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Welfare Maximization with Financial 
Constraints for Bus Transit Systems 

SHYUE KOONG CHANG AND p AUL M. SCHONFELD 

A bus system with time-dependent demand and supply charac
teristics is analytically optimized to maximize a welfare objective, 
subject to financial constraints. With some approximations, equa
tions for optimal route spacing, headways in various periods, and 
fares are obtained for unconstrained, break-even, and subsidy 
cases. The relationships between the optimized decision variables 
and system parameters are thus identified analytically. A nu
merical example is given for a bus transit system with three service 
periods. In the vicinity of the maximum welfare solution, the 
welfare is found to be relatively flat with respect to subsidies. 
Since subsidy increments yield disproportionately smaller welfare 
increments, break-even or constrained subsidy solutions may be 
preferable to pure welfare maximization. A minimum allowable 
ratio of welfare change to subsidy change is suggested as a cri
terion for optimizing individual bus systems and efficiently allo
cating resources among alternatives. 

Multiple-period analytic optimization models have been de
veloped for analyzing bus systems (J). To extend that work, 
this paper presents analytic models for optimizing bus systems 
using a maximum welfare objective subject to constraints on 
allowable subsidies, including break-even constraints. 

Studies on analytic optimization models have been exten
sively reviewed by Chang and Schonfeld (1,2). Such models 
for public transportation system optimization have most often 
assumed a perfectly inelastic demand (2-12). This assumption 
may be reasonable for some systems and may simplify models 
to the point at which analytic solutions may be obtained. 
However, this assumption may preclude the model from ana
lyzing pricing policy and subsidy issues or from optimizing the 
system for objectives, such as maximum net social benefit or 
profit. 

Kocur and Hendrickson (13) have analyzed bus services 
with demand elasticity and developed closed-form solutions 
for optimal route spacing, headway, and fare with various 
objective functions. This was accomplished with some ap
proximations, most notably with a linear approximation of a 
logit mode split model. Nash (14) assessed alternative objec
tives for bus transit service in terms of fares, service levels, 
and financial results. Frankena (15) investigated the condi
tions under which a maximum ridership objective would be 
economically efficient and analyzed the effects of subsidy on 
system efficiency. Else (16) analyzed optimal fares and sub
sidies while considering various externalities. Bly and Oldfield 
(17) investigated analytically the effects of subsidy on bus 
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operation. An analytic model considering demand elasticity, 
financial constraints, and congestion effects also has been 
developed by Oldfield and Bly (18) to determine the optimal 
vehicle size for urban bus systems. None of these studies 
considered time-dependent supply and demand characteristics 
or tradeoffs between subsidies and a welfare objective. 

Many studies have used numerical instead of analytic meth
ods to optimize public transportation systems and to inves
tigate issues covered in this paper (19--:-22). However, an an
alytic approach is used here to find closed-form solutions for 
the decision variables and objective function and to identify 
some related optimality conditions. 

In this paper, the analytic models for bus systems assumed 
by Chang and Schonfeld (J) are applied to analyze uncon
strained, break-even, and subsidy cases. Three decision 
variables-namely, route spacing, headway, and fare-are 
optimized jointly in those models. The system assumptions 
are briefly reviewed in the next section, and then the welfare 
objective function is formulated. The following section pre
sents the analytic results for the various cases and discusses 
relations and implications of the analytic results. The section 
after that presents a numerical case. The final section presents 
conclusions. 

SYSTEM ASSUMPTIONS 

The assumed bus system, which can represent a variety of 
transit operations, is taken from Chang and Schonfeld (1). A 
brief description of the assumed system follows. 

Bus System Characteristics 

In this analysis, a branched-zone bus system is assumed to 
provide service for a rectangular area with dimensions L x 
W, from which trip ends are assumed to access a single point, 
such as a -mass transit station or activity center. Figure 1 
illustrates this bus system. The variables and their typical 
baseline values are defined in Table 1. 

