
16 TRANSPORTATION RESEARCH RECORD 1390 

Welfare Comparison of Fixed- and 
Flexible-Route Bus Systems 

S. K. JASON CHANG AND C. JIN LEE 

Analytic models are used to conduct a comparison under equi
librium demand conditions of welfares for fixed-route conven
tional bus and flexible-route subscription bus systems for provid
ing feeder services. Optimization models are formulated to 
maximize welfare for the two feeder bus systems, subject to a 
break-even constraint. Service zone size, headway, and fare are 
the decision variables in these analyses. For break-even operation 
it is shown that the equilibrium demands for the two systems are 
different due to their specific service attributes and that the opti
mized fare for flexible-route systems is generally higher than for 
fixed-route systems. The differences in welfare and fares between 
the two systems tend to decrease as line-haul distance increases 
and as service area decreases. The flexible-route bus system is 
generally favored in cases with lower demand densities, larger 
service areas, and higher local travel speeds. 

Various public transportation modes have their own operating 
characteristics and thus provide different service qualities. 
Decision makers face the problem of selecting the best service 
option for a given environment. Therefore it is desirable to 
compare the options to determine under what conditions each 
of these systems is preferable. Full cost comparisons of various 
public transit systems have been conducted by many research
ers and in different ways (1-16). The general critique for 
these studies is that they all assume a fixed demand (i.e., 
demand is perfectly inelastic or insensitive to service quality). 
This paper attempts to compare fixed- and flexible-route para
transit systems with elastic demand assuming that the bus 
systems are optimized for the maximum welfare objective, 
subject to a break-even constraint. 

Analytic models have been developed and used in com
paring fixed-route conventional bus and flexible-ro\}te sub
scription bus systems (16). It was recognized that different 
demand levels may be generated for service attributes of dif
ferent systems. A method for comparing the two systems when 
their service levels generate different passenger volumes was 
presented in that study. However, that proposed method was 
still based on the results obtained for the perfectly inelastic 
demand conditions, and fare was not considered in that 
analysis. 

In this paper, an analytic approach is used to compare the 
fixed- and flexible-route bus systems under their break-even 
conditions. The route structures and system characteristics 
used here are substantially similar to those used by Chang 
and Schonfeld (16), except that elastic demand is considered 
in this paper. Thus, optimization models with demand elas
ticity are needed for the comparison. Analytic results for the 
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decision variables (e.g., headway, route spacing, fare) at break
even conditions have been obtained for the fixed-route sys.tern 
(17). Therefore, these results are directly used in the com
parison. For the flexible-route system, however, since analytic 
results are difficult to obtain, an algorithm is developed to 
incorporate the analytic results found for inelastic demand 
conditions and obtain the equilibrium results for the break
even operation. 

BUS SYSTEM CHARACTERISTICS 

Figure 1 shows the service areas and their specific route struc
tures for the two feeder systems. The variables and the typical 
values used in the numerical analyses are defined in Table 1. 
Basically, the bus systems with either fixed routes or flexible 
routes are assumed to connect a rectangular area of length L 
and width W to a major generator (e.g., a transportation 
terminal or an activity center) that is J km away from that 
area. Analytic optimization models for these two feeder sys
tems developed in earlier work (16,17) are applied. These 
models provide optimized solutions in closed form with per
fectly inelastic (fixed) demand, whereas in this paper the two 
bus systems are designed to operate at break-even and un
equal equilibrium demands because of their different service 
attributes. Route structures and operating characteristics for 
the two systems are briefly described as follows. 

Fixed-Route System 

For fixed route systerps, the service area is divided into N 
zones with a route spacing r = WIN, as shown in Figure la. 
A vehicle round-trip consists of (a) a line-haul distance J 
traveled at express speed y V from the major terminal to the 
service area; (b) a delivery route L km long traveled at local 
speed V along the centerline of the zone, stopping for pas
sengers every s km, with an average delay of hours for each 
stop; and (c) reversal of the previous two phases to collect 
passengers and carry them to the terminal. 

Flexible-Route System 

The route structure for the flexible-route subscription service 
is shown in Figure lb. The service area is divided into N equal 
zones, each of which has an area A = L WIN. This service 
zone structure is more flexible than that for fixed-route ser
vice. Basically, feeder buses travel from the terminal a line-
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haul distance J and an average distance L/2 km at express 
speed yV to the center of each zone. They collect passengers 
at their doorsteps through a tour of n stops and length D c at 
local speed V. The values of n and D c are determined using 
Stein's formula (18,19). To return to their starting point, the 
buses retrace an average of L/2 plus J km at y V km/hr. It is 
assumed that buses operate on preset schedules with variable 
routing designed to minimize the tour distance D 

0 
while the 

tours are routed on a rectangular grid street network. Tour 
departure headways are assumed to be equal for all zones in 
the service area. For both service types the average wait time 
equals a constant factor zw times the headway h. As in the 
fixed-route services, vehicle layover time and external costs 
of bus services are assumed to be negligible. 

