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Integrated Pavement and Bridge 
Management Optimization 

WILLIAM v. HARPER AND KAMRAN MAJIDZADEH 

An integrated pavement and br~dge n:ia~ag~me~t system that 
allows cost minimization or benefit max1m1zat1on is presented. It 
integrates the pavement and bridge systems so that management 
may allocate scarce resources optimally acro~s t.he ~ombined sys
tems. Fuzzy set theory is used in these opt1m1zations to better 
address the desirability or undesirability of the condition states 
used to categorize the pavement and bridge segments modeled. 
Both steady-state and multiyear models are presented. 

A highway maintenance management system (HMMS) has 
been developed. This system integrates a pavement manage
ment system (PMS), a bridges and structures management 
system (B&SMS), and a nonpavement management system. 
A relational data base (Oracle) is used to perform the needed 
data storage and retrieval functions. This paper focuses on 
the integration of the PMS and the B&SMS. The full inte
gration with the nonpavement management system may be 
found elsewhere (J-3). 

The HMMS is a flexible modular system that can be easily 
adapted to meet various needs. The particular adaptation 
presented here is for a given client, but it. can be modified 
easily for other applications. The integrated system allows the 
optimal allocation of the budget across the various subsystems 
(e.g., across the PMS and B&SMS in this paper). Thus, it is 
not necessary to make an arbitrary division of the budget into 
the subsystem; instead, an optimal division will be determined 
by the HMMS. 

The PMS and B&SMS steady-state and multiyear results 
may be optimized using either cost minimization or benefit 
maximization. The PMS is divided into nine strata based on 
three levels of climate and three functional classes. The con
dition state variables for the PMS are rutting (three levels), 
cracking (three levels), delta cracking-1 year change in 
cracking (three levels), roughness (three levels), and index to 
first crack (four levels). These variables result in 324 con
dition states. There are 17 possible maintenance actions with 
a feasible subset for each condition state. In the cost
minimization models (2,3), management specifies desired per
formance levels and the optimization finds the lowest-cost 
plan that will meet the performance goals. In the benefit 
maximization models, benefits based on fuzzy set member
ships and importance weights are maximized subject to bud
getary controls. 

The B&SMS is divided into 43 strata: 36 for bridges, 6 for 
culverts, and 1 for tunnels. The 36 bridge stratq result from 
3 climates, 6 major bridge types, and 2 functional classes. 
Culverts are not subdivided by type in the optimizations and 
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thus have only three climates and two functional classes, re
sulting in six strata. The condition state variables depend on· 
the stratum. For example, steel bridges have deck (four levels), 
superstructure (four levels), substructure (four levels), su
perstructure age (three levels), and substructure age (three 
levels), for a total of 576 condition states. For this bridge type 
there are 40 maintenance scopes (e.g., deck repair) with a 
selected subset feasible for each condition state. Harper et 
al. describe this in more detail elsewhere ( 4,5). 

The PMS and B&SMS are modular systems with prediction, 
cost, optimization, packaging, and comparator modules. The 
prediction modules determine the transition probabilities that 
estimate the degradation rates for the PMS or B&SMS seg
ments. In the PMS a segment is a 1-km single lane of road. 
In the B&SMS, the definition of a segment depends on the 
stratum. For steel bridges it is a superstructure span with a 
substructure pier or abutment. The survey results are con
verted to condition states as described by Harper et al. ( 4) 
and are used in Bayesian updating algorithms to adapt the 
transition probabilities to the actual environmental conditions 
encountered. The cost module determines the action/scope 
optimization costs. This paper focuses on the optimization 
module. The packaging module takes the selected optimal 
stratum solutions and makes assignments to the actual seg
ments. The optimization selections are made more specific, 
and detailed cost estimates are created in different formats 
to satisfy management needs. The comparator module pro
vides feedback on the system performance and implementation. 

