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Probability of Overload at Signalized 
Intersections · 

STAN TEPLY 

Quality of service at transportation facilities can be determined 
from a number of objectively measurable criteria. For signalized 
intersections, delay has been accepted internationally as the prime 
measure of performance and, in the United States, as the sole 
basis for the level-of-service measures. In other countries, sev
eral other parameters or their combinations are also used, usually 
as additional measures related to specific_ design or evaluation 
objectives. A pilot project at the University of Alberta, which. 
investigated the potential of a supplementary criterion-the 
probability of discharge overload-is the basis of the discussion. 
This measure would indicate in how many cycles the number of 
vehicles left over from the previous cycle plus the number of 
vehicles arriving exceeds capacity. Such information would assist 
in the analysis of a specific lane problem. Vehicle demand in 
successive cycle~ is treated as a series of dependent events on the 
basis of the Poisson distribution of arrivals. Surveys and simu
lations of an overload factor, which somewhat extends the con
cept of the load factor used in the 1965 Highway Capacity Manual, 
are used as indications of which probability type would provide 
the most practical representation of measurable parameters. The 
results of the pilot project suggest that the probability of an over
load in one, two, or both of two consecutive cycles is a strong 
candidate to approximate the percentage of cycles with discharge 
overloads. It is mathematically simple and, because it resembles 
the overload factor, easy to measure. 

The quality of service offered by a transportation facility 
manifests itself to the users and to the designer or analyst in 
a number of ways. The 1985 Highway Capacity Manual (HCM) 
(1) employs such criteria as speed, traffic density, percentage 
time delay, reserve capacity, and so on, depending on the 
type of facility. T.he measure used for signalized intersections 
is the average stopped vehicular delay, which is applied as 
the sole characteristic of levels of service. In many specific 
cases, however, the traffic engineer must also analyze other 
operational features that relate more closely to the problem 
at hand, such as the capacity, length of the queue in important 
lanes, probability that an approach or a lane will be oversatu
rated, delay to passengers, number of stops, emissions, or 
cost. 

The 1965 HCM (2) defined load factor as the measure 
underlying the level of service. The 1984 Canadian Capacity 
Guide for Signalized Intersections (CCG) (3) does not specify 
levels of service but relates the ranges of average overall delay 
to the quality of operation. It also recommends additional 
criteria, such as the probability of clearance and queueing. 
The second edition will include a number of other measures 
of effectiveness (4). A 1983 Australian Road Research Board 
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report (5) employs overflow queue, delay, number of stops, 
and queue length. 

ENGINEERING EVALUATION AND QUALITY OF 
SERVICE 

An examination of the definitions of various criteria used for 
signal design and analysis indicates that there are two differ
ent, but related, reasons for specific measures describing in
tersection performance: 

• Relating the quality of operation to- the general public 
and politicians, and 

• Identifying specific features of the operation with the in
tent of revealing problems, their causes, and contributory 
factors. 

The first reason is clearly related to perceptions. The level
of-service concept represents an attempt to describe the ranges 
of satisfaction provided by the facility. Traffic engineers apply 
categories of an objective measure to define different levels 
of service. The objective measure (e.g., delay in the 1985 
HCM) has been selected on the basis of its perceivability by 
the user of the facility or a decision maker. 

The second reason may employ a whole range of opera
tional characteristics. If, for instance, a frequent lane blockage 
by a spillover queue has been the problem, the analyst should 
be in the position to determine both the length of the queue 
and the frequency of this undesirable event. Therefore, it 
should be possible to both measure and calculate these op
erational features. Naturally, the computational process may 
involve analytical formulas, iterative procedures, or simulation. 

The focus of this paper is on cycle overload as a specific 
engineering operational criterion. It discusses its forms and 
past formulations and presents potential analytical and mea
surement methods to make its use practical. The intention is 
not to substitute delay as a measure underlying levels of ser
vice, but merely to provide the analyst with an additional 
tool. 

