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Smoothing Algorithms for Incident 
Detection 

ATHANASIOS P. CHASSIAKOS AND YORGOS J. STEPHANEDES 

The majority of automatic incident detection algorithms aim to 
identify traffic incident patterns but do not adequately investigate 
possible similarities in patterns observed under incident-free con­
ditions. A classification of major traffic disturbances on freeways 
is presented. On the basis of this classification, an incident de­
tection logic is developed with the traffic features that result in 
the best distinction between an incident and other disturbances. 
The new logic, DELOS (Detection Logic with Smoothing), em­
ploys smoothed detector occupancy measurements to signal an 
incident when significant temporal changes of the smoothed oc­
cupancy occur. Three types of smoothers-average, statistical 
median, and exponential-are considered, leading to corre­
sponding algorithms. The structure of the proposed algorithms is 
presented and compared with previous algorithms. Comparative 
evaluation of test results with rush-hour traffic and incident data 
from I-35W in Minneapolis reveal the improved performance of 
the proposed method." 

Freeway incident detection has traditionally been formulated 
as a two-hypothesis problem, incident versus nonincident traffic 
(1-3) or incident versus recurrent congestion ( 4). Few re­
searchers have attempted to distinguish incidents from other 
traffic phenomena that may have a noticeable effect on traffic 
[e.g., traffic pulses (5) and compression waves (6)]; further, 
no si~gle study has considered all major disturbances. These 
disturbances include random traffic fluctuations that appear 
frequently and account for a significant portion of false in­
cident alarms. 

An incident detection scheme is developed that features 
simple-occupancy tests and aims to distinguish incidents from 
other disturbances. The detection scheme is part ofIDENTIFY 
(Incident Detection Enhancements for Traffic In Freeways), a 
project evolving in two major directions, one employing filtering 
and a second focusing on neural network applications. 

First presented in another article by the authors (7), the 
proposed logic, DELOS (Detection Logic with Smoothing), 
uses filters that smooth the raw data over sufficiently large 
time windows to eliminate short-duration traffic disturbances, 
such as random fluctuations, traffic pulses, and compression 
waves. Further, it employs comparisons of the smoothed oc­
cupancy over time to distinguish between slowly emerging 
recurrent congestion at bottlenecks and fast-evolving incidents. 

The objectives of this work are to (a) introduce a multi­
event detection formulation and assess the capabilities of the 
original algorithm in the multi-event traffic environment and 
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(b) perform sensitivity analysis with several filters that are 
widely used for smoothing time series data. For smoothing 

. detector occupancy measurements, three types of smoothers 
are considered-moving average, statistical median, and 
exponential. 

The resulting algorithms have been tested with data from 
I-35W in Minneapolis and compared with previous algo­
rithms tested with the same data. The wide diversity of the 
test site in terms of geometric configuration, detector spacing, 
and location with respect to ramps and the diversity of the 
incident set with regard to incident type, severity, and location 
reveals the capability of the proposed detection structure to 
perform in a wide range of conditions. However, algorithm 
development and testing have been confined to rush-hour 
operations. 

Test results indicate that, during the peak period, at ap­
proximately 60 percent detection rate, DELOS algorithms 
produce one false alarm per hour in the 8.8-km (5.5-mi) test 
section which includes 14 detector stations. This represents 
a significant false alarm rate reduction in comparison with 
several previous algorithms. 

BACKGROUND 

Despite substantial research, algorithm implementation has 
been hampered by limited performance reliability, substantial 
implementation needs, and strong data requirements. To in­
vestigate the application issue, the authors conducted a survey 
of transportation departments in the United States and Can­
ada on incident detection strategies currently used in traffic 
management systems (8,9). The survey results indicate that 
several departments have implemented an incident detection 
plan. Traffic information is typically collected from loop de­
tectors and includes occupancy and volume averaged at 20 to 
60 sec intervals, usually across all lanes. Detector spacing 
along the freeway is .5 mi on average. Certain systems (e.g., 
Ontario's Queen Elizabeth Way) also use paired detectors to 
collect speed data. In a demonstration project in Connecticut, 
overhead mounted radar detectors will return speed and vol­
ume data for incident detection. In Virginia, a switch from 
loop to video detectors is under way. 