The service area has N zones, each of length L and width 
r = WIN. A vehicle round trip to zone j during period t 
consists of (a) a line haul distance J traveled at express speed 
y V, from the starting point to a corner of service area; (b) a 
distance of Wi km traveled at local nonstop speed b V, from 
the corner to the assigned zone; (c) a collection route L km 
traveled at local speed V1 along the middle of the zone stop
ping for passengers every d km; and (d) a retracing in reverse 
order of the first three stages. 
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FIGURE 1 Bus system configuration. 

Passengers are assumed to walk at speed g between their 
trip ends and the nearest bus stop along a rectangular street 
network (parallel and perpendicular to the feeder route) with 
negligible street spacing. This assumption implies an access 
distance of (r + d)/4 and an access time of (r + d)/4g. 

The bus network assumed in this paper has been previously 
analyzed for maximum profit and welfare objectives without 
financial constraints (J). The bus route structure and model 
formulations may be used to analyze a wide variety of bus 
service types, including feeder services to and from transfer 
stations, zone structure services, and radial services to activity 
centers. They may also be used in some cases to analyze bus 
systems with many-to-many demand patterns if the system 
can be separated into subsystems in which many-through-one 
analysis is applicable [as discussed. by Newell (9)]. 

Demand Functions 

A linear demand function in which the demand density is 
sensitive to various travel time components and the fare is 
formulated as 

Q, = q,[ 1 - e.z,h, - e,z,(' ; s) -e.M, - epf] (1) 

where 

q, = potential demand density of the bus service 
during each period; 

- - - - - - - - - - - - Bus route with non-stop local speed b V 
------ Bus route with local speed V 

Boundary between zones 

z1h, = wait time, which is assumed to be constant 
factor z1 (usually z1 = 0.5 for uniform pas
senger arrivals at bus stops) multiplied by 
headway h,; 

z2 [(r + s)!g] average access time (usually z2 = 0.25 for 
grid street networks with negligible street 
spacing); 

M, = average in-vehicle travel time; 
f = fare; and 

ew, ex, ev, ep = elasticity factors. 

The optimizable decision variables are the headway (h,) for 
each period, the route spacing (r), and the fare (f). This 
implies that the optimized bus route structure and fare are 
assumed to be the same in all periods, whereas the headways 
are optimized separately for each period. 

The values of elasticity factors ew, ex, ev, and ep are not the 
actual elasticities in such a linear function. In addition, the 
ratios between the elasticity factors for wait time and fare 
(ewleP), for access time and fare (e)ep), and for in-vehicle 
time and fare (e)eP) determine the implied values of wait 
time, access time, and in-vehicle time, respectively. 

It is assumed that the potential demand q, in each period 
could be determined from the time distribution of demand 
shown in Figure 2. A step demand distribution (Figure 2b) 
relating monotonically volume levels and their durations can 
be directly obtained from the empirical demand distribution 
(Figure 2a). Although only three periods are used as an ex
ample of the demand distribution in Figure 2e, the number 



50 TRANSPORTATION RESEARCH RECORD 1395 

TABLE 1 Variable Definitions 

Variable Definition Baseline Value 

bus operating cost in period t; B1• B2• and B3 = 50. 25. and 25 dollars/veh. hr. 
non-stop ratio = non-stop speed/local speed 2 
system total cost ($/period) 
total operator cost ($/period) 

bus avg. round trip time during period t (hrs.) =2UVt+W/bVt+2J/yVt 
demand elasticity parameter for fare 0.07 
demand elasticity parameter for in-vehicle time 0.35 
demand elasticity parameter for wait time 0. 7 
demand elasticity parameter for access time 0. 7 
fleet size in period t (vehicles) 
fare($) 
consumer surplus ($/period) 
average walk speed (km/hour) 4.0 
headway in period t (hrs/vehicle) 
the lagrange multiplier associated with the break-even constraint 
the lagrange multiplier associated with the subsidy constraint 
(!2+ 1)/(212+ 1) 