LOAD FACTOR 

The load factor was used as an intersection performance cri
terion to determine the level of service in the 1965 HCM. It 
was classified as a part of environmental conditions, that is, 
conditions that cannot be readily changed by alteration of 
design or control features of the intersection. 
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This factor was defined very specifically as follows: 

The load factor is a measure of the degree of utilization of an 
intersection approach roadway during one hour of peak traffic 
flow. It is the ratio of the number of green phases that are loaded, 
or fully utilized, by traffic (usually during the peak hour) to the 
total number of green phases available for that approach during 
the same period. As such it is also a measure of the level of 
service on the approach, as discussed later. The load factor for 
a normal intersection may range from a value of 0.0 to a value 
of 1.0. (2) 

The 1965 HCM defined a loaded cycle as a cycle in which 
there are vehicles ready to enter the intersection when the 
signal turns green and in which vehicles continue to be avail
able to enter during the entire phase with no unused time or 
exceedingly long spacings between vehicles at any time be
cause of lack of traffic. It was pointed out that the ending of 
a loaded green phase will usually (i.e., not necessarily) force 
some vehicles to stop, and that any stoppages that occur must 
be caused by conditions at the intersection under study, not 
by conditions elsewhere. This description therefore also im
plies that the just-at-capacity cycles were included (i.e., more 
than just overloaded cycles were considered). 

A number of research papers analyzed load factor appli
cations and their relation to delay using simulation (6), mea
surements, or analytical methods (7-9). 

Experience with the 1965 HCM indicated that the major 
drawbacks of the load factor application were as follows: 

• No computational procedures for design situations were 
available in the 1965 HCM. Miller (10), in 1968, proposed a 
formula derived from May and Pratt's simulation (6) as follows: 

where 

<f> = (1 - x) VSglx 

and 

LF = load factor, 
x = degree of saturation (i.e. qc/sg), 
q = arrival flow, 
s = saturation flow, 
g = effective green interval, and 
c = cycle time 

(1) 

(2) 

• The load factor determination did not include its variabil
ity even under identical traffic conditions. For instance, mea
surement of the load factor during the same periods of similar 
days with the same volumes and signal timing will bring about 
a whole range of load factors. A single measurement is only 
a part of an unknown distribution and, in itself, may not tell 
much about the average or the deviations. 

• No recognition was given of temporary, very short traffic 
flow peaks or of the fact that the number of overloaded cycles 
is time-dependent. The chances that a cycle following an over
loaded cycle will also be overloaded are higher than for a 
cycle following a cycle that left no overflow queue. This is 
recognized in the inclusion of the evaluation time element in 
some random overflow delay formulas (3 ,5). 
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• The loaded cycles are difficult to identify because no vis
ible demonstration of a zero overflow queue occurs. 

PROBABILITY OF ARRIVAL OVERLOAD 

There were other attempts to overcome the problems of load 
factor calculations. The most obvious candidate for a similar 
surrogate measure was the relationship between the arrival 
distribution and cycle capacity. 

This measure is defined as the probability that the number 
of vehicles arriving during a cycle exceeds the average cycle 
capacity. It is based on the counting distribution of vehicle 
arrivals during individual cycles. Under the assumptions of a 
fixed-time signal operation, a steady mean of the arrival distri
bution, and the usual conditions at signalized intersections, 
the arrival fluctuations can be approximated by the Poisson 
distribution (3, 11-13). 

The Poisson distribution also applies to approach lanes at 
intersections within coordinated signal systems. Although the 
internal arrival patterns during individual portions of the cycle 
depend on the quality of the progre·ssion (and may follow 
different counting distributions), the cycle-based arrival distri
bution can be expressed by the Poisson distribution in most 
cases. This distribution is well known to practitioners because 
it has been widely used as a basis for allocating green intervals 
or evaluation (3,11,12). 