Most systems use a California algorithm ( 6) for incident 
detection. The original California algorithm is used in Min­
nesota, Ontario, and Virginia. The modified California Al­
gorithm 2, which additionally requires persistence of the in­
cident alarm for two consecutive periods, is used in Los Angeles 
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and Seattle. Algorithm 7 is used in tunnel locations in Seattle. 
Different algorithms are often used, depending on traffic 
conditions. 

In other cities, locally developed algorithms have been im­
plemented. In Connecticut, a simple algorithm indicates an 
incident when speed drops below a threshold. In Illinois, a 
Bayesian approach (10) used the relative spatial occupancy 
difference as detection parameter. The approach focused on 
using the probability distributions of the detection parameter 
under incident and incident-free conditions for determining 
an optimal detection threshold. Because of its excessive com­
puter time requirements, the Bayesian algorithm was replaced 
by a simpler one that considers the occupancy difference be­
tween the upstream and downstream station; an incident is 
signaled if this difference continuously exceeds a threshold 
for 5 min. Although the 5-min persistence test results in long 
response times, this is preferable to responding to frequent 
false alarms. 

Thresholds for operational algorithms have been typically 
calibrated by trial and error (in Los Angeles and Seattle), 
empirical experimentation on historical data (in Illinois), and 
performance curves obtained from multiple runs of the re­
spective algorithm on the data with incrementally changing 
thresholds (in Ontario). In Los Angeles, algorithms are fre­
quently recalibrated, especially at locations that produce fre­
quent incident alarms. Algorithm output consists of either 
textual description (as in Illinois, Virginia, and Seattle) or 
color computer graphic maps (as in Los Angeles, Minnesota, 
and Ontario). In the latter case, several congestion levels are 
indicated with different colors, and incidents are separately 
indicated (e.g., with flashing red). 

Most systems have not quantitatively assessed the opera­
tional performance of algorithms in terms of detection and 
false alarm rates. In Ontario, off-line evaluation of the Cal­
ifornia algorithm produced a large number of false alarms. 
Ontario is consequently switching to a promising Canadian 
algorithm ( 4); this algorithm, in an off-line evaluation, achieved 
false alarm rates of 1 per station every 64 hr at 75 percent 
detection. However, In Illinois, where it was also evaluated 
off-line as a potential substitute of current methods, it resulted 
in good detection after a difficult calibration period, but the 
false alarm rate was not satisfactory. 

To date, high false alarm rates have prevented implemen­
tation of fully automated incident detection. Instead, algo­
rithm alarms typically trigger the operator's attention; the 
operator verifies the validity of the alarm and decides on the 
appropriate incident response. In certain cases, operators as­
sume that frequent alarms are false, and they tend to ignore 
them (as in Illinois). In Los Angeles, incident response is 
initiated only after an incident has been reported by motorists 
or a highway patrol officer. Elsewhere, incidents are identified 
via closed-circuit television cameras (Minnesota) or review of 
the raw data by the operator (Illinois). Incident detection, 
especially in the latter case, heavily relies on the expertise of 
the operator. 

Detector failure is an additional concern. Although mal­
functioning detector rates have not been systematically as­
sessed (in Los Angeles four to five malfunctioning detectors 
are identified and repaired weekly), they lead to significantly 
deteriorated algorithm performance. In certain systems (e.g., 
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Seattle) specific types of detector failure are preempted by 
measurement validity checks. 

