = 4.55 percent) for any number of sam­
ples. However, buyer's risk is reduced from i3 = 50 percent 
for n = 1 to 13 = 2.3 percent for n = 4. 

Selection of consistent limits for application of pay reduc­
tions or bonus payments is similar to selection of acceptance 
criteria limits. The decision process is somewhat subjective 
but should be based on assessments of the influence of ma­
terial quality on product performance. This applies to pay 
reductions for quality less than design or bonuses for quality 
better than design. Bonus payments are not made as often as 
pay reductions because of the perception that it is more dif­
ficult to assess the influence of quality better than design on 
final product performance than the influence of quality poorer 
than design. 

The usual approach is to set limits, which are intuitively 
correct and consistent with concepts of causes of failures in 
final products (i.e., the probability of failure increases as de­
viation from the target increases). Table 1 presents statistics 
for setting criteria limits. It follows that pay reductions should 
increase as deviation from the target increases. The system 
may be extended to means for any sample size. It also provides 
the producer with expected probabilities for achieving pay 
adjustments. For example, if the job mean equals the target 
and job variability equals historical variability, there would 
be a 3.32 percent probability of obtaining a pay factor (PF) 
of 95 percent. 

DEVELOPMENT OF LIMITING CONTROL 
CRITERIA 

To illustrate the development of limiting control criteria in­
corporating the statistical concepts just discussed, an example 
case will be considered. The example involves the asphalt 
content of hot-mix asphalt. In the total study from which the 
data were extracted, asphalt content and air voids of labo­
ratory compacted specimens were selected as the two prop­
erties for controlling quality of produced hot-mix asphalt. 
Level of mat compaction was selected as the property for 
controlling placement quality. 

Historical Data 

Historical data are required to establish realistic expectations 
for variability and for achieving target values. Asphalt content 
data were collected by the Alabama Highway Department on 
11 resurfacing projects during the summer of 1991. A total 

TABLE 1 Statistics for Setting Criteria Limits 

Pay Factor (PF) Criteria Limits Probability of PF 

100% ±2.0cr 95.44% 

95% ±2.Scr 3.32% 
90% ±3.0cr 0.98% 
80% >3.0cr 0.26% 
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of 517 measurements was taken using nuclear asphalt content 
gauges. The variable analyzed was the difference between 
measured asphalt content and JMF asphalt content as defined 
by the following equation: 

Ll = X - JMF (2) 

where 

Ll = deviation of individual measured asphalt content 
from JMF asphalt content, 

X = individual measured asphalt content, and 
IMF = JMF asphalt content. 

The mean deviation for the data set was Ll = -0.01 per­
cent, and the standard deviation was CT.= 0.218 percent. These 
values indicate an ability to achieve target asphalt content and 
variability that is similar to that reported by FHW A (3) and 
provide a basis for establishing limiting control criteria that 
can be reasonably achieved. 

Setting Limits for Control Criteria 

Following the procedure outlined in the previous section, his­
torical data may be used to set limits for control criteria. Since 
the mean of the data set was near zero, symmetrical limits 
about a mean of 0 will be set using CT = 0.22 percent (0.218 
percent rounded). This is shown in Figure 4 for sample size 
n = 1, with limits of ±2, 2.5, and 3CT defining PFs of 100, 
95, and 90 percent, respectively. A PF of 80 percent applies 
if Ll lies outside the 3CT limits. 

The percentages for the various areas under the curve rep­
resent the probability that a PF will be obtained on a project 
that has expected variability and a mean asphalt content equal 
to the JMF asphalt content. For example, there would be a 
3.32 percent probability of obtaining a PF of 95 percent. If 
the JMF was 5 percent, samples with measured asphalt con-

47.72% 
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FIGURE 4 Example arithmetic deviation criteria limits for 
n = 1. 
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tents of 5.45 to 5.55 percent or 4.55 to 4.45 percent would 
give this PF. 

The use of individual values for control is discouraged and 
the use of means of multiple samples is encouraged to de­
crease the buyer's risk (~). Consistent criteria limits for n = 
4 are shown in Figure 5. These criteria use Equation 1 to 
reduce the standard deviation and, as a result, criteria limits. 
Again, there would be a probability of 3.32 percent of ob­
taining a PF of 95 percent. For a target JMF of 5 percent, 
four samples with mean measured asphalt contents of 5.23 to 
5.28 percent or 4.77 to 4.72 percent would give this PF. 

Process Manipulation 

Criteria limits, as shown in Figures 4 and 5, control central 
tendency, but provide no control of variability caused by pro­
cess manipulation. For hot-mix asphalt, the ability to manip­
ulate the construction process is accentuated by the use of 
nuclear gauges for asphalt content and mat density. These 
gauges provide almost instant results, which allow for process 
manipulation during subsequent sampling to ensure that mean 
values approximating target values are achieved. 