On the basis of the assumptions that n points are randomly 
and independently dispersed over an area A and that an op
timal traveling salesman tour has been designed to cover these 
n points, the collection distance Dc in an optimized zone may 
be approximated by the following result of Stein (18,19): 

FIGURE 1 (a) Fixed- and (b) flexible-route feeder bus systems. Dc = <!>(nA)112 (1) 

TABLE 1 Variable Definitions 

Symbol 

a 
A 
B 
co 
D 
DC 
Dr. 
~ 
~ 

Cw 
~ 
f 
F 
g 
G 
h 
I 
k 
L 
M 
n 
N 
q 
Q 
r 
R 

u 
v 
v 
w 
w 
x 
y 
y 

Zw 
Zx 
q, 

Definition Baseline value 

ratio of wait time and headway for flexible-route bus 0.5 
service zone area (sq. km)= LW/N' 
bus operating cost ($/veh hr) 40.0 
total operator cost ($/hr) 
equivalent avg. round trip distance for fixed-route bus (km) = 21/Y + 2L/Y 
distance of one collection tour for flexible-route bus (km) 

equivalent line haul distance for flexible-route bus (km)= (L+W)/z+2J/y 
demand elasticity parameter for fare 0.07 
demand elasticity parameter for in-vehicle time 0.35 
demand elasticity parameter for wait time 0. 7 
demand elasticity parameter for access time 0. 7 
fare ($/trip) 
fleet size (vehicles) 
avg. access ~peed (km/hr) 4.0 
consumer surplus ($/hr) 
headway (hrs/veh) 
line haul distance (km) 12.8 
constant in the demand function 
length of service area (km) 6.4 
avg. in-vehicle travel time (hr) 
number of pickup points in one collection tour 
number of zones 
potential demand density (trips/sq. km/hr) 39.0 
demand density function 
route spacing (km) =LIN 
revenue ($/hr) 
bus stop spacing (km) 0.4 
avg. number of passengers per pickup point 1.2 
local service speed (km/hr); fixed-route bus=32, flexible-route bus=28 
value of in-vehicle time ($/passenger hr) 5.0 
value of wait time at bus stop ($/passenger hr) 10.0 
width of service area (km) 4.8 
value of access time ($/passenger hr) 10.0 
express speed/local speed ratio 2.0 
social welfare ($/hr) 
ratio of wait time and headway for fixed-route bus 0.5 
geometric factor for access distance 0.25 

circuit factor in collection tour 1.15 
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In Equation 1, <!> can be considered as the circuit factor and 
has been estimated to be 0.765 for a Euclidean metric (18,19). 
With a simple strategy to formulate a good traveling salesman 
tour in zones of irregular shapes, Daganzo (20) has also shown 
that the value of<!> can be approximated as 0.9 for a Euclidean 
metric and as 1.15 for a grid network. For a grid network, 
this circuit factor, which is 1.15, can be directly derived from 
the value 0.9 for Euclidean metric by an adjusted factor, which 
reflects the geometric structure of the street network (20). 
Larson and Odoni (21) have also discussed applications of 
Equation 1. 

The demand is also assumed to be deterministic and uni
formly distributed over time during each specified period. It 
is also assumed to be uniformly distributed over space within 
each specified service area. The demand density can be as
sumed to be obtained from empirical distributions of demand 
over time, as analyzed in other related works (16,17,22). 
However, in this paper we simply assume a single period with 
an average demand density for the analysis. 

COMPARISON FOR EQUAL DEMAND 

The analytic results for the optimal route structures and ser
vice headways for the two bus systems have been derived by 
Chang and Schonfeld (16) for perfectly inelastic demand con
ditions by minimizing the total cost, which includes user cost 
and operator cost. The closed-form solutions for route spac
ing, headway, and service zone can be found in related works 
(16,23), and are shown later'in Equations 7 to 10 for the 
flexible-route bus system. 