FUZZY SET THEORY ADAPT A TIO NS 

In classical set theory, either each "object" (e.g., condition 
state) is a member of a set or it is not. As fractals have 
stretched the boundaries of many disciplines to consider non
integer dimensions to supplement the integer dimensions found 
in classical science, fuzzy set theory expands the concept .of 
the membership of an object in a set to be any value on the 
continuum [0,1.0] with larger values represe~ting a higher or 
stronger degree of membership in the set. Classical sets are 
special cases of fuzzy sets in which the membership is re
stricted to values of 0 (object is not a member of the set) and 
1 (object is a member of the set). 

Early versions of the cost minimization models (5) cate
gorized each condition state into one of the following mutually 
exclusive categories: 

•Desirable, 
•Undesirable, or 
•Neither desirable,nor undesirable. 



84 

Previously the B&SMS categorized as undesirable any con
dition state that had at least one element (e.g., for bridges, 
deck, superstructure, or substructure) in critical condition 
(good, fair, poor, and critical are the possible levels). Though 
one would surely agree that a bridge segment with deck, 
superstructure, and substructure all at the critical level is an 
undesirable condition state, it is not so clear-cut with another 
segment when the deck is in critical condition and the other 
two elements are in good condition. It is apparent that the 
former segment is more undesirable than the latter, which 
has only one critical element. The previous performance con
straints (5- 7) do not directly account for such distinctions. 

Fuzziness is a natural result of the lack of well-defined 
boundaries. An example would be the set of "rich" people. 
The transition between nonmembership and membership for 
this set is gradual and lacks an obvious boundary. Clearly 
some individuals are rich and would have a membership in 
this set equal to 1, but for many others it is not so obvious. 
Zadeh in 1965 published the initial work in this area (8). He 
set the groundwork for a fertile field that is seeing many 
applications including consumer products. 

Confusion about fuzzy set theory often occurs because fuzzy 
sets are assumed to be related to probabilistic random vari
ables or some form of uncertainty. Instead, fuzziness is a result 
of the absence of sharply defined criteria of class membership. 
The fuzziness ensues from the vagueness or imprecision that 
results from the inability to classify adequately objects using 
conventional sets. Thus fuzzy sets are essential to address the 
true situation properly. Zadeh has argued the following: "In
deed, fuzziness is more than a facet of reality; it is one of its 
most pervasive characteristics-a characteristic rooted in the 
bounded capacity of the human mind to process and store 
information" (9). 

Categorizing a condition state into one of the three cate
gories was a difficult task. These are not black-and-white 
situations that are readily apparent. Each condition state within 
one of these three groupings was treated as having equal 
weight within that category-that is, each condition state had 
a membership of 1 in the set it was placed and a membership 
of 0 in the other two sets. 

In the optimization models presented here the condition 
states need not be treated as a member of only one set. In
stead, each condition state has a membership in both the 
desirable and undesirable fuzzy sets. This membership-<l>;As) 
(desirable), <l>;u(s) (undesirable)-may take any value on the 
range [0,1.0], that is, <l>;is), <l>;u(s) E [0,1.0]. An extremely 
desirable B&SMS condition state with all elements good has 
<l>;As) = 1.0 and <l>;u(s) = 0. Similarly, ~n extremely unde
sirable B&SMS condition state with all elements critical has 
<l>;As) = 0.0 and <l>;u(s) = 1.0. A similar situation holds for 
the PMS. Many condition states will have nonzero member
ships in both the desirable and undesirable fuzzy sets. Ad
ditional details on the fuzzy set memberships may be found 
elsewhere (1). 

STEADY-STATE BENEFIT MAXIMIZATION 

The steady-state models in the PMS and B&SMS are solved 
in order to set 5-year goals for the multiyear planning models. 
The model is given in the following. The summations over i 
cover the entire set of condition states for each stratum. Each 

TRANSPORTATION RESEARCH RECORD 1397 

s representing a stratum is unique. The PMS/B&SMS steady
state model uses the following variables: 

Cost minimization and benefit maximization: 
W; 0 (s) = proportion of units in stratum s that are in condition 

state i and receive action/scope a. These are the 
decision variables. 

w:';,(s) = optimal output W;0 (s). 
Piaj(s) = probability of a segment transitioning in 1 year from 

condition state i to condition state j when action/ 
scope a is applied in stratum s. 

C;0 (s) = cost of action/scope a for a segment irt stratum sin 
state i. 

