URMS: A Graphical Urban Roadway Management System at Network Level

Xin Chen, Jose Weissmann, Terry Dossey, and W. Ronald Hudson

A graphical urban roadway management system (URMS) is described. The objective of the system is to assist in scheduling maintenance and rehabilitation (M&R) projects at the network level. URMS works in graphics mode and is characterized by simplicity, flexibility, and user-friendliness. In URMS, management sections can be composed of one or more street blocks. Pavement condition index, which is derived from seven types of distress, is the main calculation variable used in the system. Other evaluation indexes include pavement age, mixed average daily traffic, and truck average daily traffic. The assignment of M&R strategy to each section is performed by means of a decision tree. A methodology combining two matrices and an equation is used for project prioritization. Users can change distress types, M&R strategies, and parameters of all the models. The entire system, including the data base and all models and graphics, is written in Turbo Pascal with the Borland Graphics Interface. The system was tested and its functionality demonstrated with the use of data from the city of Austin, Texas.

Pavement management systems (PMSs) have gained popularity in the transportation industry as tools to help managers and engineers make decisions for managing pavements (1). Considerable effort is now under way at state and local government levels for developing and implementing PMSs (2-6). It has been shown that implementing properly designed and developed PMSs improves not only the efficiency but also the effectiveness of decision making involved in managing pavements (7,8).

The successful implementation of a PMS depends mainly on three factors: reliable data, realistic models for processing the data, and user-friendly software for organizing the inputs and presenting the outputs. In general, the more relevant information on pavement condition collected, the better PMS performance will be. Much of the information needed for supporting a complex PMS is costly to collect, particularly for cities in which expensive equipment such as devices for measuring pavement deflection, roughness, and friction are not available. Adopting simple and consistent PMS practices in the initial phase of PMS implementation is recommended for medium-size urban pavement networks where a complex system is not justified (4). Unlike pavement thickness design programs, which are based on proven algorithms and scientific facts, a PMS for selecting cost-effective maintenance and rehabilitation (M&R) projects at the network level is very much dependent on local policy and engineering judgment.

Since the development of PMS software is time-consuming and expensive, it is desirable that the resulting software be

Center for Transportation Research, ECJ 6.10, University of Texas, Austin, Tex. 78712.

flexible in such a way that it can be easily tailored to local policies of the agency that will finally use it. Flexible PMS computer programs that allow users to change some of the data items and parameters of models or to select user-defined models are desirable (8) and may significantly reduce the cost of developing and implementing PMSs by extending the applicability of the product to many agencies. User-friendly PMS software is also important in the implementation phase. Good PMS programs should be easy to use and easy to learn. The application of graphical user interface technology greatly improves the user-friendliness of PMS software (6,7).

Geographic information system (GIS) technology has also been applied to pavement management (7); However, because of the high costs and the time and effort to implement it for pavement management (6), its applicability is restricted to medium and large cities.

Under the auspices of the Energy Research Application Program sponsored by the state of Texas, research toward the development of a comprehensive urban roadway management system (URMS) is under way. The main objective of the URMS project is to develop a comprehensive PMS for managing urban pavements effectively; the focus is to save energy in terms of roadway user operating costs and pavement M&R costs. The complete system covers M&R planning at the network level and pavement design, construction, and maintenance at the project level.

Described in this paper is the pilot program, the first part of the URMS: M&R scheduling at the network level. The objective of this initial part of the system is to schedule costeffective M&R projects at the network level. The system is designed to work in graphics mode on any IBM personal computer (or compatible) with a VGA monitor. Figure 1 shows the overall structure of the system. Basically, it is com-

FIGURE 1 Data flow chart.

posed of a data base module, a pavement evaluation module, a M&R selection module, and a reporting module. In the URMS, management sections are identified by one or more blocks. Pavement condition index (PCI), which is derived from seven distress types for either flexible or rigid pavements is the main condition variable used in the program. Other condition variables include pavement age (AGE), mixed average daily traffic (MADT), and truck average daily traffic (TADT). A decision tree that takes PCI, AGE, and TADT into account is used for assigning M&R strategy for each section. Two priority ranking matrices and a priority rating equation are combined for M&R project prioritization. The data base and all models and graphics are combined into an integrated program. The system was tested with sample data from the city of Austin, Texas.