The probability of an overload in a cycle (i.e., not a loaded 
cycle in terms of the 1965 HCM), provided that the preceding 
cycle was not overloaded, equals the probability that the num
ber of vehicles arriving _during that cycle exceeds its capacity: 

P(x > X) = 1 - "Le-mmi/i! for i = 0 to i = X 

where 

x = number of arrivals in a cycle, 
, X = cycle capacity, 

e = basis of natural logarithms, 
m = average number of arrivals per cycle, and 

i = counter. 

(3) 

The number of arrivals is normally expressed in vehicles 
(veh) per cycle, although passenger car units per cycle can 
also usually be used without any loss ofrepresentative power. 

The formula corresponds to percentage of cycle failures by 
Drew and Pinnell (13), which was also Poisson-based, relating 
the average number of arrivlas per cycle to the probability of 
X + 1 or more arrivals per cycle. 

As shown in Figure 1, this probability is not symmetrical 
(because of the probability of 0 arrivals). If the average num
ber of arrivals equals cycle capacity, the probability of more 
vehicles arriving than capacity is still less than 0.5. For ex
ample, for X = 6.0 veh/cycle, and m = 6.0 veh/cycle, 

Parrival overload = P(x > X) = P(x > 6) = 0.394 

In instances for which capacity well exceeds the average 
number of arrivals, this simple distribution can be used as an 
approximation of the number of cycles that will be over
loaded. Nevertheless, as the average number of arrivals in
creases (and capacity remains constant) the number of over-
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FIGURE 1 Poisson distribution for probability of number of arrivals 
exceeding capacity of a cycle (probability of arrival overload) for cycle tinie as 
time basis for mean of arrival distribution (m). 

loaded cycles may exceed this probability measure by a wide 
margin. For example, in the preceding case of an average 
number of arrivals equal to six and capacity of six, the queueing 
system is unstable. Depending on the starting conditions (the 
presence of an initial queue), the probability that a cycle will 
be overloaded may reach 100 percent despite the fact that the 
arrivals at the end of the queue still follow the Poisson distri
bution. Naturally, if the average number of arrivals is greater 
than the cycle capacity, the queue will be consistently growing. 
The computation becomes meaningless because all cycles will 
be overloaded. 

For this reason, it is advisable not to confuse the arrival 
distribution with the probability that a cycle will be over
loaded. It is, however, still a useful simple measure. It has 
been suggested during the review process of the CCG to call 
it probability of arrival overload, representing the frequency 
with which more vehicles than the cycle capacity may arrive. 
Keeping in mind that since in a random process the number 
of vehicles arriving during one cycle does not depend on the 
number of arrivals in the previous cycle, the probability of 
arrival overload in any cycle is independent of the probability 
of arrival overload in previous cycles. As a result, probability 
of arrival overload does not indicate the likelihood that the 
sum of vehicles waiting and arriving exceeds cycle capacity. 

PROBABILITIES OF DISCHARGE OVERLOAD 

Miller also suggested a formula for the proportion of phases 

I 

in which the queue is cleared (JO). For consistency, a com
plementary probability term will be used in this paper as 
follows: 

p cycle overload (4) 

when~ 

<f> (1 - x) vsglx 

and 

x = degree of saturation (i.e., qc/sg), 
q arrival flow, 
s - saturation flow, 
g effective green interval, and 
c cycle time. 

Messer and Fambro (14) have shown a comparison of Pois
son probability of arrival overload, Miller's load factor, and 
Miller's probability of cycle overload. 

Obviously, because of the number of cycles considered in 
the numerator 

•Load factor: (xarriving -+ Xwaiting) 2: X (where X denotes 
cycle capacity), 

•Probability of cycle overload: (xarriving + Xwaiting) > X, and 
• Probability of arrival overload: (xarriving) > X, the follow

ing relationship must exist: 

LF > I',,ycle overload > parrival overload 

Equations proposed originally for the second edition of the 
CCG also featured an empirical negative exponential form 
( 4) but included a calibration parameter for the series of the 
means of arrival distributions as follows: 

}J,,ycle overload = lOQe-[X-(m-I)]la (%) 

where 

X = cycle capacity, 
m = means of arrival distribution, and 
a = calibration parameter. 