TRAFFIC DISTURBANCE PATTERN 
CLASSIFICATION 

Effective incident detection requires consideration of all ma­
jor sources of false alarms. In particular, traffic flow presents 
a number of inhomogeneities that are difficult to distinguish 
from those driven by incidents. Events producing traffic dis­
turbances include incidents, bottlenecks, traffic pulses, 
compression waves, and random traffic fluctuations. Sensor 
failure, also treated as an event, is only related to the measure­
ment component of detection systems. The major character­
istics of each event are discussed in the following sections. 

Incidents 

Incidents are unexpected events that block part of the road­
way and reduce capacity. Incidents create two traffic regimes, 
congested flow upstream (high occupancies) and uncongested 
downstream (low occupancies), as indicated in Figure 1 for a 
typical accident blocking moving lanes. Two shock waves are 
generated and propagate upstream and downstream, each 
accompanying its respective regime. The congested-region 
boundary propagates upstream at approximately 16 km/hr (10 
mph), and its value depends on incident characteristics, free­
way geometry, and traffic level. Downstream of the incident, 
the cleared region boundary propagates downstream at a speed 
that may reach 80 km/hr (50 mph) (6). 

The evolution and propagation of each event is governed 
b.y several factors, the most important of which are incident 
type, number of lanes closed, traffic conditions before inci­
dent, and incident location relative to entrance or exit ramps, 
lane drops or additions, sharp turns, grade, and sensor sta­
tions. Other, less important factors, which are harder to model, 
include pavement condition, traffic composition, and driver 
characteristics. 

Incident patterns vary depending on the nature of the in­
cident and prevailing traffic conditions (6). The most distinc­
tive pattern occurs when the reduced capacity from incident 
blockage falls below oncoming traffic volume so that a queue 
develops upstream. This pattern, which is clearest when traffic 
is flowing freely before the incident, is typical when one or 
more moving lanes are blocked following severe accidents 
(Figure 1). The second pattern type occurs when the pre­
vailing traffic condition is freely moving but the impact of the 
incident is not severe. This may result, for example, from lane 
blockage that still yields reduced capacity higher than the 
volume of incoming traffic. This situation may lead to missed 
detection, especially if the incident is not located near a de­
tector. The third type characterizes incidents that do not cre­
ate considerable flow discontinuity, as when a car stalls on 
the shoulder. These incidents usually do not create observable 
traffic shock waves and have limited or no noticeable impact 
on traffic operations. The fourth type of incident occurs in 
heavy traffic when a freeway segment is already congested. 
The incident generally leads to clearance downstream but a 
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FIGURE 1 Incident pattern (I-35W North, 11/21/89). 

distinguishable traffic pattern develops only after several min­
utes, except in a severe blockage. This type of incident is 
often observed in secondary accidents at the congested region 
upstream of an incident in progress. 

Bottlenecks 

Bottlenecks are formed where the freeway cross-section changes 
(e.g., in lane drop or addition). While incidents have only 
temporary effects on occupancies, bottlenecks generally result 
in longer lasting spatial density or occupancy discrepancies. 
A typical bottleneck is shown in Figure 2. The figure presents 
occupancy measurements at three consecutive stations of a 
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freeway segment involving a lane drop between the first two 
and a lane addition between the second and third stations. 
Under normal conditions, the three stations operate at dif­
ferent average occupancy levels. This difference is more pro­
nounced between stations 61S and 62S. 

Traffic Pulses 

Traffic pulses are created by platoons of cars moving down­
stream. Such disturbances may be caused by a large entrance­
ramp volume caused by the exodus from a sporting event, for 
example. The observed pattern is an increase in occupancy 
in the upstream station followed by a similar increase in the 

FIGURE 2 Occupancy measurements at bottleneck. 
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downstream station. Because of ramp metering during the test­
ing period, traffic pulses are rarely observed in this data set. 