DATA BASE MODULE

Thirty-nine data items are used in the subsystem. Some data items can be shared by the design, construction, and maintenance subsystems. Data can be classified into

• Basic data: the minimum required data for running the program,

• Street map data: street map x-y coordinate data, and

• Distress data: percentage of distress in terms of distress type and severity.

Basic data covers section code, street name, location from, location to, pavement type (flexible or rigid pavement), section length, number of traffic lanes, pavement width (total width of traffic lanes), construction year, last major rehabilitation year (medium overlay, thick overlay, or reconstruction), average daily traffic (ADT), traffic growth rate, percentage of trucks, and PCI.

Street map data are optional and distress data can also be optional if PCI is available from an external computer file that has been calculated using some other model defined by the user. The street map data cover pavement section "location from" and "location to" x-y coordinates. The seven default distress types used in the PCI calculations are

• For flexible pavements: alligator cracking, block cracking, longitudinal and transverse cracking, rutting, bleeding/ polishing, raveling/pothole, and patching.

• For rigid pavements: linear cracking, D-cracking, polishing, faulting, spalling, corner break, and patching.

Again, these distress types can be changed by users, if desired.

In the URMS computer program, management sections can be one block to several blocks long. The section code consists of a letter and six digits. The letter can be "A" for arterial street, "C" for collect, or "L" for local. The rest of the code consists of street and block sequence numbers that can be defined by the user.

All the information for one management section can be displayed on one screen as shown in Figure 2. The section is

Sect	lon Code	A000550		5	EVERI	TY
Stree	et Nane	COLORADO	DISTRESS TYPE	LOH	MED	HIGH
Loca	tion From	03 ST H	ALLIGATOR CRACK			
Loca	tion To	02 ST H	BLOCK CRACK			
Paver	ent Type	Flexible	LONG&TRANS CRACK			
Sect	ion Length (ft)	350	BUTTING			
Pave	ment Width (ft)	60.00	BLEEDING/POLISH			
Traft	Fic Lane	6	RAVELLING/POTHOLE			
Cons	truction Year	1914	PATCHING			
Majo	r Rehab Year			1		
Daily	Traffic (ADT)	1870				
Traft	Growth Rate (%)	4				
Truck	(Percent (%)		· , ,			
Cond	ition Index (PCI)	54		7		
H	Start_X	619		H/I	7	
Щ с	Start_Y	503		ht.	Γ	
E E	Ending_X	610		ШĮ	•	
*1	Ending_Y	531		חדית		

ESC=Exit F1=Help ArrowKeys PgUp/PgDn FIGURE 2 Data input and edit screen.

highlighted in the street map in the lower right box. Figure 3 shows 20 sections (records) on one screen (PT = pavement type, LEN = section length in feet, W = pavement width in feet, YEAR = construction year, r = traffic growth rate, % T = percentage of truck). The bottom box shows PCI and ADT in scale, the numbers being the last two digits of the first column that are used to find the records. The data base handling capabilities integrated into the URMS include many functions such as editing, sorting, and searching.

EVALUATION MODULE

Three types of evaluation index—PCI, pavement age index, and traffic index—are included in the URMS. PCI is a function of pavement distress type, severity, and density. The following equation is used to compute PCI:

$$PCI = 100 - \sum_{i} \sum_{j} W_{ij} \times D_{ij}$$
(1)

where W_{ij} is the weight of distress type *i* and severity type *j*, and D_{ij} is the percentage of area of distress type *i* and severity type *j*. Distress weights (range from 0 to 1) reflect the relative contribution of the distress type and severity to PCI. In general, they are determined by engineering judgment. The default values are set for the first use of the system; users can change both the distress types and weights to suit local conditions.