(5) 

The problem of sequential overloads merits closer inspec
tion. Figure 2 illustrates possible cycle overload situations in 
a sequence of probabilities for an average of two arrivals per 
cycle and a cycle capacity also equal to two. The fast growing 
extent of this somewhat extreme case of a probability tree is 
the reason that such small numbers were chosen. 
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FIGURE 2 Probability tree for sequence of signal cycles (mean arrivals = 2 and cycle capacity = 2-an example of 
discharge overload in second of two cycles. 

Given that there was no leftover queue in the previous 
cycle, the probability that the first cycle will be overloaded 
is equal to the probability of arrival overload, that is, to the 
probability that more vehicles arrived than the cycle can 
discharge. 

Because the number of arrivals in individual cycles can be 
treated as independent events, the probability that the ca
pacity of the second cycle will be exceeded is the sum of two 
probabilities as follows: 

1. If fewer or equal numbers of vehicles than capacity ar
rived during the first cycle, the probability that more vehicles 
than capacity arrive iri the second cycle, and 

2. If more vehicles than capacity arrived during the first 
cycle, the sum of the probabilities that the number of leftover 
vehicles together with the number of vehicles arriving exceeds 
capacity. 

Because the overload in the second cycle depends on the 
outcome of the first cycle, events must be treated as depen
dent. The dependence is reflected in the change of the prob
ability assigned to the dependent event. 

Figure 2 shows that the resulting probability can be ex
pressed as 

Pdischarge overload in 2nd cycle = [P(x :5 X)1st * P(x > X)znd] 

+ [P(x = X + l)1st * P(x ~ X - O)znd] 

+ [P(x = X + 2)1st * P(x ~ X - l)2nd] 

+ [P(x = X + 3)1st * P(x ~ X - 2)znd] 

+ [P(x = X + 4)1st * P(x ~ X - 3)znd] 

+ and so on (6) 

where x is the number of arrivals in a cycle and Xis the cycle 
capacity. 

The probability of a discharge overload in the first, second, 
or both cycles (i.e., at least one overload in these two cycles) 
can be determined as follows: 

p discharge overload in at least 1 of 2 cycles 

= [ P(x :5 X)ist * P(x > X)20d] + P(x > X) * 1.0 (7) 
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Or, in an easier way, examining the probability tree, as one 
minus the probability of no overload in either of the two 
cycles, that is 

pdischarge overload in at least 1of2 cycles = 1 - [ P(x :5 X) ]2 (8) 

Similarly, the probability of at least one overload in three 
consecutive cycles can be expressed as 

pdischarge overload in at least 1 of 3 cycles = 1 - [ P(x :5 X) ]3 (9) 

In an analogous way, one can also use the probability tree 
to determine the probability that two of two, two of three, 
or one of two cycles, and so on, will feature a discharge 
overload. 

Figure 3 shows examples of some of such Poisson-based 
calculations as functions of capacity as an independent vari
able. Figure 3 shows (a) a simple Poisson distribution for the 
arrival of overload (equal to the probability of discharge over
load in the first cycle); (b) distribution of discharge overloads 
in the second of two consecutive cycles; (c) distribution of 
discharge overloads in the first, second, or both (i.e., in at 
least one of two) consecutive cycles; ( d) distribution of dis
charge overloads in both of two consecutive cycles; and 
( e) distribution of discharge overloads in at least one of three 
consecutive cycles. It can be seen that for the greater degrees 
of saturation reflected here in the greater differences between 
the number of arrivals per cycle and cycle capacity, the curves 
are close enough. Any of them could be used for practical 
considerations (perhaps with the exception of the overload in 
both cycles). This includes the curves representing arrival 
overload, shown as probabilities of discharge overload in the 
first cycle, that is, simple Poisson distributions. As capacity 
approaches the average number of arrivals (or vice versa in 
the real world), significant dissimilarit~es emerge. 