Compression Waves 

Compression waves occur in heavy, congested traffic, usually 
following a small disturbance and are associated with severe 
slow-down, speed-up vehicle speed cycles. Waves are typically 
manifested by a sudden, large increase in occupancy that 
propagates through the traffic stream in a direction counter 
to traffic flow (Figure 3). The data reveal that compression 
waves result in significantly high station occupancies of the 
same magnitude as those of incident patterns. 

Random Traffic Fluctuations 

Random traffic fluctuations are often observed in the traffic 
stream as short-duration peaks of traffic occupancy. These 
fluctuations, although usually not high in magnitude, m~y 
form an incident pattern or obscure real incident patterns. 

Detection System Failures 

Detection system failures may be observed in several forms, 
but a particular form has resulted in a specific pattern in the 
data observations discussed here. This pattern is observed 
with isolated high-magnitude impulses in the 30-sec volume/ 
occupancy measurements, appearing simultaneously in sev­
eral stations. These values are considered outliers or impulsive 
data noise. 
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PROPOSED ALGORITHM DESCRIPTION 

The authors' review of incident detection strategies that are 
currently used indicates that algorithms that are intuitively 
appealing, computationally simple, and based on widely avail­
able aggregate (20 to 60 sec) traffic data are most likely to 
be implemented in freeway control systems. Within this spec­
ification, the proposed logic aims to develop simple occupancy 
tests to distinguish incidents from other traffic disturbances. 
Two major characteristics can be used for this purpose. First, 
incidents result in rapid temporal changes in traffic condi­
tions. Second, incident duration is longer than that of other 
disturbances. 

The first characteristic distinguishes incident congestion from 
bottleneck (recurrent) congestion, which evolves more slowly. 
This is because recurrent congestion results from demand 
increasing over capacity at bottleneck locations. The demand 
increase generally does not occur as fast at incident locations. 
The duration characteristic can differentiate incidents from 
short-duration disturbances. The basic concepts behind the 
algorithm development (7) are summarized next. The major 
focus of the current effort is to investigate the capabilities of 
the method to avoid signaling false alarms across each type 
of traffic disturbance and to perform sensitivity analysis across 
different types of smoothing filters. 

DELOS algorithms involve smoothing occupancy measure­
ments to distinguish short-duration traffic inhomogeneities 
from incidents. When an inhomogeneity is present, smoothing 
eliminates or diminishes its impact; on the other hand, 
smoothing does not substantially modify the incident pattern 
if its duration is greater than the number of terms in the 
smoother. Although smoothing may conceal the patterns of 
some nonsevere incidents, the large reduction in false alarms 
compensates for a few possibly missed incidents. Test results 
indicate a significant reduction in false alarms as compared 
with similar algorithms [e.g., Standard Deviation (1), Double 
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FIGURE 3 Compression wave (l-35W South, 11/16/89). 
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Exponential (2), and California (6)], which attempt raw data 
manipulations. 

Further, in a manner similar to but more effective than 
previous algorithms, the proposed structure attempts to dis­
tinguish recurrent from incident congestion on the basis of 
slow or fast evolution of congestion, respectively. In partic­
ular, the distinguishing logic is based on temporal comparison 
of the detection variable, spatial occupancy difference be­
tween adjacent stations. For comparison, the incident test of 
the California algorithm considers occupancy reduction at the 
downstream station; however, such reduction is not always 
observed during incidents. 

Two smoothed values are considered for the detection vari­
able: one represents current traffic conditions, and the other 
represents past conditions. For an incident occurring at time 
t, define OCC;(t + k), smoothed occupancy at station i from 
k occupancy values after t, and OCC;(t), smoothed occupancy 
at station i from n occupancy values before t, where k and n 
represent the window size to smooth the data for the cur­
rent and past periods, respectively. The incident is likely to 
create congestion in upstream station i and reduce flow in 
downstream station i + 1, le~ding to a high value of spa­
tial occupancy difference, 6.0CC(t + k), as described in 
Equation 1. 