Pavement age is defined as the time from the year of new construction to the year of the distress survey. Because the total service lives of flexible and rigid pavements are quite different, pavement ages for the two types of pavement are calculated separately. All the evaluation indexes are divided into five classes, as shown in Figure 4. The limiting values for all the evaluations shown are default values (MADT and TADT in vehicles per lane per day), which can also be changed by the user.

Figure 5 shows the main screen of the output for the evaluation module. The left box presents the section results one by one. Detailed information of each section can also be presented at the same time using a function key. In Figure 5, the two boxes to the right present the summary evaluation results for the whole network in terms of PCI, AGE, MADT, and TADT. The lower right bar chart shows the PCI distribution. A street map that shows the distribution of pavement or traffic condition can also be drawn at this point.

M&R PROGRAM MODULE

In this pilot program, two simple models—M&R strategy assignment and priority ranking model—are combined for selecting M&R projects. First, each section is assigned an M&R strategy by the decision tree model based on the evaluation results. There are two decision trees in the URMS: one for flexible pavements and another for rigid pavements. Figure 6 shows the decision tree for flexible pavements. If

URMS						Plannin	g - Bro	owse	Da	ta			• •.•			
NO	s .	CODE	\$T	. NAME	Ξ	FROM	то		PT	LEN	н	NCY	ADT	r	% T	PCI
0021	AO	00630	CON	GRES	5	04 ST	09 ST		F	1750	60	1986	18280	4		72
0022	AO	00130	05	ST H		LAMAR	HEST P	λŲ	F	800	60	1983	19660	4		71
0023	CO	00281	15	ST E		I 35	SAN JA	CINT	F	1800	30	1985	11730	4		70
0024	CO	00890	NUE	CES \$	T	15 ST H	ML KIN	IG BL	F	1400	38	1980	4400	4		70
0025	AU	00830	ML	KING	BL	TRINITY	RED RI	VER	F	800	60	1982	30660	4		70
0026	CO	00280	15	ST E		SAN JACINT	I 35		F	1800	30	1985	11730	4		69
0027	CO	00200	11	ST E		SAN JACINT	TRINIT	r y	F	350	41	1982	13020	4		69
0028	CO	00930	RIO	GRAN	IDE	15 ST H	ML KIN	IG BL	F	1400	40	1980	2660	4		69
0029	AO	00050	01	ST H		LAVACA	COLORA	1DO	F	350	60	1984	20020	4		69
0030	AU	00650	CON	GRESS	5	15 ST	ML KIN	IG BL	F	1400	42	1980	6500	4		68
0031	CO	00180	11	ST E		CONGRESS	BRAZOS	5	F	350	60	1982	13020	4		67
0032	AO	00110	05	ST H		COLORADO	CONGRE	ES S	F	350	57	1983	18370	4		66
0033	CO	00250	12	N TZ		LAVACA	SHOAL	CREE	F	2250	22	1978	4625	4		66
0034	AO	00570	COL	ORADO	כ	05 ST H	04 ST	H	F	350	60	1978	3470	4		65
0035	CO	00210	11	ST E		TRINITY	RED RI	VER	F	700	44	1983	13420	4		65
0036	AO	00580	COL	ORADO)	06 ST H	05 ST	н	F	350	60	1976	4830	4		65
0037	CO	00291	15	ST H		RIO GRANDE	LAVACA	4	F	1540	30	1985	13975	4		65
0038	AO	00850	ML	KING	BL	CONGRESS	LAVACA	3	F	700	60	1982	27130	4		65
0039	AO	00870	ML	KING	BL.	GUADALUPE	NUECES	5	F	450	60	1982	27130	4		65
0040	AO	00880	ML.	KING	BL	NUECES	RIO GF	RANDE	F	350	60	1980	27130	4		65
200 100 100	k k D															
🖾 AD	T 5															:
PC	I					25		30	כ		_	3	5		4	o

ESC=Henu F1=Help Arrow_Key=Hove F3=DataSheet F5=Sort F8=Search PgUp/PgDn FIGURE 3 Browse data screen.