A natural question is, What function would be a realistic 
representation of a true set of events during a longer period 
of time? Theoretically, many more than two or three con
secutive cycles may be overloaded, or many combinations of 
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overloads and number of cycles are possible. The probability 
of at least one overload in n cycles has been used as an ex
ample. Figure 4 shows that this probability converges when 
many cycles are considered. Note that with the increasing 
degree of saturation (i.e., ml X) the distributions become flat
ter and the mean simulated overload factor (OF) increases. 

However, there appear to be two practical limitations to 
the number of cycles that should be used: (a) within a real 
set of events, there may be many cycles with no overload (as 
a result, the probability tree restarts itself); and (b) longer 
periods of consecutive overloads (say, 10 min or more, i.e., 
5 to 10 cycles) usually result from a sudden surge in traffic 
demand (from a change of the arrival mean). As a conse
quence of consecutive overload, events are not random any 
more, and this condition may be hidden from the analyst, 
even when a peak hour factor (1) is considered. 

An additional argument lies in the basic notion of the prob
ability of independent events-probability defined as the 
number of cases favorable divided by the total number of 
cases. Whereas this principle applies within the different levels 
of the probability tree, it is not valid for the whole chain of 
events because the individual probabilities change with the 
levels (i.e., are dependent). Figure 4 illustrates this point. For 
the first few cycles the probability that there will be an over
loaded cycle is represented by a definite number for any ca
pacity. If, however, capacity equals or is less than the number 
of arrivals (i.e., X s; 6), the chances that _a cycle within the 
series will be overloaded quickly approach certainty with in
creasing time (i.e., with the number of cycles considered). 

The last deliberation also illuminates the difference be
tween the 1965 HCM load factor and the probability of dis
charge, defined as the probabilities of overloads in the second 
or the third cycle, one overload in two cycles, two overloads 
in three cycles, or in any other way. The load factor was 
considered more as a sequence of independent events than a 
chain of dependent events. It was also frequently interpreted 
as the chance of an individual cycle being overloaded. This 
way of looking at the problem led quite naturally to its repre
sentation by the probability of arrival overload, that is, by a 
simple Poisson distribution. 
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FIGURE 3 Probability distributions of overloads for mean number of arrivals in cycle (m). 



106 TRANSPORTATION RESEARCH RECORD 1398 

Probability of Overload 

1.01~::::::::::::::::::;:~::;::::~~~!111 
. ' . ---L--------L. -- --------'---------'---------'--------------

' ' . ' -------- .. --------.---------.--- ____ ,.. ______ _ 
I I I I 0.8 
' ' . . . . ' . 
I I I I . . . 

-------r------r-------r--------: ------ . ' ' ---;--------;--------;-----

• I I t ________ ... ________ 1,. ________ ... ________ 1,. _____ -

I I I I 0.6 ~ ---- --- -~ - -- - - -- - ~ - - -- -- - - ;-- - - - - -- - -
o o I o 
I I I I 
I t I I 

I I I I I 
I I I I I 

0.4 :::r: r::J:: >:< __ 
Number of cycles = n 

. . ________ ,. ________ ,. ________ ,. ________ ,. ________ ... ______ _ 
. . . 0.2 

L--r~= ~-i-----+--
0.0-1-~-+--~-+--~-+-~-+-~...__~..._~+--~+--~t--___,,._____.:::=== 

2 3 4 5 6 7 8 

Capacity 
9 10 11 12 13 14 

FIGURE 4 Probability of at least one discharge overload inn cycles for mean number of 
arrivals. 