For example, assume the JMF asphalt content is 4 percent 
and that four samples are to be taken from a LOT. Samples 
of 2 percent, 2 percent, 6 percent, and 6 percent will result 
in a mean deviation of 0 percent and a 100 percent PF. This 
will occur despite all individual measurements being well out­
side the 100 percent PF limits. 

Because more than one property is often used to control 
quality and because of the interaction between properties, 
process manipulation may be restricted. Nevertheless, it is a 
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FIGURE 5 Example adthmetic deviation criteria limits for 
n = 4. 
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concern, particularly when only one property, such as mat 
density' is used. In response, some agencies modify control 
procedures to control process modification. 

The simplest method, and one often used, is to use the 
mean of absolute deviations from target values instead of the 
mean of arithmetic deviations. In the example of the four 
asphalt contents considered previously, this would have given 
a mean absolute deviation of 2 percent, which is more repre­
sentative of the quality of the hot-mix asphalt produced. 

Application of criteria that specify absolute instead of arith­
metic deviations from target values often does not take into 
consideration that absolute values are not distributed nor­
mally. The use of statistics based on normal distributions will 
then result in inconsistent criteria for sample sizes greater 
than one (i.e., the use of Table 1 and Equation 1 is no longer 
valid). To address this problem, procedures that permit use 
of absolute deviations from target values were developed. 

Proposed Procedure for Setting Limiting Criteria 

If the absolute value of A (ABSA) represents the random 
variable for the absolute difference between measured asphalt 
content and JMF asphalt content, and if A is normally dis­
tributed with mean 0 and standard deviation 1, then the distri­
bution of ABSA is defined as: 

f(ABSA) = [2/(21T) 112]e-<~212> 0 s ABSA s oo 

This distribution is plotted in Figure 6 with the standard 
normal distribution. It is apparent that the ABSA distribution 
has smaller variance. The mean or first moment of the distri­
bution is found by integrating (ABSA)·f(ABSA) over its range, 
0 to oo. The second moment is found by integrating 
(ABSA)2·f(ABSA) over the same range. The variance is then 
found by subtracting the (mean)2 from the second moment. 

Following these procedures the distribution of ABSA will 
have a mean equal to 

µ' = (2fo)112 (3) 

and with a second moment equal to one, the standard devia-
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FIGURE 6 Distribution of ABS in comparison with 
standard normal distribution. 
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tion is equal to 

cr' = (1 - 2hr)112 (4) 

Normalized histograms for the average absolute deviations 
from the arithmetic mean computed numerically from normal 
distributions of arithmetic deviations are shown in Figure 7 
for n = 1 to 6. For n = 1, the histogram shows the probability 
that Z, the standard normal deviate, lies between 0 and 0.20 
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is 0.16. This histogram was generated by manipulating values 
from the standard normal distribution table. 

The other five histograms were developed by numerically 
estimating the probabilities within given ranges using the nor­
malized histogram for individual values in Figure 7. For 
example, the probability that the average of two samples 
(n = 2) is between 0 and 0.2 is approximately (0.16)2 + 
112[ (0.16)(0.15) + (0.15)(0.16)] = 0.0496. The values 0.16 
and 0.15 are probabilities for individual (n = 1) samples. 
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FIGURE 7 Normalized histograms for absolute deviations from arithmetic mean. 
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As shown in Figure 7, the discrete distribution for n = 1 
follows that of the continuous ABS~ distribution in Figure 6. 
However, the shapes of the other distributions are a function 
of n and, as n increases, they approach normal distributions 
according to the Central Limit Theorem. 

Standard deviations for n > 1 are computed as follows: 

cr' n = cr' /n112 (5) 

To check the shape of the distributions and the equations for 
computing mean and standard deviations, the data set of 517 
asphalt content measurements was analyzed. Histograms of 
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arithmetic and absolute deviations for n = 1, 2, and 4 are 
shown in Figure 8. Comparing these shapes with the nor­
malized histograms in Figure 7 for the same n values reveals 
good agreement. Means and standard deviations for the distri­
butions are compared with values computed using Equations 
1 and 3-5 in Table 2. Excellent agreement is indicated. 