PROGRAM YEAI PAVEMENT COI	R 1992	(PCI)			
	1 Bad	2 Poor	3 Fair	4 Good	5 Excell
PCI	< 30	30 - 50	50 - 70	70 - 90	>= 90
Rigid	> 40	40 - 30	30 - 20	20 - 10	<= 10
TRAFFIC CLA	SSIFICATION				
TRAFFIC CLA	SIFICATION	2 Heavy	3 Medium	4 Light	5 V.Light
TRAFFIC CLA ADT(x1000) 1. Mixed	SSIFICATION 1 V.Heavy 3 4.0	2 Heavy 4.0 - 3.0	3 Medium 3.0- 2.0	4 Light 2.0 - 1.0	5 V.Light <= 1.0

ESC=Exit F2=Save PgUp/PgDn

FIGURE 4 Evaluation criteria screen.

SC=nenu F1=Heip F3=DataSneet F5=Sort F8=Search F10=Map P9Up/PgDn

FIGURE 5 Evaluation main screen.

the total required M&R cost is greater than the available budget, prioritization is performed. In the decision tree, PCI, AGE, and TADT are taken into account. Up to 18 types of M&R strategies can be defined by the user. The default types for flexible pavements are

- Do nothing,
- Routine maintenance,
- Thin overlay,
- Medium overlay,
- Thick overlay, and
- Reconstruction.

For the sake of simplicity, the five classes of each variable are further combined into two or three groups. Users can group them by changing the variable codes, as illustrated in Figure 6.

The prioritization procedure can be conducted using one or more variables. Basically, there are two ways to construct a priority ranking model if multiple variables are to be considered: the matrix method and the equation method. A more flexible way, which combines two matrices and an equation for computing the priority index (PIX), is presented in Figure 7. As shown in the figure, PIX is a function of the PCI, pavement age, mixed traffic, and street class. Any of the four variables can be ignored by setting one or more of the parameters to 0. For example, street class and traffic variables can be eliminated by changing the weight of 30 to 0 in the equation. Street class will also not be taken into account if each row number is the same in the right matrix. By analyzing the information in Figure 7, it can be implied that the smaller the PIX, the higher the priority for that section.

The URMS currently determines an annual M&R program. It can be improved to determine multiyear M&R program with the inclusion of pavement deterioration models. It currently can approximate M&R programs for up to 5 years on the basis of the PIX approach as discussed. The basic idea of the approximation is that sections of higher priority will be scheduled for M&R earlier than those of lower priority. If some noncontiguous short sections are selected by the program, these sections can be combined manually.

The main output screen for the M&R module is shown in the background of Figure 8. In Figure 8 the last four columns present the basic outputs M&R strategy (S), PIX, recommended action year (RAY), and M&R cost in thousands of dollars, for each section. Figure 8 also presents the summary information of the recommended M&R program that covers the total M&R needs, including the recommended number of M&R sections and required M&R budgets. The M&R information for each section can also be summarized in bar charts and presented in a street map with different colors.

ESC=Exit F1=Help F2=Save PgUp/PgDn

FIGURE 6 M&R strategy assignment decision tree screen.

ESC=Exit F2=Save F9/F10=Select_DataBox PgUp/PgDn

FIGURE 7 PIX screen.

URMS	· · .		Plannin	g - Mô	R Pr	rogram			5			
NO	S. CODE	ST . NAME	FROM	LEN	н	ADT	r 7	KT PCI	\$	PIX	RAY	COST
0001	A000540	COLORADO	02 ST H	350	60	1870	4	49	4	8.1	1992	51
0002	C000940	RIO GRAND	E ML KING BL	1925	40	6940	4	39	З	8.9	1992	154
0003	C000160	07 S <u>T E</u>	BRAZOS	2150	60	11630	4	60	2	11.0	1992	201
0004	A000560	COLO	SUMM	ARY OF	M&R	NEEDS				11.6	1992	33
0005	A000550	COLO		_			FC			11.6	1992	33
0006	A000260	12 5 3	otal section	3	•		90			11.9	1992	38
0007	A000870		otal Length		:	£	9.93	(niles	>	12.2	1992	54
0008	HUUU850	NL K 3 S	ections Need	M&R	:		36			n2.2	1992	84
0009	0000090		enath Need M	ÅR			5 82	(miles	,	12.2	1992	42
0010	A000860								-		1992	92
0011	0000350	12 K 5 P	lêR Budget Ne	eded	:	1726	5.88	(k#)		42.2	1332	00
0012	000230	12 3 6 F	vailable MôR	Budge	t :	800	00.0	(k#)		17 0		33 46
0014	0000830		Budget Balanc	e	:	-926	5.88	(k8)		42 9		44
0015	A000830								1	12 9		40
0016	000040	05 5	elected non	266410	ns					13 4		40
0017	C000210	11 5	Nunber		:		11			13 4		62
0018	0000200	11 5	Length		:	1	.51	(niles	>	13 4		29
0019	0000570	COLO	- D				704	(1		13 7		33
0020	A000580	COLO	BUAGET		•		751	(K0)		13.7		33
				· · ·								
201	K											
10	<}											
100	o} <u></u>											
PCI	۲ · · ·		5	10	0				1	5		20