line haul distance (km) 6.4 
subsidy ($/period) 
invariant components of the demand function = 1-exd/4g-evMi 
length of service area (km) . 4. 8 
passenger avg. trip time during period t (hrs.)= L/2Vt+W/2bVt+J/yVt 
number of time periods 3 
profit ($/period) 
demand function for period t (Eq. 1) 

potential demand density in period t 
q1, q2, and % = 50. 20, and 5 trips/sq. km/hour, respectively. 
total revenue ($/period) 
route spacing (km) 
stop spacing (km) 0.4 
service time in period i (hours); T 1• T2• and T3 = 3, 3~ 4 hours. respectively. 
local speed during period t (km/hour) 24.0 
width of service area (km) 3.2 

composite variable= L.tTt(DtBtqt)112/l:tTtqt 
welfare ($/period) 

express ratio = express speed/local speed 
ratio of wait time/headway 
geometric factor for detennining access time 

2.0 
0.5 
0.25 

and duration of periods are unlimited in the models and may 
be selected to represent variations over time with whatever 
precision is desired. Other models (8,18) have used smoothed 
functions (e.g., Figure 2c) to represent demand variation over 
time. However, such smoothing is not necessary to formulate 
objective functions that are twice differentiable and hence 
appears to be an unnecessary complication (23). The approach 
used in this work relies on step functions for demand, costs, . 
speeds, and other variables that are obtained directly from 
the empirical data. 

The hourly operating costs B, are assumed for different pe
riods. The operator costs per day are 

Operator Costs 

The operator costs per analysis period (e.g., per day) is the 
fleet size multiplied by the hourly operating cost and total. 
daily service time. The fleet size is the bus round-trip time 
divided by the headway. The bus round-trip times D, are 
assumed for various periods because different traffic condi
tions are represented by different speeds: 

2L W 2L 
D, = V + bV + V ( ( y ( 

(2) 

(3) 

MAXIMUM WELFARE OBJECTIVE 

Various objective functions have been considered appropriate 
for optimizing bus transit systems (24). In this paper maximum 
social welfare, also known as the net social benefit or simply 
welfare, is used as the objective function. 

The welfare Y is the sum of the consumer surplus G and 
producer surplus P: 

Y=G+P (4) 

:The producer ~urplus, also known as profit, is the total rev
enue R minus the operator cost C0 : 

(5) 
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FIGURE 2 Distributions of demand over time: a, empirical 
demand distribution; b, transformed demand distribution; c, 
smoothed demand function; d, smoothed and transformed 
demand distribution; e, demand distribution assumed in 
numerical example. 

The operator cost has been defined in Equation 3. The total 
revenue is the fare multiplied by the total demand: 

m 

R = LfLWT,Q, (6) 
t=I 

Therefore the total profit can be formulated as 

m 

P = LfLWT,q,(k, - ewz 1h, - exz2 rlg - epf) 
t=I 

_ i: WE1 T, 
t=I r h, 

(7) 

where k1 is a constant representing a component of the po
tential demand that is insensitive to the decision variables 
optimized here: 

(8) 

By inverting the demand function shown in Equation 1 to 
find fare as a function of demand and by integrating the in
verted function over the demand, the total social benefit can 
be obtained. Then, the consumer surplus G can be derived 
as the total social benefit minus the total cost that the users 
actually pay (13,25): 
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(9) 

Therefore the welfare can be formulated by adding Equations 
7 and 9. In the following sections the major analytic results 
for the various objectives are presented. 

ANALYTIC RESULTS 

The objective here is to maximize the welfare: 
Maximize 

Y = G + R - C0 (10) 

In solving this problem, a deficit constraint is considered that 
can be generally expressed as follows: 

(11) 

It means that the operator cost C0 should not be larger than 
the sum of the revenue R and subsidy K. 

The problem is solved for three cases with different as
sumptions about the constraint and subsidy: (a) without the 
constraint; (b) with the constraint K = 0, that is, a break
even requirement; and (c) with the constraint K -::/:. 0. These 
three cases are presented separately. 