With the analytic average cost functions and the given pa
rameter values for the two systems, we can identify which 
system is preferable in specific circumstances. For example, 
the two cost functions in Figure 2 can be used to determine 
that the flexible-route system is preferable for demand den
sities below 25 trips per square miles per hour (i.e., 9.8 trips 
per square kilometer per hour) for the given demand pattern 
and other assumptions (16). Although a comparison for un
equal demand has been proposed on the basis of analytic 
results for inelastic demand conditions, a model with demand 
elasticity is still needed for comparing route structures, fares, 
and net social benefits of the two systems at their specific 
equilibrium demands that might be generated by their dif
ferent service attributes. 

COMPARISON FOR EQUILIBRIUM DEMAND 

Objective Function 

Various objective functions have been considered appropriate 
for optimizing bus transit systems (24). To compare the two 
bus systems, maximum social welfare, also known as the net 
social benefit, is used as the objective function together with 
a break-even constraint. Denoting Gas the consumer surplus, 
Ras the revenue, and C0 as the operator cost, the break-even 
problem can be stated as follows: 

Maximize Y = G + R - C0 subject to C0 - R ::::; 0 
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Note: 
Cl = average cost for fixed-route bus system;= COI +CUI 

CO I = average operator cost for fixed-route bus system 
CUI = average user cost for fixed-route bus system 

C2 = average cost for flexible-route bus system; = C02 + CU2 
C02 = average operator cost for flexible-route bus system 
CU2 = average user cost for flexible-route bus system 

FIGURE 2 System comparison for inelastic demand 
condition (16). 

A break-even solution would not exist if the demand function 
were always below the average operator cost function. That 
situation would always imply a negative profit. The profita
bility conditions, which have been evaluated by other studies 
(25 ,26), are not discussed in this paper. Therefore, it is as
sumed in the following analysis that the travel demand is 
sufficient to yield a positive profit in some circumstances for 
the bus operation considered. 

The Lagrange multipliers method is used here for con
strained optimization, and the Lagrangian a is forinulated as 

a = G + R - C0 - A( C0 - R) (2) 

where A is the Lagrange multiplier associated with the break
even constraint. Equation 2 can be rewritten as 

a = G - (1 + A)(C0 - R) (2a) 

which means that solving the problem of maximizing social 
welfare ( G + R - C0 ) subject to a break-even constraint ( C0 

= R) is equivalent to solving the problem of maximizing 
consumer surplus ( G) subject to a break-even constraint by 
defining 1 + A as a new Lagrange multiplier. 

Linear Demand Function 

With a linear demand function in which the demand density 
is sensitive to various travel time components and fare, an
alytic results are obtained for fixed-route system under various 



22 

due to their specific service attributes and that the optimized 
fare for flexible-route systems is generally higher than for 
fixed-route systems. Flexible-route bus systems have higher 
average operator cost (i.e., fare) and lower user costs than 
fixed-route systems. 

The optimality condition that the fare, the average wait 
cost, and the average access cost are all identical for the fixed
route system at the equilibrium break-even condition does 
not apply to the flexible-route system, in which the fare (i.e., 
the average operator cost per trip) is higher than the average 
wait cost. Sensitivity analyses indicate that the relative ad
vantage of the flexible-route bus system generally increases 
with lower demand densities, larger service areas, and higher 
local travel speeds. 

In this analysis the two systems are assumed to be mutually 
exclusive for providing feeder service. Further studies may 
analyze a system in which both the fixed- and the flexible
route bus services are available and where competition be
tween the two services is allowable. The integration of such 
systems during various time periods and for different service 
areas based on their specific characteristics is also worth 
exploring. 
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able assumed values from Table 1. The flexible-route results 
are obtained by the solution procedures developed above, 
whereas the fixed-route results are obtained directly by the 
closed-form solutions given in Table 2. In Figure 3 the two 
welfare functions intersect at a lone-haul distance of 7 km, 
where the welfare is $4,375/hr. Hence, for the given condition 
implied by the assumed parameter values, a flexible-route bus 
system is preferable for line-haul distances below 7 km. 

This threshold analysis can be designed for other system 
parameters, such as value of time, travel speed, and service 
area. The effect of parameter values on the results of thresh
old analysis is also worth evaluating. In Figure 4, for example, 
the effects of potential demand density on the threshold values 
are shown. Figure 4 shows that potential demand density has 
little influence on threshold values. The threshold line-haul 
distances are 7, 5, and 4 km for the potential demand densities 
39, 98, and 195 trips/sq. km/hr, respectively. Figure 4 also 
shows that the welfare functions of the two systems become 
very similar when the potential demand densities decrease. 