ESC=Exit

FIGURE 8 M&R program screen.

REPORT MODULE

URMS can generate seven types of report: four types are listings, and three types are summaries. Listing reports include

- 1. Basic input and output information,
- 2. Recommended M&R projects,
- 3. Pavement distress data, and
- 4. Street map x-y coordinates.

Summary reports include

- 1. Street functional classes and pavement types,
- 2. Pavement condition and traffic evaluation, and
- 3. M&R needs and recommended M&R projects.

Figures 9 through 11 present three sample reports. Basic input and output information for 35 sections are listed in Figure 9. Figure 10 presents the summary evaluation infor-

URBAN ROADWAY MANAGEMENT SYSTEM (URMS V.1.0) Copyright (c) 1992 The University of Texas at Austin

Report No: 7 - 1

LISTING OF BASIC INPUT AND OUTPUT INFORMATION

Input	File: A	USTIN.PLA								Repo	rt Date:	: 17	2-11	- 1992	<u> </u>		Pag	je: 1
					T		 W	T	CY	L	R T			 P	M	Р	A Y	M C
					Y	Е	I	R	ΟΕ	A	ER			С	&		СЕ	& 0
					Ρ	N	D	A	NA	S I	A A H	R	T	I	R	I	TA	RS
SECTIO	DN IDENT	IFICATION			Ε	G	T	F	SR	TE	BFD	A	R			N	IR	т
			• • • • • • • • • • • • • •			Т	Н		Т		FT	Т	U			D	0	
	SECTION	STREET	LOCATION	LOCATION		н		L	R	1	Y 1	Ε	С			Ε	N	
NO	CODE	NAME	FORM	TO		(ft)	ft	N	U	1	RC	*	*			x		K\$
			34955555555		==			==:		2222:					:==:			
00001	A000540	COLORADO	02 ST W	01 ST W	F	350	60	6	1914		1870	- 4		49	4	8.1	1992	51.3
00002	C000940	RIO GRANDE	ML KING BL	24 ST W	F	1925	40	4	1980		6940	4		39	3	8.9	1992	154.0
00003	C000160	UT ST E	BRAZOS	1 35	F	2150	60	ò	1928		11630	4		60	2	11.0	1992	200.7
00004	A000560	COLORADO	04 ST ₩	03 ST W	F	350	60	ò	1914		3470	4		58	2	11.0	1992	32.1
00005	AU00550	COLORADO	US ST W	UZ ST W	F	350	60	°,	1914		1870	4		54	4	11.0	1992	32.1
00006	AUUU200	12 SI W	SHUAL CREE	LAMAK	1	4/3	40	4	1978		9250	4		03	2	11.9	1002	30.0
00007	A000850	ML KING BL	CUNGRESS		1	700	60	ç	1982		27130	4		02	2	12.2	1992	84.0
00008	AUUU880	ML KING BL	NUECES	RIU GRANDE	1	350	00	ç	1980		179(0	4		0 0	2	12.2	1002	42.0
00009	C000090	UZ SI E	BRAZOS	CONGRESS	r	350	60	ç	1978		13860	- 4		50	2	12.2	1992	42.0
00010	AUUU00U	ML KING BL		GUADALUPE	ŗ	500	00	2	1902		27130	4		0U 4E	2	12.2	1002	5/ 0
00011	AUUU8/U	ML KING BL	GUADALUPE	NUECES	-	450	22	2	1070		2/130	*		65	27	12.2	1992	54.0
00012	1000230	IZ SI W		SHUAL CREE		1200	~~~	2	1000		4023	*		00 7/	2	12.2		99.0
00013	AUUU02U	AL KING BL	CUNGRESS	1 KINIIT	F	750	40	2	1002		30000	*		74	-	12.9		10.0