LlOCC(t + k) = OCC;(t + k) - OCC;+ 1(t + k) (1) 

Further, to distinguish from bottleneck congestion, the spa­
tial occupancy difference 6.0CC(t + k) for the current period 
is compared with the corresponding value 6.0CC(t) from the 
past period (see Equation 2). 

6.0CC(t) = OCC;(t) - OCC;+ 1(t) (2) 

Both tests, congestion and incident, are normalized by the 
highest value of the two occupancies, upstream and down­
stream, as defined in Equation 3. 

maxOCC(t) = max[OCC;(t), OCC;+ 1(t)] (3) 

This reflects changes with respect to existing conditions before 
an incident. The normalization increases the potential for 
algorithm transferability across locations. In summary, the 
proposed detection logic involves two tests, congestion (Equa­
tion 4) and incident (Equation 5), where Tc and T1 are the 
respective thresholds. 

6.0CC(t + k) 
-----'---~ 2 T 

maxOCC(t) c 

6.0CC(t + k) - 6.0CC(t) 
2 

Ti 
maxOCC(t) 

(4) 

(5) 

The major concerns in selecting a smoothing technique are 
related to its effectiveness in eliminating undesirable sources 
of false alarms, the extent to which smoothing distorts the 
information content of incident patterns, and the detection 
delay imposed from the need to obtain a number of measure­
ments while an incident is in progress. 

Moving average, a linear transformation, is a simple but effec­
tive smoothing technique. The occupancy measurement at time 
t and detector station i, o;(t), is smoothed via Equation 6. 
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OCC;(t) = - L o;(t - /) 
L 1=0 ~ 

(6) 

Moving averages of a different order, L = k and L = n, 
corresponding to smoothing factors Ilk and lln, are used for 
the current and past periods, respectively. Window sizes k 
and n are selected to optimize algorithm performance. An 
additional length constraint is imposed on k because long 
smoothing windows (e.g., longer than 10 samples) would re­
sult in excessive delays in algorithm response. This linear 
transformation, although effective in removing traffic fluc­
tuations-, distorts information-bearing edges (i.e., step-like 
changes caused by incidents), possibly obscuring their infor­
mation content. An alternative, nonlinear, transformation 
employing the statistical median of the data window (see 
Equation 7) has been considered to address the issue. 

OCC;(t) =median [o;(t), o;(t - 1), ... , o;(t - L)] (7) 

Exponential smoothing is a third smoothing technique, ex­
tensively used in determining data trends. The general form 
of the smoother is shown in Equation 8, where ex is the 
smoothing factor. 

OCC;(t) = ex · o;(t) + (1 - ex) · OCC;(t - 1) (8) 

A number of algorithms have been developed along the 
three major types of smoothing. The algorithms are coded as 
DELOS x.y (z,w), where x and y represent the smoother type 
used for the past and current periods, respectively, with the 
values of 1 for average, 2 for median, and 3 for exponential 
smoother. Further, z and w represent the past and current 
period window sizes to smooth the data in the average or 
median smoother. In exponential smoothers, z represents the 
smoothing factor , and w is the time lag k between the end 
of the past and the end of the current period. In combina­
tions of exponential smoothing for the past data with other 
types of smoothing for the current, the window size for the 
current data period represents the above time lag. For ex­
ample, DELOS 3.1 (0.05, 6) smooths past data exponentially 
with ex = 0.05 and current data with an average 6-sample 
window. 