The threshold analysis has also been applied to determine 
which system is preferable for various service areas and travel 
speeds. Figure 5 shows two welfare functions over a range of 
service areas. These two functions intersect at a service area 
of 52.5 km2

, where the welfare is about $6,100/hr. Therefore, 
given the assumptions implied by the specific parameter val
ues, Figure 5 indicates that the flexible-route bus system is 
preferable for service areas larger than 52.5 km2 • Since the 
two welfare functions intersect at such sharp angles, the 
threshold values of service area are quite sensitive to system 
parameters. It can also been observed from Figure 4 that the 
threshold line-haul distances will become more sensitive to 
system parameters for lower potential demand densities, since 
the intersection angles tend to sharpen as the potential de
mand densities become smaller. 

Figure 6 shows two welfare functions over a range of local 
speeds, the bus speed V within the service area. The two 
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functions intersect at a local speed of 33 kph, where the wel
fare is $4,100/hr. Therefore, given the parameter values and 
the implied assumptions, we can say that the flexible-route 
bus systems are preferable for local speeds above 33 kph. 

CONCLUSION 

Welfare relations and results for fixed-route conventional bus 
and flexible-route subscription bus systems are compared in 
this paper. Optimization models are formulated for the two 
feeder bus systems for maximum welfare objective, subject 
to break-even constraint. The models presented here may be 
applied in selecting fixed-route or flexible-route bus systems 
for providing feeder services. 

It is shown at the break-even operation that the equilibrium 
demands and welfare values for the two systems are different 
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where c: is the optimized operator cost per trip for inelastic 
demand condition and n is the number of stops in one col
lection tour, approximated as 

(10) 

Step 2. Recalculate demand density Q; with the demand 
function: 

Q; = F Q(h;, M;, f;, ·) (11) 
= q(k - ewah; - epf; - ev M;) 

Step 3. Set i = i + 1 and recalculate the headway, in
vehicle.travel time, fare, and demand density using Equations 
7 to 11: 

M; = FM(Qi-1• ·) 

f; = Ft<Q;-1, ·) 

Q; = F Q(h;, M;, f;, ·) 

Step 4. If a stopping rule is satisfied (e.g., Q; - Q;_ 1 < 
E, where E is a tolerable deviation) STOP, ELSE go to 
Step 3. 

With this solution procedure, the optimal fare f*, service 
headway h *, and the equilibrium in-vehicle travel time M* 
for the flexible-route bus system may be obtained. In addition, 
the equilibrium results of demand Q*, operator cost c:, rev
enue R*, consumer surplus G*, and social welfare Y* may 
be obtained. Comparisons of costs and social welfares for the 
fixed- and flexible-route bus systems can be conducted 
accordingly. 

NUMERICAL RESULTS 

The numerical results for the two bus systems at equilibrium 
break-even conditions are presented in Table 3 on the basis 
of the parameter values in Table 1. The optimized fares are 
$0.81 per trip and $1.67 per trip for the fixed- and flexible
route bus systems, respectively. Since the optimized fares for 
the two systems are obtained at the break-even condition, 
they are identical to their average operator costs. The two 
systems differ in their equilibrium demands and social welfare 
because of their different service attributes. Both the equi
librium demand and the welfare are higher for the flexible
route system than for the fixed-route system. Table 3 shows 
that the equilibrium demands are 854 and 867 trips per hour 
for fixed- and flexible-route systems, respectively, with a po
tential demand of 1,200 trips per hour. The respective welfare 
values are $4,458/hr and $4,470/hr. 

The flexible-route bus system has the higher operator cost 
(i.e., fare) and the lower user cost, which includes wait cost, 
access cost, and in-vehicle travel cost. At the equilibrium 
break-even condition the fare, the average wait cost, and the 
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TABLE 3 Numerical Results for Equilibrium Break-Even 
Conditions 

Systems Fixed Flexible 
Route Route 

Route Spacing (km) 1.30 
Zone Area (sq. km) 4.27 
Headway (minutes) 9.6 6.6 
Fare ($/trip} 0.81 1.67 
Fleet Size (vehicles) 17 44 

Operator Cost ($/trip) 0.81 1.67 
User Cost ($/trip) 3.56 2.42 
Maximum Load (passengers) 37 14 
Social Welfare ($/hr} 4,458 4,470 
Equilibrium Demand (trips/hr) 854 867 
Potential Demand (trips/hr) 1,200 1,200 

average access cost are all identical for the fixed-route system, 
but not for the flexible-route system, in which the fare is 
higher than the average wait cost. These optimality conditions 
are verified by the numerical results given in Table 3. 