00014	A000840	ML KING BL	RED RIVER	1 33	۲ ۲	750	60	2	1902		30/30	4		00 70		12.9		10.0
00015	A000430	ML KING BL	IKINI IT	KED KIVEK		250	6U 57	2	1092		19770	*		70	7	17 1		70.7
00010	AUUU110		CULURADU	CONGRESS	r	330	3(,	1903		103/0	4		00	2	13.1		39.9
00017	0000210	11 SI E	IKINIIT	KED KIVEK	r	700	44	4	1903		13420	- 4		60	2	13.4		01.0
00010	A000E80	11 SI E	SAN JALINI	IKINIIT	5	330	41	4	1902		/ 970	7		45	2	12.4		20.1
00019	AUUU300	COLORADO	UD SI W		r	330	60	2	1070		4030	*		0) 4E	2	13.7		22.1
00020	AUUU370	COLORADO	UD SI W	U4 SI W	-	330	00	2	19/0		3470	*		71	4	13.7		32.1
00021	A000130		LAMAK	WEST AV	r	2450	0U	2	1903		19000	*		7	-	13.0		77 0
00022	AUUU120	05 SI W	WESTAV		-	2030	70	7	1005		17076	;		47	-	13.0		71 0
00023	000290	12 SI W	LAVALA	KIU GRANDE	-	1540	20	2	1005		13973	*		65	2	17.0		71.9
00024	0000291	13 SI W	RIU GRANDE	LAVALA	-	700	30	2	1000		13973	- 4		77	4	13.9		11.7
00025	0000220	11 SI E	RED RIVER	1 33	r	700	44	4	1902		12420	4		11	4	14.1		77 7
00020	0000190	11 SI E	BRAZUS	SAN JALINI	_	350	40	2	1002		12020	7		60 41	2	14.3		72.1
00027	C000230	11 SI W	CONCRESS	RDAZOS		350	55	5	1092		112030	4		61 41	2	14.3		20.0
00020	C000130	07 SI E	CONGRESS	BRAZUS	F	350	40	4	1092		17020	ž		47	2	14.3		27.7
00029	A0000/00	11 SI E	COLORADO	CONCRESS	г с	350	60	4	108/		10800	- 7		64	2	14.5		32.1
00030	A000040	01 51 W	LAVACA	COLORADO	Ē	350	<u>40</u>	4	108/		20020	7		40	5	14.5		32.7
00031	A0000000	LAVACA ST	NA ST U	11 ST U	-	2650	60	~	1080		16700	7		77	5	14.7		32.1
00032	A000700	12 ST U		LIEST IVNN	- F	2750	44	4	1080		0250	7		75	ň	14.7		
00033	A000270	12 31 W	SAN IACINT	CONCRESS	г с	700	57	7	1083		16180	7		80	ň	14.7		
00034	c000700	15 ST E	SAN JACINI	1 35	F	1800	30	ž	1085		11730	7		60	2	14.8		84 0
=====						=====			=====		=======					=====		
Pavem Flexil 0=D 5=R	ent Type ble Pave D NOTHIN FCONSTRU	F = Flex ment M&R St G 1 CTION	ible Paveme rategy =ROUTINE MA	nt R = Ri INT 2=	gi TH	d Pave IN OVE	RLAY	;	:	3=ME(DIUM OVE	ERL	4Y	4:	=TH	ICK O	VERLA	1
Rigid	Pavemen	t M&R Strat	eav															
0=D(D NOTHIN	G 1	=ROUTINE MA	INT 2=	TH	IN AC	OVER	LA	Y :	3=MEI	DIUM AC	ovi	ERLA	Y 4:	=TH	ICK A	C OVER	RLAY
				-									-					
20000		===============	==========	**********	==	*====		==:		====:		===:	====		===	=====		
City:	AUSTIN	User	: Universit	y of Texas		A	Inaly	/st	: Che	n								

FIGURE.9 Sample listing printout.