C*(s) = optimal steady-state average segment cost for stra
tum s: 

C*(s) = L L w:';,(s)C;0 (s) 
iEl(s) aEM;(s) 

N(s) = number of segments in stratum s. 
I(s) = index set of conditions states i for stratum s. 
M;(s) = set of feasible actions/scopes for condition state i in 

stratum s. 
pk(s) = performance goal upper- or lower-bound for gener

alized performance constraint k of stratum s. 
<l>;k(s) = generalized performance constraint parameter for 

condition state i; may be either fuzzy set member
ships, <l>;u(s) or <l>;As), or set to other values de
pending on the form of the generalized constraint 
k for stratum s. 

$k(s) = stratum budget limits; they may be used to bound 
expenditures (upper or lower bound) in stratum s 
where $k(s) is a specified budget limit. 

Sp = index set of PMS strata. 
Sas = index set of B&SMS strata. 
SP+as = index set of PMS and B&SMS strata. 
Bas = total annual budget for bridges and structures. 
BP = total annual budget for pavement. 
BP+as = total annual budget for pavement, bridges, and 

structures. 

Benefit maximization objective function: 
a = Lagrange multiplier used to move budget constraint into 

objective function; this allows separation of the budget 
integrated optimization into individual stratum prob
lems. The units of a for benefit maximization are (units 
of benefit)/(units of cost). It is unitless for multiyear cost 
minimization. This is an output of the optimization 
process. 

a E [0.0,oo) 

Nn(s) = normalized number of segments in stratum s; this is 
the proportion of segments in stratum s relative to 
the entire subsystem (either PMS or B&SMS). 

Wis) = importance weight for being in desirable levels in 
stratum s. 

Wu(s) = importance weight for not being in undesirable lev
els in stratum s. 

<l>;As) = desirable fuzzy set membership for condition state 
i in stratum s. 

<l>;u(s) = undesirable fuzzy set membership for condition state 
i in stratum s. 

'IT;(s) = net worth of condition state i in stratum s that com
bines the individual desirable/not in undesirable im- .· 
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portance weights, Wis) and Wu(s), with <I>iis) and 
<I>;u(s) as follows: 

'Trh) = Wis) <I>iis) - Wu(s) <I>;u(s) 

<!>sys = relative weight of subsystem: 

{

<l>B&sMs for a B&SMS stratum 
<!>sys = <l>PMS for a PMS stratum 

<l>NPMs for an NPMS stratum 

The PMS and B&SMS steady-state models are 

For the benefit maximization objective function, 

maximize 

Nn(s) [<!>sys 2: 2: Wia(s)'TTh)] 
iE/(s) aEM;(s) 

- Cl N(s) 2: 2: W;0 (s)C;0 (s) (1) 
iE/(s) aEM;(s) 

For the cost minimization objective function, 

minimize 

N(s) 2: 2: W;0 (s)Ci0 (s) (2) 
iE/(s) aEM;(s) 

subject to (same constraints ~or benefit maximization or cost 
minimization) 

for all i, a, s (3) 

(4) 2: 2: Wi0 (s) = 1 for alls 
iEl(s) aEM;(s) 

for all j, s (5) 

k = 1, ... , K(s) for alls (6) 

N(s) 2: 2: w:0 (s)C;0 (s) (=:::: or s) $k(s) 
iE/(s) aEM;(s) 

k = 1, ... , K8L(s) (7) 

The benefit maximization objective function (Equation 1) 
maximizes a weighted sum reflecting benefits. The coefficient 
of W;0 (s) is the product of several factors: normalized number 
of segments Nn(s), <I>;is) and <I>iu(s) that measure the degree 
of desirable or undesirable membership, importance weights 
Wis) and Wu(s), and the relative subsystem weight <!>sys· The 
weights Wis) and Wu(s) indicate the relative importance of 
the difference between proportions of strata in desirable con
ditions and the proportion not in undesirable conditions, the 
difference between functional classes, climatic differences, 
and bridge type (for bridge strata). For steady-state budget 
integration Equation 1 is summed over all strata, as shown 
for B&SMS in the following, to incorporate the budget 
constraint. 
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2: Nn(s) [<!>sys 2: 2: W;0 (S)'TTh)] 
sESas iEl(s) aEM;(s) 