DATA DESCRIPTION 

The proposed algorithms and several algorithms from the 
literature were tested with actual data. In particular, 140 hr 
of afternoon peak-period (4:00-6:00 p.m.) traffic data from 
a 8.8-km (5.5-mi.) segment of southbound I-35W in Minne­
apolis (Figure 4) were collected through the Minnesota De­
partment of Transportation Traffic Management Center. The 
freeway segment has 3 lanes along most of its length. It in­
cludes 2 major bottlenecks. The first is in the merging area 
between I-35W southbound and Highway 62 westbound, where 
3-lane I-35W drops a lane for a short section. The typical 
occupancy pattern in these 3 stations is presented in Figure 
2. The second bottleneck location is at Minnehaha Creek 
bridge, north of Diamond Lake Road, where a freeway seg­
ment with an uphill grade is followed by elimination of the 
shoulder at the bridge. The test segment includes four en­
trance and five exit ramps. 
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FIGURE 4 Study site in Minneapolis (l-35W). 

The traffic data consist of 30-sec volume and occup~ncy 
measurements from loop detectors, forming 14 stations 
imbedded along the road, 0.5 to 1.1 km (0.3 to 0. 7 mi) apart. 
The 30-sec data are averaged across lanes, producing one 
measurement for each station at every time interval. This 
traffic data set is a typical one, collected routinely in most 
U.S. cities. Algorithm development has been aligned with 
typical longitudinal data availability and, therefore, the al­
gorithm can be implemented across a wide range of systems, 
including those that do not place detectors in all lanes. Al­
gorithms that depend on additional information (e.g., mea­
surements for each lane, speed, and shorter time measure­
ments), although potentially effective, cannot be implemented 
across all systems. 

During the testing period, 27 incidents were reported by 
the traffic operator. Detection was accomplished mostly through 
closed-circuit television cameras along the freeway segment. 
Of all incidents, 15 were accidents, 3 occurred in the moving 
lanes, and 12 were moved to the shoulder. According to the 
operator log, 6 accidents had severe impact on traffic oper­
ations, 4 happened in an already congested region, 3 had 
limited congestion impact on traffic, and the rest were not 
classified. Besides the accidents, 12 vehicle stalls were ob­
served. All occurred on the shoulder, 1 had a severe impact 
on traffic, 1 occurred in an already congested region, 7 pro­
duced limited congestion, and 3 were not classified. 

SENSITIVITY ANALYSIS AND COMPARISON OF 
ALGORITHM PERFORMANCE 

Results from tests evaluating the effectiveness of the new 
algorithm include the main algorithm performance measures, 
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namely detection rate (ratio of incidents detected out of all 
incidents), false alarm rate (ratio of false alarms out of all 
decisions, incident or nonincident, made by the system), and 
mean time to detect (average time duration needed for de­
tection). (Detection time is measured from the time incidents 
reported in the operator's log instead of from actual occur­
rence time). 

Algorithm performance is assessed via operating charac­
teristic curves, an evaluation method whose effectiveness lies 
on its independence from algorithm structure. Operating 
characteristic curves depict detection and false alarm rates 
accomplished by an algorithm across threshold values. To 
construct these curves, the threshold parameters are al­
lowed to vary over a wide range of values. Every threshold 
set (pair) produces a performance point (P 0 , PF) on the 
curve. 

Three types of smoothing have been considered, linear 
(average), median, and exponential. Past and current occu­
pancy measurements are smoothed according to one of these 
types and are included in the corresponding version of the 
algorithm. For each type of smoothing, several alternative 
structures were tested by varying the number of terms in the 
smoothing windows or the value of the smoothing parameter, 
a, in the exponential version. In particular, window sizes with 
5 to 20 terms for the past and 3 to 10 for the current period, 
and exponential smoothing factors of 0.03 to 0.10 were con­
sidered. For each algorithm type, only the structures whose 
parameters result in optimum performance in terms of de­
tection and false alarms are presented. The characteristics of 
the selected algorithms are presented in Table 1. Threshold 
sets and algorithm performance measures are presented in 
Table 2. 