URBAN ROADWAY MANAGEMENT SYSTEM (URMS V.1.0) Copyright (c) 1992 The University of Texas at Austin

Report No: 7 - 6

Input	File: AUSTIN	I.PLA				Report Date: 12-11-1993						
COND I T CODE	ION CLASS DESCRIPTION	LIMI VALU	TING	SEC1 NUME	ION BER %	LENGTI MILES	H %	AREA 1000 SY	***			
* PCI									======			
1	Bad	<=	30	0	0.0	0.0	0.0	0.0	0.0			
2	Poor	30 -	50	2	3.6	0.4	4.3	10.9	3.7			
3	Fair	50 -	70	29	51.8	4.3	43.8	118.0	40.3			
4	Good	70 -	90	23	41.1	4.9	49.2	154.4	52.8			
5	Exce	>	90	2	3.6	0.3	2.7	9.3	3.2			
* ACE												
1	V.OLd	>	20(40)	. 4	7.1	0.6	6.1	21.3	7.3			
ż	Old	15(30) -	20(40)	,	8.9	• 0.7	7.2	14.6	5.0			
3	Fair	10(20) -	15(30)	26	46.4	4.8	48.6	146.4	50.0			
4	New	5(10) -	10(20)	21	37.5	3.8	38.1	110.3	37.7			
5	V.New	<=	5(10)) · O	0.0	0.0	0.0	0.0'	0.0			
* MADT	•••••											
1	V. HVV	>	4000	10	17.9	1.6	16.4	46.1	15.8			
ż	Heavy	3000 -	4000	17	30.4	3.1	30.7	91.0	31.1			
3	Mediu	2000 -	3000	12	21.4	2.2	22.4	62.6	21.4			
4	Light	1000 -	2000	9	16.1	2.1	21.1	63.3	21.6			
5	V.Lgt	<=	1000	8	14.3	0.9	9.3	29.6	10.1			
* TADT												
1	V.Hvy	>	400	10	17.9	1.6	16.4	46.1	15.8			
2	Heavy	300 -	400	17	30.4	3.1	30.7	91.0	31.1			
3	Mediu	200 -	300	12	21.4	. 2.2	22.4	62.6	21.4			
4	Light	100 -	200	9	16.1	2.1	21.1	63.3	21.6			
5	V.Lgt	<=	100	8	14.3	0.9	9.3	29.6	10.1			
	TOTAL			56	100.0	9.9	100.0	292.6	100.0			
City:	Demonstratio		User:	University	of Texas	Ana	alvst: Ci	 hen	423			

SUMMARY OF PAVEMENT CONDITION AND TRAFFIC EVALUATION (1991)

FIGURE 10 Pavement evaluation summary printout.

mation of pavement condition and traffic. Two types of M&R summary are given in Figure 11. One presents the summary of M&R needs and another shows the recommended M&R sections for the analysis period. In this example 36 flexible pavement sections require maintenance or rehabilitation at a cost of \$1.73 million; but only \$0.8 million is available. Because of the shortage of funds, only 11 pavement sections are selected for maintenance or rehabilitation out of the 36 candidate sections.

CONCLUSIONS

A graphical URMS was described in this paper. The system was written in Turbo Pascal and is designed for scheduling cost-effective M&R projects at the network level. The functionality of the system was tested with sample data from Austin, Texas. The system is characterized by • Simplicity: the system uses reduced pavement data, all basic data can be collected easily. It includes simple models that can be easily understood and used.

• Flexibility: users can change some of the data items and all the model parameters.