- a 2: N(s) 2: 2: Wi0 (s)C;0 (s) (8) 
sESas iEl(s) aEM;(s) 

The second (Lagrange) term of the benefit maximization 
objective function enforces Constraint 9, thus ensuring that 
the budget (BP+Bs• Bp, or B85 ) is met. Lagrange relaxation 
is used since it permits the separation of the problem into an 
equivalent set of individual stratum models without having to 
actually specify the budget constraint. Each value of o. cor
responds to a given total budget level. This is a monotonic 
decreasing function that decrements at discrete levels of a. 

2: N(s) 2: 2: W;0 (s)C;0 (s) 
sESas iE/(s) aEM;(s) 

(S8s is replaced by Sp or SP+Bs as appropriate.) 
The cost minimization objective function (Equation 2) min

imizes the cost in stratum s. Constraints 3 and 4 ensure that 
solutions satisfy probability axioms. The variables w;0 (s) are 
elements of a discrete joint probability distribution. Con
straint 3 ensures the nonnegativity (implicit in LP) of each 
individual element in this joint probability distribution, and 
Constraint 4 forces the sum over the feasible sample space 
(in a statistical sense) to equal 1. Constraint 5 includes the 
steady-state equations for a Markov process (force the pro
portion of the network in condition state i to remain fixed, 
i.e., at steady state). 

Constraint 6 includes generalized performance constraints 
for each stratum (optional in benefit maximization but almost 
always necessary in cost minimization). These performance 
goal constraints allow considerable flexibility and bestow sig
nificant management control. Management may make de
tailed specific goals of relevance to them using these gener
alized performance constraints. Potential examples of the 
generalized performance constraints include constraints using 
fuzzy set goals or the older designations of desirable/unde
sirable goals. Another option is to set element goals, for ex
ample, percentage of decks wanted in at least fair condition 
(or similar goals on distresses in PMS). 

Equation 7 allows the optional inclusion of an upper or 
lower budget bound for an individual stratum. This is not 
normally used-usually the Lagrange term is used instead to 
control the entire network budget. 

IMPORTANCE WEIGHTS 

This section briefly covers the importance weights that are 
fully described elsewhere (1-3). These are multiplicative weights 
that are used to derive the wAs) and wu(s) used in the PMS 
and B&SMS. They are developed within each subsystem (PMS, 
B&SMS), and then the weights across the subsystems are 
incorporated as well as weighing desirable versus undesirable. 

Within the B&SMS the strata factors depend on whether 
the stratum is a bridge, culvert, or tunnel stratum. For bridges 
the stratum factors are bridge type, climate, and functional 
class. For culverts, only climate and functional class are nee-
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essary. Tunnels have only one stratum and thus do not require 
any further breakdown. 

Selected internal B&SMS ranking weights are given below. 
The ranking weights used by Highway Maintenance Associ
ates (2 ,3) have to be inverted to show importance. 

• Functional class 
-Primary [2] 
-Secondary [6] 

•Climate 
-Desert [1] 
-Mountain [1] 
-Coastal [. 7 5] 

• Bridge type 
-Concrete slab, simple [6] 
-Concrete slab, continuous [6] 
-Concrete girders (or R.C. Box) [6] 
-Steel composite [8] 
- Pres tressed girder [ 4] 
-Prestressed box [4] 

•Structure type 
-Bridge [3] 
-Tunnel [3] 
-Culvert [8] 

Following is an example calculation of how the preceding 
ranking weights are converted to importance weights used in 
the optimization. This example deals only with the climatic 
aspect. 

desert = coastal = 11[1 + 1 + 110.75] = 0.3 

mountain = (110. 75)/[1 + 1 + 110. 75] = 0.4 

The PMS strata are based on climate (three levels) and 
functional class (three levels). The same climate weights used 
for the B&SMS are also used for the PMS. For functional 
class, the ranking weights established were primary [2], sec
ondary [4], and feeder [8]. 