Unconstrained Results 

In the first case, the first-order conditions for an optimum 
are 

aY/ar = O (12) 

t = 1, 2, ... , m (13) 

aY/af = o (14) 

The optimized fare can be immediately obtained from Equa
tion 14: 

f * = 0 (15) 

The zero fare result is not surprising because the marginal 
operator cost is 0 in the bus systems considered here. Similar 
zero-fare results have been discussed previously (13,24). 
However, the marginal costs would become positive if a ca
pacity constraint were binding (23) or if certain congestion 
effects were modeled. 

By substituting this result into Equations 12 and 13, the 
relation between the optimal headway h: and optimal route 
spacing r* is found to be 

(16) 

The approximation errors in Equation 18 and some further 
results below are slight (2). Using this optimality result in 
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Equation 16 and the optimized fare obtained, the optimized 
route spacing is found to be 

(17) 

The optimized headway for each period can then be obtained 
by substituting Equation 17 into Equation 16: 

(18) 

Since the optimal fare in this case is 0, the optimized welfare 
is simply the consumer surplus minus the operator cost. 

Results with a Break-Even Constraint 

In the previous case, the optimized fare is 0, which implies a 
deficit for the operator. Therefore, in the second case, a break
even constraint C

0 
:::; R is considered. 

The problem can be stated as follows: 

Maximize 

Y = G + R - C0 

Subject to 

A break-even solution would not exist if the demand func
tion were always below the average operator cost function. 
That situation would imply a negative profit. Therefore, it is 
assumed in the following analysis that the travel demand is 
sufficient to yield a positive profit in some circumstances for 
the bus operation considered. 

The Lagrange multipliers method is used here for con
strained optimization, and the Lagrangian a is formulated as 
follows: 

(19) 

where / 1 is the Lagrange multiplier associated with the break
even constraint. 

Solving the first-order conditions, as shown by Chang and 
Schonfeld (2), the following approximate relationship be
tween headway and route spacing can be obtained: 

(20) 

This relationship is identical to that obtained for the previous 
case. 

The following results for optimized route spacing and head
way can also be derived (2): 

(21) 

(22) 
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However, the optimized fare is no longer 0. It is found to be 

f* ~ (~) ( z~*) (23) 

Since the ratio ( e) eP) represents the value of access time and 
z2r* lg is the average lateral access distance, the result indi
cates that the fare is identical to the lateral access cost in the 
optimized system. 

The optimal revenue R * and operator cost c; are equal at 
break even, and their solutions are shown by Chang and 
Schonfeld (2). 

Results with Subsidy 

To maximize welfare subject to a subsidy constraint, the prob
lem can be stated as follows: 
Maximize 

Y = G + R - C0 

Subject to 

This problem is also solved using the Lagrange multipliers 
method. The Lagrangian a is formulated as 

(24) 

in which 12 . is the Lagrange multiplier associated with the 
subsidy constraint, and K is subsidy or maximum allowable 
deficit. Solving the first-order conditions, as shown by Chang 
and Schonfeld (2), the relationship between the optimal head
way and route spacing can be obtained: 

(25) 

The relations among the fare, the route spacing, and the 
Lagrange multiplier are also derived: 

(26) 

(27) 

Equation 25 shows that the proportionality relation be
tween the optimized headway and route spacing can still be 
obtained .. Solving with an approximation (2), the Lagrange 
multiplier / 2 is found to be 

/* - - µ2 + [µ~ - 4µ3(µ2 - µ,)] 1/2 
2 - 2(µ2 - µ,) 

(28) 

in which µ 1 , µ 2 , and µ 3 are defined as follows: 

(29) 
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IJ-, ~ k4~T + (t) [J - 2ep1J-,J' - 31J-, 

K 
µ3 = kQT - µI 

(30) 

(31) 

The positive root in Equation 28 is the solution of the quad
ratic equation whenever the constraint is binding, because the 
negative root yields negative values of shadow price / 2 • . 