• User-friendliness: all the input and output are conveniently organized through the use of a graphical interface. Online help is provided and the system is easy to learn and use.

ACKNOWLEDGMENTS

This work was sponsored by the state of Texas. The authors are grateful to the city of Austin for supplying actual data to test the program. Appreciation is also extended to all members of the project advisory committee for their valuable suggestions and recommendations.

SUMMARY OF MAINTENANCE & REHABILITATION PROGRAM Flexible Pavements

1. Maintenance & Rehabilitation Needs

Input	File: AUSTIN.PLA			Report Date: 12-11-1992						
M&R S Code	TRATEGY Description	UNIT COST (\$/SY)	SECTION Number	* *	LENGTH (mile)	x	BUDGET \$1000	%		
0 1 2 3 4 5	DO NOTHING ROUTINE MAINT THIN OVERLAY MEDIUM OVERLAY THICK OVERLAY RECONSTRUCTION	0.00 2.00 14.00 18.00 22.00 45.00	20 9 15 11 1 0	35.7 16.1 26.8 19.6 1.8 0.0	4.11 1.97 2.19 1.59 0.07 0.00	41.4 19.8 22.1 16.0 0.7 0.0	0.00 122.00 850.34 703.20 51.33 0.00	0.0 7.1 49.2 40.7 3.0 0.0		
	TOTAL		56	100.0	9.93	100.0	1726.9	100.0		

2. Recommended M & R projects for 1992

Input	File: AUSTIN.P	LA			R	eport D	ate: 12-1	1-1992
M&R S Code	TRATEGY Description	UNIT COST / (\$/SY)	SECTION Number	****** %	LENGTH (mile)	****	BUDGET \$1000	*
0 1 2 3 4 5	DO NOTHING ROUTINE MAINT THIN OVERLAY MEDIUM OVERLAY THICK OVERLAY RECONSTRUCTION	0.00 2.00 14.00 18.00 22.00 45.00	45 0 3 7 1 0	80.4 0.0 5.4 12.5 1.8 0.0	8.43 0.00 0.54 0.90 0.07 0.00	84.8 0.0 5.4 9.1 0.7 0.0	0.00 0.00 266.00 474.00 51.33 0.00	0.0 0.0 33.6 59.9 6.5 0.0
 City:	TOTAL AUSTIN	User: University of T	56 ====================================	100.0 ====== Analy	9.93 	100.0 =====	791.3	100.0

FIGURE 11 M&R program summary printout.

REFERENCES

- R. Haas and W. R. Hudson. Pavement Management Systems. Robert E. Krieger Publishing Company, Inc., Melbourne, Fla., 1986.
- L. Hill, A. Cheetham, and R. Hass. Development and Implementation of a Pavement Management System for Minnesota. In Transportation Research Record 1311, TRB, National Research Council, Washington, D.C., 1991, pp. 230-241.
- 3. Micro PAVER User's Guide, Version 3.0. Construction Engineering Research Laboratory, U.S. Army Corps of Engineers, Jan. 1992.
- R. E. Smith, M. Y. Shahin, M. I. Darter, and S. H. Carpenter. A Comprehensive Ranking System for Local Agency Pavement Management. In *Transportation Research Record 1123*, TRB, National Research Council, Washington, D.C., 1988, pp. 67-76.
- A. Mohseni, M. I. Darter, and J. P. Hall. Illinois Pavement Network Rehabilitation Management Program. In *Transportation Research Record 1272*, TRB, National Research Council, Washington, D.C., 1990.
- B. T. Dietrich. Pavement Management Graphic Reporting System Using Existing IBM Hardware and SAS Software. In *Transportation Research Record 1311*, TRB, National Research Council, Washington, D.C., 1991.
- Washington, D.C., 1991.
 C. W. Schwartz, G. R. Rada, M. W. Witczak, and S. D. Rabinow. GIS Applications in Airfield Pavement Management. In *Transportation Research Record 1311*, TRB, National Research Council, Washington, D.C., 1991, pp. 267-276.
- 8. Pavement Management Systems. Organization for Economic Cooperation and Development, Paris, France, 1987.