Tables 1 and 2 contain selected intermediate importance 
weights that result from the previous material. They are in
corporated with additional weights (e.g., PMS versus B&SMS, 

TABLE 1 Intermediate Importance Weights, Bridges 

El.ID~ !:::liiilillil !:::limat~ Bridge ~e Weight 

Primary Desert 1 1.31 

Primary Desert 4 .99 

Primary Desert 5 1. 97 

Primary Mountain 1 1. 75 

Primary Mountain 4 1. 31 

Primary Mountain 5 2.63 

Secondary Desert 1 .44 

Secondary Desert 4 .33 

Secondary Desert 5 .66 
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TABLE 2 Intermediate Importance 
Weights, PMS 

Fune. Class ~J.imatii: Weight 

Primary Desert 1. 54 

Primary Mountain 2.06 

Secondary Desert .77 

Secondary Mountain 1. 03 

Feeder Desert .39 

Feeder Mountain .51 

and desirable versus undesirable) when the optimizations are 
run. The results are used in both the steady-state and multi
year optimizations. The following list gives the six bridge types 
referred to in Table 1: 

1. Reinforced concrete slab bridge, simple span; 
2. Reinforced concrete bridges, continuous span; 
3. Prestressed girder (I, T, etc.) bridges (or reinforced con-

crete box girder bridges); 
4. Steel composite bridges; 
5. Reinforced concrete T-girder bridges; and 
6. Prestressed box girder bridges. 

MULTIYEAR PMS/B&SMS OPTIMIZATION 
MODEL 

Multiyear budget integration is a complex problem. This sec
tion develops a budget allocation such that the first-year budget 
is met while at the same time providing "smoothing" of the 
multiyear stratum budgets over the planning horizon leading 
to the desired steady-state goals. The first-year budget can 
be achieved if sufficient relaxation of both the performance 
goals and budget targets is allowed. 

The following variables are used (in addition to those de
fined beforehand under steady-state) in the PMS/B&SMS 
multiyear optimization: 

r = discount rate for computing net present value in cost 
~inimization objective function. 

Ml (s) = index set of feasible PMS maintenance actions a for 
pavement in condition state i in stratum s that fix 
medium raveling, poor friction coefficient, or both. 

M'f(s) = index set of feasible PMS maintenance actions a for 
pavement in condition state i in stratum s that fix 
high raveling. 
lower bound on the proportion of segments in stratum 
s that is in condition state i and should receive man-
datory maintenance action/scope a in Year 1. 

q;(s) = proportion of segments in stratum sin condition state 
i at beginning of Year 1. 

qJ(s) = proportion of pavement that is in PMS stratum sin 
condition state i at the beginning of Year 1 and that 
has either medium raveling or poor friction coeffi
cient requiring action in set MJ(s). 

q'f(s) proportion of pavement that is in PMS stratum sin 
condition state i at beginning of Year 1 and that has 
high raveling requiring action in set M'f(s). 
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w,:(s) = optimal proportions from the steady-state model for 
stratum s. 

C*(s) = optimal average segment steady-state cost for 
stratum s. 

g(s) = sixth-year tolerance on steady-state optimal w,:(s) for 
stratum s. 

h(s) = sixth-year tolerance on steady-state optimal average 
segment cost C*(s) for stratum s. 

ni'+ 1(s) = parameter setting lower bound in budget balanc
ing constraints for stratum s between years t and 
t + 1. 

n~+ 1 (s) = parameter setting upper bound in budget balanc
ing constraints for stratum s between years t and 
t + 1. 

B&SMS core condition state with same element 
condition levels as condition state i but does not 
include element-age parameters. 

/core(s) = set of all core condition states for B&SMS stratum 
s (maximum of 64 bridges with a separate deck). 

_ iEA(s) = set of B&SMS full condition states with core con
dition state icore(s), with all possible element ages 
for stratum s; there is a maximum of nine condition 
states in each set. 

w:a(s) = proportion of segments in stratum s that is in con
dition state i and should receive maintenance action/ 
scope a in year t; these are the output decision vari
ables. 

E'(s) = expected expenditures in year t in stratum s; this 
equals N(s) ~ ~ w:a(s) C;a(s). 

iEl(s) aEM;(s) 

K 0 p(s) = number of user-defined generalized performance 
constraints in stratum s. 