Properties of the distributions of absolute values can be 
used to develop consistent criteria limits when absolute de­
viations from target values are used to control process ma­
nipulation. The normalized histograms in Figure 7 are nu­
merically integrated to determine offsets from the arithmetic 
mean (Z values) that give areas in the tail of the distributions 
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TABLE 2 Comparison of Means and Standard Deviations 

fl. cr lt!i.I cr 

n Distribution Distribution Equations Distribution Equations Distribution Equations 

1 -0.010 0.218 0.176 0.174 0.129 0.132 
2 -0.001 0.155 0.154 0.176 0.174 0.094 0.091 
3 -0.001 0.122 0.126 0.176 0.174 0.075 0.074 
4 -0.001 0.103 0.109 0.176 0.174 0.067 0.065 

TABLE 3 Offsets, Z, from Arithmetic Means 

n a= 4.55% a= 1.24% 

1 2.000 2.500 
2 1.625 1.944 
3 1.463 1.727 
4 .Lill .Lfili5 
5 1.318 1.514 
6 1.214 1.381 

equivalent to the area in both tails of the normal distribution 
with Z values of ±2, 2.5, 2.75, 3, and 3.5. These Z values 
are presented in Table 3 for n = 1-6 and correspond to areas 
in the tails of the distribution of 4.55, 1.24, 0.60, 0.26, and 
0.05 percent. 

It should be noted that the Z values for n = 1 in Table 3 
are the same as for a normal distribution. This is because the 
distribution of the absolute deviations from the mean for n 
= 1, shown in Figure 6, has ordinate values twice the normal 
distribution. Therefore, the area under the absolute devia­
tion distribution curve at a particular offset from the arith­
metic mean will be twice the area corresponding to a normal 
distribution. 

Application of the Proposed Procedure 

To demonstrate application of Table 3, limits for n = 4 were 
developed with the asphalt content data used previously for 
the example in Figure 5. To develop criteria consistent_ with 
those shown in Figure 5, Z values of 1.375, 1.585, and 1.795 
were selected from Table 3. These values were multiplied by 
the standard deviation of the historical data, <T = 0.22 percent, 
to give offsets from the arithmetic mean of 0.30, 0.35, and 
0.39 percent. These offsets, corresponding PFs and areas rep­
resenting probabilities are shown in Figure 9. These limits are 
statistically correct when the absolute deviation from target 
asphalt content is used as the control. The limits are also less 
restrictive than two-sided limits developed for arithmetic de­
viations that are often applied to absolute deviations. For 
example, LOTs with average absolute deviations less than or 
equal to 0.30 percent would have PFs of 100 percent based 
on the limits in Figure 9, whereas, the limit from Figure 5 for 
normal distributions of arithmetic deviations would be 0.22 
percent. 

Table 4 presents a set (n = 1, 2, and 4) of consistent criteria 
limits for both arithmetic and absolute deviations from the 

a= 0.60% a= 0.26% a= 0.05% 

2.750 3.000 3.500 
2.127 2.298 2.615 
1.851 1.982 2.322 
1.713 1...l..9..5 2.134 
1.590 1.720 1.989 
1.480 1.576 1.938 

target JMF asphalt content. Limits for absolute deviation are 
shown in parentheses and are numerically larger than limits 
for arithmetic deviations. 

Producers are interested in the consequences of noncom­
pliance and knowledge of the possibilities of noncompliance. 
Using Figures 4, 5, or 9, simple explanations are readily avail-
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~ PF=95% • PF=80% 

FIGURE 9 Example absolute deviation 
criteria limits for n = 4. 
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TABLE 4 Example Criteria Limits for Arithmetic and Absolute 
Deviations 

Pay Sam'21e Size 
Factor 2 4 

100 o to± 0.44 Oto± 0.31 Oto± 0.22 
(0 to 0.44) (0 to 0.35) · (Oto 0.30) 

95 ± 0.45 to ± 0.55 ± 0.32 to ± 0.38 ± 0.22 to ± 0.28 
(0.45 to 0.55) (0.36 to 0.42) (0.31 to 0.35) 

90 ± 0.56 to ± 0.66 ±0.39 to ± 0.46 ± 0.29 to ± 0.33 
(0.56 to 0.66) (0.43 to 0.50) (0.36 to 0.39) 

80 < -0.66 or> +0.66 < -0.46 or> +0.46 < -0.33 or> +0.33 
(> 0.66) ( > 0.50) (> 0.39) 

Limits for absolute deviations in parentheses. 

able. A producer with product quality comparable to average 
historic quality can expect a pay reduction only 4.55 percent 
of the time. If a LOT is equal to 1 day's production, this 
translates into about 1 production day in 20. Furthermore, 
the producer has some idea of the probability of application 
of a particular PF. For example, a PF of 80 percent can be 
expected 0.26 percent of the time or translated into a day's 
production 1 day in 400. 

CONCLUSION 

A simple, statistically correct procedure for using absolute 
deviations from target values to control hot-mix asphalt con­
struction was developed. Methods currently in use either do 
not use absolute deviations, which can lead to process ma­
nipulation in order to control central tendency, or incorrect 
statistics are used with absolute deviations. Statistics in Table 
3 can be used with historical data to develop statistically sound 
specifications that use absolute deviations from target values 
and control both central tendency and variability. 
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