The maximum passenger load of 14 for the flexible-route 
system is significantly different from that of 37 for the fixed-, 
route system. This is due to specific features of flexible-route 
services, in which passengers pickups in one collection tour 
should be limited to a certain level. Otherwise, the advantage 
of this door-to-door service would be reduced by long in
vehicle travel time cost. This analysis suggests that for the 
flexible-route system it is preferable to use small vehicles to 
provide door-to-door service. Table 3 also shows that the fleet 
sizes for the fixed- and flexible-route systems are 17 and 44 
vehicles, respectively. 

The optimized welfares for the fixed- and flexible-route bus 
systems may be used to determine which system is preferable 
under given circumstances. Figure 3 shows a welfare com
parison between the two systems. Each has been optimized 
over a range of line-haul distances for maximum welfare ob
jective subject to the break-even constraint using the reason-
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assumptions about the bus route structures (17,22,27). This 
linear demand function is formulated as follows: 

where 

(3) 

q = potential demand density of the bus ser
vice; 

T = wait time, which may be assumed to be 
a constant factor zw (usually zw = 0.5 
for uniform passenger arrivals at bus 
stops) multiplied by the headway h; 

X = average access time, which is assumed 
for the fixed-route system to be zw(r + 
s)!g, and as defined in Table 1, r is the 
route spacing, sis the stop spacing, g is 
the walking speed, and zx is a geometric 
access distance factor (usually zx = 0.25 
for grid street networks with negligible 
street spacing) (the average access time 
is assumed to be zero for the flexible 
route system, since it provides door-to
door services); 

M = average in-vehicle travel time; 
f = fare, which is uniform for all passengers; 

and 
ew,ex,ev, and eP = elasticity factors. 

The values of the elasticity factors e11,, ex, ev, and eP are not 
the actual elasticities in such a linear function. The ratios 
between the elasticity factors for wait time and fare (ejeP,), 
for access time and fare (e)ep,), and for in-vehicle time and 
fare (e)ep) determine the implied values of wait time, access 
time, and in-vehicle time, respectively. 

The analytic results for the optimal route spacing, service 
headway, fare, consumer surplus, operator cost, arid social 
welfare for the fixed-route systems have been derived by Chang 
(17) and are summarized in Table 2. At equilibrium break
even condition the optimized fare (!*), the average wait cost 
(wzwh*), and the optimized access cost (xzxr*/g) are all iden
tical for the fixed-route system (17, 23). 

For the flexible-route system, the objective function can be 
stated as follows: 

Maximize Y = G + R - C0 subject to R - C0 :s 0 

where G, R, and C0 are the consumer surplus, the revenue, 
and the operator cost, respectively, and are defined as follows: 

LWq 
G = -

2
- (k - e.,.zwh - epf - evM)2 

eP 

LWB 
Co= VAh (DL 

+ <!>A\/q(k - ewah - eJ - evM)hlu) 

(4) 

(5) 

(6) 

where k is a constant representing a potential demand com
ponent insensitive to optimized variables. Obviously, the 

19 

TABLE 2 Analytic Results for Break-Even Fixed-Route Bus 
Systems 

Items 

Route Spacing (r*) 

Service Headway (h*) 

Fare (f•) 

Revenue (R*) =Operator Cost (C
0 
*) 

Consumer Surplus (G*) 

Equilibrium Demand (Q*) 

Analytic Results 

2 
LWq (k _ 3ziteitr*) 
2eP g 

problem is difficult to solve analytically due to the complexity 
of Equation 6. A solution algorithm is therefore developed 
to obtain the equilibrium results. Analytic results for the ine
lastic demand condition (as shown later in Equations 7 to 10) 
are used in this algorithm. The solution procedures are stated 
as follows. 

Algorithm 

Initialization: Set a demand function Q; = FQ(q, h;, M;, f;), 
where the demand density Q; is a function of the potential 
demand q, headway h;, fare f;, and in-vehicle travel time M;. 
The linear demand function shown in Equation 3, for ex
ample, is the demand function used in this analysis, although 
other nonlinear demand functions may also be considered. 

Step 1. Set i = 0 and Q; = q, use the following analytic . 
results for inelastic demand condition to obtain h; and M;. 

( )

2/3 
<!>(2B + vun) 
4wa Vu 112Q/12 

(7) 

(8) 

It is implied that all potential trips are captive and thus the 
bus system is designed on the basis of its total potential de
mand Q; = q. 

Since a break-even constraint is considered, the fare f; can 
be obtained using 

_ BDL + B 4wa<f>2 

( )

1/3 

- Vun Q;V2u(2B + vun) 
(9) 