KaF(s) = number of user-defined budget fluctuation con
straints in stratum s. 

The PMS/B&SMS optimization model is as follows. The 
constraints are shown only for an individual stratum s; how
ever, they apply to all strata. This model divides into separable 
problems using the Lagrange multiplier a. Each problem is 
an individual stratum linear program. They are tied together 
externally through the Lagrange multiplier. 

Parametric programming on the Lagrange multiplier a al
lows efficient solution of this problem. It takes only a fraction 
of the individual stratum solution time to get all solutions over 
the desired a range with parametric programming once the 
a = 0 solution is found. This controls the total network budget 
ensuring that the optimal allocation across all strata meets the 
desired budget. Using this approach a series of optimal so
lutions versus budget is created. Management can easily see 
the advantages of different budget levels. 

The PMS/B&SMS multiyear models are as follows: 

For the benefit maximization objective function, 

maximize 

T 

<f>sys L Nn(s) L L w:a(s)7T;(s) 
t=l iEl(s) aEM;(s) 

- aN(s) ± L L w:a(s)C;a(s)l(tu - tL + 1) 
t=tL iEl(s) aEM;(s) 

(10) 
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For the cost minimization objective function, 

minimize 

T-1 

L N(s) L L (1 + r) 1 -'w:a(s)C;a(s) 
t=l iEl(s) aEM;(s) 

'u 
+ a N(s) L L L w:a(s)C;a(s)!(tu - tL + 1) (11) 

t=tL iEl(s) aEM;(s) 

subject to (same constraints for cost minimization and benefit 
maximization) 

w}a(s) 2: w};,(s) for all i in I(s) and a in M;(s), 
for Year 1 with mandatory 
projects in stratum s 

w:a(s) 2: 0 for all i in I(s), a in M;(s), and 1 
:s t :s T 

{Implicit in LP} 

L L w:a(s) 1 l:st:sT 
iEl(s) aEM;(s) 

L wfa(s) 
aEM;(s) 

for all i in I(s) 

L wfa(s) 2: q }(s) + qf(s) 
aEMf(s) 

L wfa(s) 2: q7(s) 
. 2 

aEM;(s) 

'u 

for all i in I(s) (PMS only) 

for all i in I(s) (PMS only) 

for all j in I(s) and 2 :s t :s T 

k = 1, ... , Kah) 

E'(s) - 2: [E'(s)!(tu - tL + 1)][1 + B~(s)] (:s or 2:) 0 
t=tL 

k = 1, ... , KaF(s) 

N(s) L L w:a(s) C;a(s) (2: or :s) $k(s) 
iEl(s) aEM;(s) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

k = 1, ... , KaL(s) (21) 

2: L wfa(s)C;a(s) :s [1 + h(s)]C*(s) 
iEl(s) aEM;(s) 

(22) 

2: wfa(s) 2:. 2: [1 - g(s)]w,:(s) 
aEM;(s) aEM;(s) 

for all i in I(s) (23) 
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2: wJ,;(s) :5 2: [1 + g(s) ]wf;,(s) 
aEMi(s) aEMj(s) 

for all i in /(s) (24) 

for all iEA (s) in /(s) (25) 

for all iEA(s) in I(s) (26) 

The first term of the benefit maximization objective func
tion in Equation 10 maximizes benefits, and the second La
grange term enforces the first-year budget constraint (though 
it can be used to control the average budget expenditures 
also). The first term of the cost minimization objective func
tion (Equation 11) minimizes the average present value cost 
per segment of maintenance over the time horizon of interest 
and the Lagrange second term serves the same purpose as i~ 
the benefit maximization objective function. 