To assess the performance improvement from using smoothed 
data instead of raw data, the performance of DELOS was 
compared with that of an older algorithm featuring a structure 
similar to DELOS. In particular, the Double Exponential 
algorithm is based on smoothing the surveillance data (e.g., 
the spatial occupancy difference between adjacent stations) 
according to Equations 9 and 10. Functions S1(1) and S2(t) 
provide a forecast of spatial occupancy difference, and an 
incident is signaled when the cumulative error between fore­
cast and current measurement exceeds a threshold. To obtain 
comparable performance measures, the algorithm was tested 
on the same data set as the new algorithms. 

TABLE 1 Characteristics of Smoothing Algorithms 

Algorithm Past period smoother Present period smoother 

DELOS 1.1 (10,8) Average, Average, 

length IO. length 8. 

DELOS 2.2 (9,9) Median, Median, 

length 9. length 9. 

DELOS 3.3 (0.05,6) Exponential, Exponential, 

a=0.05. a=0.05, 

time lag 6. 

DELOS 3.1 (0.05,6) Exponential, Average, 

a=0.05. length 6. 
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TABLE 2 Thresholds and Performance Results 

False Hourly Avera~e 
Detection Alarm Number Detection 

Rate Rate of Fals~ Time 
Algorithm Tc T1 (%) (%) Alarms (min) 

DELOSl.1 0.30 0.30 85 0.431 6.7 0.8 

(10, 8) 0.40 0.40 74 0.224 3.5 1.1 

0.55 0.55 63 0.074 1.2 2.1 

0.60 0.60 48 0.053 0.8 1.6 

0.70 0.70 41 0.033 0.5 2.1 

0.80 0.80 33 0.016 0.2 1.3 

DELOS2.2 0.30 0.40 78 0.361 5.6 1.4 

(9, 9) 0.40 0.50 74 0.223 3.5 1.8 

0.40 0.60 59 0.137 2.1 1.8 

0.50 0.70 48 0.080 1.2 1.8 

0.60 0.80 41 0.039 0.6 1.6 

0.80 0.80 30 0.031 0.5 0.7 

DELOS3.3 0.07 O.Q7 85 0.411 6.4 1.0 

(0.05, 6) 0.15 0.10 78 0.176 2.7 I.I 

0.17 0.12 67 0.113 1.8 1.4 

0.16 0.16 59 0.059 0.9 1.3 

0.15 0.20 48 0.030 0.5 1.5 

0.23 0.23 33 0.014 0.2 3.2 

DELOS3.1 0.40 0.30 85 0.476 7.4 0.6 

(0.05, 6) 0.50 0.40 78 0.257 4.0 1.1 

0.60 0.40 70 0.173 2.7 1.1 

0.60 0.60 63 0.084 1.3 I.I 

0.70 0.70 48 0.045 0.7 1.2 

0.80 0.80 41 0.029 0.5 1.9 

1.00 0.70 30 0.022 0.3 2.1 

' test site length is 8.8 km and includes 14 detector stations 

S1(t) a [ OCC(i,t) - OCC(i + l,t)] 

+ ( 1 - a) S1(t - 1) (9) 

(10) 

The two exponential DELOS algorithms are compared with 
the Double Exponential algorithm in Figure 5. The compar­
ison indicates that smoothing current measurements leads to 
substantial reduction in false alarms. 

The evaluation results for the four alternative smoothing 
types are shown in Figure 6. Although the performances of 
average and exponential smoothers are comparable, they are 
superior to the median algorithm. This may be attributed to 
the fact that median smoothers tend to better preserve data 
fluctuations, and this produces a higher number of false alarms. 

To better appreciate the performance of the proposed al­
gorithms, Figure 6 includes performance curves from two ap­
proaches tested here, modified California and Algorithm 7. 
The comparison indicates significant detection improvement 
of the proposed algorithms, especially at low false alarm rates 
that are most suitable for operational use. In particular, pre­
senting false alarm performance in the hourly number of alarms 
indicates algorithm potential as an operator's primary tool for 
incident detection. For instance, from Table 2, the proposed 
algorithms, at 60 percent detection rate, yield approximately 
1 false alarm per peak hour in an 8.8-km (5.5-mi) heavily 
traveled freeway segment with 14 detector stations. 