Therefore, the optimized route spacing can be obtained by 
subs~ituting Equation 28 into Equation 27. The optimized 
headway and fare can then be obtained by substituting the 
optimized route spacing into Equations 25 and 26, respec
tively. The optimal operator cost c;, revenue R*, and con
sumer surplus G* can also be obtained (2). The welfare can 
be derived as the consumer surplus minus the subsidy: Y* 
= G* - K. 

Discussion of Analytic Results 

Analytic results concerning the design variables, including 
route spacing, headway, or fare, or all of these, are sum
marized in Table 2. These results show more clearly than any 
numerical results what the relationships among variables should 
be for optimized bus services under various objectives. 

To a large extent the sensitivity of optimized design vari
ables to the various system parameters can be determined by 
visually inspecting the functions rather than by numerical 
analysis. Taking, for example, systems optimized for maxi
mum welfare subject to a break-even constraint, we can ob
serve that the headway is proportional to the 1/2 power of the 
bus operating cost and round trip time (£1 = B 1D 1 ) and to 
the 1/3 power of the access time and fare elasticity factors. 
Similar sensitivity relations for the optimal route spacing and 
fare also can be observed (2). 
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For unconstrained welfare maximization, the optimized fare 
is 0, whereas for break-even welfare maximization the optim
ized fare is equal to the lateral access cost. When marginal 
costs are 0, such zero-fare results are expected and are similar 
to those obtained in previous works (J,13,24). 

The results also show the optimality of a constant ratio 
between route spacing and headway. Such results are very 
similar to findings in several previous transit system optimi
zation studies (8,10,13), except that a time-dependent factor 
(E)q 1)

112 can now be incorporated. This means that the fol
lowing relation for feeder systems always holds for all periods: 

t = 1, 2, ... , m (32) 

Equation 32 was rewritten from Equations 16, 20, and 25; 
time-dependent headways and parameters, such as q1' B" and 
D" are combined on the left side of Equation 32. 

The analytic models presented here have not considered a 
vehicle capacity constraint. Vehicles may be overloaded in 
some cases unless a vehicle capacity constraint is applied. 
Chang and Schonfeld (2) show how these results can be mod
ified to satisfy vehicle capacity or load factor constraints. 

NUMERICAL EVALUATION 

Numerical examples for various cases under different objec
tives are presented and compared to illustrate the applicability 
of the models developed. The baseline parameter values shown 
in Table 1 are used in numerical examples. The numerical 
results are presented in Table 3. These results are computed 
for a 6.4- x 4.8-km rectangular service area with a three
period demand pattern in which potential demand densities 
are 50, 20, and 5 trips/km 2/hr during service periods of 3, 3, 
and 4 hr, respectively. These conditions have been shown in 

TABLE 2 Analytically Optimized Decision Variables 

unconstrained case break-even case subsidy case 

r* = 0 
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TABLE 3 Numerical Results for Bus Systems 

unconstrained break-even mlWJb:. a 
1,500 3,000 

Route Spacing (km) 1.715 (l.715)b 1.933 1.904 1.808 
Fare($) 0 1.21 0.82 0.51 
Headway (hours) 0.199 (0.152) 0.225 0.220 0.116 

0.203 (0.203) 0.260 0.226 0.209 
0.364 (0.364) 0.411 0.403 0.324 

Fleet Size (no. of vehicles) 23 (30) 18 19 21 
19 (19) 13 15 17 
9 (9) 7 7 8 

Demand Density 29.26 (30.04) 24.00 25.83 27.19 
(trips/sq. km/hour) 12.31 (12.31) 10.19 10.96 11.50 