Constraint 12 handles the mandatory projects. Equation 13 
(implicit in linear programming) ensures that the decision 
variables are nonnegative. Equation 14 forces the sum of the 
proportions in each year to equal 1, and Equation 15 ensures 
that the first-year boundary conditions are satisfied. PMS 
Equations 16 and 17 account for the necessary action upgrades 
to handle friction and raveling problems. Equation 18 is the 
probabilistic mass balance (ensures the proper transfer from 
one year to the next) equation from one year to the next. 
Equation 19 is the generalized performance constraints that 
allow considerable flexibility in .goal setting by the decision 
makers. Equation 20 bounds the variability allowed from year 
to year in the optimal budget. Equation 21 allows the optional 
inclusion of stratum budget bounds on any given year: these 
may be upper or lower bounds. Equation 22 enforces the 
steady-state budget constraint. Equations 23 and 24 are the 
PMS-only steady-state performance constraints, and Equa
tions 25 and 26 are the same for the B&SMS. 

FURTHER DISCUSSION 

·The HMMS allows both cost minimization and benefit max
imization. In cost minimization there is no need for the many 
parameters introduced that in essence weight some aspect of 
pavement versus bridges. The coefficients used in the benefit 
maximization model presented here represent the specific val
ues of one realization of this system: the Kingdom of Saudi 
Arabia. These values represent the combined interactive ef
forts of a multinational task force overseen by the World Bank 
and its consultants. Although such values are not always easy 
to obtain and agree upon, they do represent rationale trade
offs for estimating the significance of pavement versus bridges. 

In the cost minimization mode, one can minimize cost with 
or without user cost (10). Thus the HMMS allows the min
imization of agency cost or user cost in addition to the max
imization of benefits as defined in this paper. 

Each agency should evaluate its own set of parameters so 
that the weights are reflective of its values. The sensitivity of 
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the results relative to the parameter values may be readily 
tested since the key parameters are used in the objective 
function. As an example, efficient parametric programming 
may easily determine the impact of changes in cf>sys· 

The benefit maximization run shown in the n.ext section 
was done for Kingdom of Saudi Arabia. Many additional runs 
may be found (1-3). The run shown in the next section had 
to meet specified performance goals. Subject to meeting those 
goals it is clear that the benefit maximization wanted to al
locate proportionally more additional funds to the bridge sys
tem when more money was available. In this example this is 
primarily due to the bridges' being weighted more heavily. It 
can be shown theoretically that the benefit maximization first
year results asymptote as the Lagrange multiplier increases 
to a cost minimization (with the same performance goals). 
Thus the higher weighting of bridges versus pavement tends 
to shift supplemental funding (above the minimum needed to 
achieve the performance goals) to bridges in this case. 

Traffic is introduced into the optimization in two ways. 
First, the functional class acts as a surrogate for traffic. Sec
ond, the condition prediction models in the pavement system 
(2) directly use traffic in distress estimation that results in the 
transition probabilities. 

In the bridge system the secondary functional class includes 
bridges on secondary and feeder roads. Thus, the secondary 
bridge functional class weight is between the secondary and 
feeder functional class weights for pavement. 

EXAMPLE RUN 

Figure 1 graphs the total PMS and B&SMS network (all strata) 
budget as a function of the Lagrange multiplier a. The budget 
is a monotonically decreasing function of the Lagrange mul
tiplier. As the budget is reduced the optimal mix across all 
bridge and pavement strata is determined. This ensures that 
the best use is made of the scarce resources available. 

In this example the total budget decreases 71 percent over 
the range of the Lagrange multiplier shown. Most of this 
comes from a corresponding 76 percent reduction in the B&SMS 
budget, whereas the.PMS budget was reduced only 35 percent. 
These runs are based on multiyear benefit maximization. In 
all cases shown the performance goals specified for each stra
tum were met; however, since this was a benefit maximization 
run, it attempted to achieve the most benefit possible. For 
benefit maximization when the Lagrange multiplier a = 0, 
this corresponds to an unconstrained cost situation. So it is 
not surprising that the budget can be significantly reduced 
and still meet the performance goals. There is no significant 
drop in the total budget for values of the Lagrange multiplier 
larger than shown in Figure 1. 

SUMMARY 

Optimization models have been presented for steady-state 
and multiyear pavement and bridge management systems. 
These optimization models integrate the pavement and bridge 
management systems so that management can optimally al
locate resources across the combined system. The use of im
portance weights and fuzzy set memberships was discussed. 
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FIGURE 1 Total budget as a function of Lagrange multiplier. 
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