Performance may also be seen in terms of detection rate 
for each type of incident. Accidents, for instance, are more 
important to detect than stalls because they typically have a 
strong congestion effect and require prompt emergency as­
sistance. To investigate the algorithm effectiveness in detect­
ing each type of incident, detection performance of DELOS 
1.1 (10,8) in detecting accidents and stalls is shown in Figure 
7. The figure indicates, for example, that at approximately 1 
false alarm per hour (false alarm rate = 0.07 percent) in the 
whole section, accident detection rate approaches 90 percent. 

Regarding average detection time (Table 2), the range for 
the average algorithm is 1 to 2 min, for the median 1.5 to 2 
min, for the exponential 1 to 1.5 min, and for the combined 
exponential-average 0 to 1 min. The incident occurrence times 
are from the operator's log. Detection time is the time be­
tween occurrence and end of the current period for which an 
incident alarm is signaled. Therefore, these values do not reflect 
actual detection times but the delay with regard to detection by 
the operator. This partly explains why an 8-interval forward 
seeking method [e.g., DELOS 1.1 (10,8)] has a detection time 
of 1 to 2 min instead of at least 4 min. A second reason is 
that, especially in severe incidents, the algorithm may start 
sensing occupancy changes while only part of the current win­
dow overlaps with the incident period. DELOS detection times 
are slightly longer than those of algorithms employing raw 
data. For instance, the California algorithms exhibit response 
times of 0 to 1 min. 
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FIGURE 5 Algorithm performance comparison: DELOS versus Double 
Exponential. 
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A final comment brings up a positive contribution of com­
puterized algorithms-the reduction in missed detection. In 
particular, algorithms can identify incidents not detected by 
operators. To investigate this, the major false alarms pro­
duced by the new algorithms were examined; 22 of these 
exhibit incident-like patterns, including patterns that strongly 
resemble incidents. However, because no off-line incident 
identification can independently verify their occurrence, such 
alarms were treated as false. Further, all incidents missed by 
the algorithms were stalls on the shoulder and had no impact 
on traffic. Because they were recorded by the traffic operator, 

they were classified as missed incidents. If they had been 
discarded, the detection rate of the new algorithms would 
increase substantially. 

CONCLUSION 

The aim of this research is to improve automatic incident 
detection on freeways by developing strategies to distinguish 
incidents from other traffic disturbances. Major disturbances 
identified in this paper include recurrent congestion at bottle-
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FIGURE 6 Algorithm performance comparison: DELOS versus California 
algorithms. 
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FIGURE 7 DELOS detection performance by incident type. 

neck locations, traffic pulses propagating downstream, compres­
sion waves propagating upstream, short-duration random fluc­
tuations, and impulsive noise in the traffic measurements. 

An incident detection logic was developed within the frame­
work of comparative algorithms (i.e., algorithms that employ 
simple comparisons of traffic data). The detection logic at­
tempts to distinguish incidents from other disturbances based 
on two major incident characteristics-fast evolution of 
congestion following incidents and long duration of incident 
patterns. To distinguish sharply evolving incident congestion 
from gradually developing recurrent congestion, temporal 
comparisons of traffic patterns were performed. Further, to 
filter out short-duration traffic disturbances, several types of 
data smoothing were employed. The smoothing algorithms 
effectively filter short-duration traffic inhomogeneities, such 
as random traffic fluctuations and traffic pulses, but do not 
adequately handle compression waves of long duration. 

The proposed algorithms were tested with loop detector 
data from I-35W in Minneapolis with promising results (for 
instance, 1 false alarm per rush hour per 14 detector stations 
at approximately 60 percent detection rate). They were also 
compared with major algorithms used for assisting incident 
management personnel in urban areas and were found to be 
superior at all false alarm rates. 
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