2.91 (2.91) 2.46 2.61 2.76 
Avg. Cost ($/trip) 6.538 7.123 6.973 6.758 
Avg. User Cost ($/trip) 5.213 5.915 5.754 5.414 
Avg. Operator Cost ($/trip) 1.325 1.208 1.219 1.284 
Avg. Wait Cost ($/trip) 1.072 1.208 1.190 1.130 
Operator Cost ($/day) 5,565 (6,627) 4,250 4,523 5,016 

·Revenue ($/day) 0 4,243 3,043 1,992 
Profit ($/day) -5,565 -7 -1,480 -3,024 
Consumer Surplus ($/day) 19,025 (19,684) 13,297 14,861 16,461 
Welfare ($/day) 13,464 (13,057) 13,290 13,381 13,437 
Bus Load (passengers/veh.) 64 67 67 66 

25 33 30 29 
12 13 13 13 

Shadow Price 0.19 0.07 0.11 

a. Results for subsidies of 1,500/3,000 dollars per day, respectively. 
b. Results with vehicle capacity constraint. 

Figure 2e. The bus operating costs during these three periods
peak, offpeak, and night-are assumed to be $50, $25, and 
$25/vehicle-hr, respectively. 

1. The optimal fare is 0 in the unconstrained case, $1.21 in 
the break-even case, and $0.82 if a subsidy of $1,500/day is 
provided. That subsidy represents about 30 percent of the 
daily operator cost. When the subsidy increases to $3,000/ 
day, the optimal fare becomes $0.51. 

2. For break-even welfare maximization, the consumer sur
plus and welfare are $13,297 and $13,290/day, respectively. 
Deficits for the constrained cases have small deviations from 
the theoretical results. For example, deficit (or profit) for the 
break-even case should be 0, whereas we obtain $7/day; when 
subsidy is constrained to $3,000 the profit should be -$3,000, 
whereas we obtain -$3,024. These deviations are the result 
of minor approximations in the analytic solutions. 

3. In comparing unconstrained and break-even cases, we 
find that when the break-even constraint is removed, the def
icit increases from 0 to $5,565, whereas the welfare rises by 
$174 (1.3 percent of $13,290). Thus, at least for the typical 
parameter values used in this analysis, the financial and po
litical advantages of a break-even policy are quite strong. 

4. When the subsidies increase, the optimal route spacing 
and headway decrease, and the fleet size increases. The equi
librium demand, consumer surplus, and welfare also increase. 

5. The shadow price associated with the break-even con
straint is $0.19, indicating that welfare would be increased by 
$0.19 if the deficit were increased from 0 to $1. The shadow 
prices associated with the subsidy constraints are $0.11 and 
$0.07 for subsidies of $1,500 and $3,000, respectively. These 
indicate that the welfare would be increased by $0.11 and 
$0.07 if the subsidies of $1,500 and $3,000 were increased to 
$1,501 and $3,001, respectively. 

Basically, in the vicinity of the unconstrained welfare max
imization solution, that is, as the subsidy approaches $5,565, 
the shadow price approaches 0. These relationships can be 
shown conceptually in Figure 3. It is shown that the optimal 
welfare Y* is obtained with a subsidy of K*. In the numerical 
results (Table 3) the optimal welfare of $13,464 is obtained 
with a deficit (and subsidy) of $5,565 in the unconstrained 
case. In the break-even case, the subsidy is 0, and the welfare 
is Y 8 , which in the numerical results is $13,290. In Figure 3 
the welfare becomes Y1 when the subsidy is K,. The subsidy 
constraint is not binding whenever it is to the right of the 
maximum social welfare point (e.g., K2 > K*). As long as a 
subsidy K 1 is binding, the slope of the curve b.Ylb.K at K = 

K 1 may be interpreted as the shadow price of the subsidy 

.AX.= Shadow Price 
LlI( 

Subsidy, K 

Subsidy constraint is binding Subsidy constraint is not binding 

FIGURE 3 Conceptual relation between subsidy and welfare. 
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constraint. This shadow price !lYI !lK indicates how much 
opportunity there is to increase the welfare· Y per increment 
of subsidy !lK. Given some information about society's will
ingness to subsidize, which may also be expressed as a !lY/ 
llK ratio (i.e., a minimum acceptable welfare increment per 
unit of subsidy, or a minimum acceptable rate of return to 
subsidy), this indicator may be used as an allocation criterion 
to determine how much to subsidize a particular activity. Thus 
for our bus system the subsidy K would be increased as long 
as the slope !l YI !lK in Figure 3 exceeded a minim um ac
ceptable !lYI !lK rate. This approach allows an efficient al
location of resources among various t!ansportation and non
transportation activities. Figure 3 (Curve a in the inset) shows 
that this approach may sometimes imply a negative subsidy 
(i.e., a profit) in cases in which the welfare Y is positive at 
negative values of the subsidy K. 

Figure 3 (Curve a in the inset) also indicates that if the 
social welfare function would shift downward to reflect higher 
operator cost functions or lower demand functions (e.g., from 
a to c in Figure 3), the maximum possible solutions for profit 
(Point C), break-even welfare (Y8 ), subsidy-constrained wel
fare (A), and unconstrained welfare (X) would gradually be
come negative, in that order. 

The results in Table 3 suggest that the break-even case may 
well be preferable to the unconstrained welfare maximization 
case, because by removing the break-even constraint the wel
fare rises by only $174 (1.3 percent), whereas the deficit in
creases from 0 to $5,565. It is desirable to examine the sen
sitivity of this result to the elasticity factors used in the demand 
function. 

The peak-period busloads in Table 3 exceed the capacity 
of standard buses. The corresponding capacity constrained 
results can be obtained with the analytic models developed 
by Chang and Schonfeld (2) and are also presented for pure 
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welfare maximization cases in Table 3. These results eliminate 
the overload problem in the peak period. 

Table 4 shows the welfare results for the two cases with 
several fare elasticity factors. The comparison shows that the 
welfare rises by only 1.3 and 1.6 percent, whereas the deficits 
rise from 0 to $5,565 and $6,971 for elasticity factors of 0.07 
and 0.05, respectively. These results suggest that in such cases, 
in which large increases in subsidies are required for such 
smaller increases in welfare, operators (and taxpayers) may 
find the break-even objective preferable. 

Table 4 also indicates the effects of the fare elasticity factor 
on the optimal results. As expected from analytic results for 
route spacings, when the fare elasticity factors decrease from 
0.07 to 0.05; the optimal route spacings decrease from 1.715 
to 1.534 km for the unconstrained case, and from 1.933 to 
1. 718 km for the break-even case. The optimal fares are all 
0 for the unconstrained case and increase from $1.21 to $1.50 
when the fare elasticity factors decrease from 0.07 to 0.05. 

It is also worth presenting the effects of subsidy on the 
optimized results, because these effects may not be visually 
perceived from the analytic results in the subsidy case. Figure 
4 shows that in maximizing welfare the optimal fare varies 
inversely with the subsidy. Figure 5 shows the effects of sub
sidy on consumer surplus and welfare. The consumer surplus 
increases with the subsidy, whereas the producer surplus (profit) 
is the subsidy with a negative sign. These relationships have 
the net effect that the optimal welfare is very flat over a wide 
range of subsidy values. These results indicate that the break
even objective in welfare maximization may be quite accept
able, because it yields a zem deficit and only slightly less 
welfare than the unconstrained case. The discussion of Figure 
3 also suggests how other solutions, with less than maximum 
welfare, corresponding to smaller levels of subsidy, or even 
profits, may be found preferable on the basis of the minimum 

TABLE 4 Effects of Fare Elasticity Factors 
(a) Case !:Unconstrained Welfare Maximization 

fare route consumer profit 'operator welfare fare 
elast. factor spacing surplus cost 

-----------------------------------------------------------------
0.05 1.534 27,989 -6,971 6,971 
0.06 1.630 22,724 -6,137 6,137 
0.07 1.715 19,029 -5,565 5,565 

(b) Case 2: Break-Even Welfare Maximization 

fare 
elast. factor 

0.05 
0.06 
0.07 

( c) Comparison 

fare 
elasticity 

factor 

0.05 
0.06 
O.Q7 

route 
spacing 

1.718 
1.826 
1.933 

consumer 
surplus 

20,682 
16,375 
13,297 

unconstrained case 
welfare operator 

profit 
(1) (2) 

21,018 
16,587 
13,464 

-6,971 
-6,137 
-5,565 

profit 

0 
0 
-7 

operator 
cost 

5,557 
4,921 
4,243 

break-even case 
welfare operator 

profit 
(3) (4) 

20,682 
16,375 
13,290 

0 
0 
0 

21,018 0 
16,587 0 
13,464 0 

welfare fare 

20,682 1.50 
16,375 1.33 
13,290 1.21 

change in 
welfare 
(1) - (3) 

336(1.6%) 
212(1.3%) 
174(1.3%) 
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acceptable !:l.Yl!:l.K criterion. It would then be desirable to 
optimize the welfare subject to a constraint on the ratio of !1 
welfare/ !1 subsidy, as discussed earlier. 

CONCLUSIONS 

A fairly general bus system is analytically optimized to max
imize welfare with various financial constraints. Closed-form 
solutions are derived for the optimal design variables (e.g., 
route spacing, headway, and fare), as summarized in Table 1. 
Interrelationships among the optimized design variables, the 
objective functions, and the system parameters are identified 
for various cases. 

The optimality of a constant ratio between route spacing 
and headway, which has been found in previous studies for 
various bus network and demand conditions, is also found to 
be maintained with a multiperiod adjustment factor for all 
cases considered. It is not surprising that the optimal fare for 
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welfare maximization is 0 in systems in which, in the absence 
of vehicle size constraints and congestion effects, the margirial 
operator cost is 0. 

The effects of subsidy on the optimized results are pre-' 
sented. In maximizing welfare the optimal fare varies in
versely with the subsidy. The consumer surplus increases with 
the subsidy, whereas the profit is the subsidy with a negative 
sign. These relationships have the net effect that the optimal 
welfare is very flat over a wide range of subsidy values. The 
effects of the bus operating costs on the optimized welfare, 
route spacing, fare, and fleet size are also evaluated (2). 

The most interesting finding of this study is that the welfare
versus-subsidy function is very flat over a wide range in the 
vicinity of the optimum, as suggested in Figure 3 and shown 
numerically in Figure 5. Furthermore, our sensitivity analysis 
and preliminary results for very different kinds of transit sys
tem, such as flexible route paratransit (26), suggest that this 
is not an isolated case based on an accidental combination of 
parameters but a typical situation. This implies that subsidies 
can be greatly reduced below those required for maximum 
welfare, with only slight sacrifices in welfare. However, the 
relative funding burden would shift from subsidies (i.e., tax
payers) to fares (users). The changes in optimized systems· 
associated with subsidy reductions, such as the changes in 
ridership, fares, network headways, and service levels can be 
analyzed with the analytic models presented here. 

Comparisons of the various cases considered indicate that 
the effects of subsidy on welfare are very small over a wide 
range around the maximum welfare case. Thus, welfare max
imization with a break-even constraint yields a zero deficit 
with very small reductions in welfare, compared with the sub
sidized cases (including unconstrained welfare maximization). 
Such results imply that the break-even objective might be 
preferable to subsidized cases whenever break-even solutions 
exist on a relatively flat part of a welfare function. In other 
words, where large increases in subsidies are required for 
much smaller increases in social welfare, operators (and tax
payers) may find the break-even objective preferable. 

More generally, the conceptual discussion of Figure 3 sug
gests how a minimum acceptable !:l.Y/ !:l.K (i.e., ratio of welfare 
change to subsidy change) criterion may be used to determine 
the proper amount of subsidy or profit, and to efficiently 
allocate resources among various activities, including the bus 
systems modeled here. 
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