SURVEYS AND SIMULATION OF OVERLOAD 
FACTOR 

The importance of knowing how many cycles are or may be 
overloaded justifies a search for an appropriate measure. To 
seek guidance as to which of the probabilities of discharge 
would represent a practical calculable measure, overload fac
tors were studied by both simulation and surveys in a pilot 
project. 

The overload factor was defined as the 1965 HCM load 
factor with one important exception: only those fully loaded 
cycles in which at least one vehicle was unable to discharge 
at the end were included [i.e., similar to Miller's percentage 
of cycles in which the queue is not cleared (10)]. 

Surveys 

In summer 1992 two intersection lanes in Edmonton were 
surveyed during three types of traffic conditions. The arrival 
rates for individual surveys were tested on the stability of the 
mean and were found satisfactory. The cycle capacity was 
determined directly as the discharge during fully loaded cycles. 
A total of 10 surveys included 292 signal cycles. Table 1 gives 
the results. 

Simulation 

Additional overload factors were obtained from a spread
sheet-based simulation program that used a Poisson distribu-

TABLE 1 Overload Factors Measured at Three Edmonton Situations 

Survey Intersection Period I Direction I Arrival Mean Measured Measured 
Number No. of Cycles Lane (per cycle) Capacity Overload 

(oer cycle) Factor 

1 87 Avenue I PM EB 10.8 12.9 0.286 
109 Street 21 2 ( 13) 

2 87 Avenue I PM EB 9.3 12.2 0.227 
109 Street 22 2 ( 12) 

3 87 Avenue I PM EB 9.2 12.6 0.154 
109 Street 26 2 (13) 

4 72 Avenue I AM WB 5.9 7.6 0.455 
114 Street 22 1 (8) 

5 72 Avenue I PM WB 5.1 7.7 0 .111 
114 Street 27 1 (8) 

6 72 Avenue I PM WB 5.3 7.1 0.192 
114 Street 26 1 (7) 

7 72 Avenue I PM WB 5.8 6.8 0.222 
114 Street 36 1 (7) 

8 72 Avenue I PM WB 5.2 7.0 0.169 
114 Street 59 1 (7) 

9 87 Avenue I PM EB 8.7 12.2 0.074 
109 Street 27 2 (121 

1 0 72 Avenue I AM WB 6.6 7.0 0.500 
114 Street 26 1 (7) 

Numbers in ()represent rounded values. 
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FIGURE 5 Probability distributions of overload factors simulated for 
arrival and capacity conditions from surveys (m = average number of 
arrivals per cycle and X = cycle capacity). 
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tion for vehicle arrivals. All surveyed sets of mean arrivals 
and capacities were included in the simulation process of this 
pilot study. Each set was simulated in 10 series of 20 computer 
runs representing 20 cycles each, thus incorporating 10 x 10 
x 20 x 20 = 40,000 cycles and resulting in 10 x 10 x 20 
= 2,000 overload factors. 

Because of the differences in the surveyed conditions (mean 
arrivals and capacities) as well as the small number of surveys, 
it was not considere_d prudent to investigate the distributions 
of measured overload factors. On the other hand, simulation 
provided sufficient data to that end. Probability distributions 
of the simulated overload factors for three conditions are 
shown in Figure 5. They exhibit remarkable consistency for 
each of the three simulated conditions and document the sus
pected wide range of possible values for higher degrees of 
saturation. This observation can be interpreted as a greater 
risk of surprising system failures for closer to capacity con
ditions. The practical meaning is that on some days, under 
identical arrival and signal timing conditions as before, many 
more overloaded cycles may happen. 

A related interesting observation was made for the three 
surveys for which the measured or simulated overload factor 
exceeded 0.3. 1965 HCM identified load factor over that value 
as approaching unstable flow. Surveys and many simulation 
runs showed a number of consecutive overloads, which, in
deed, are indicative of unstable conditions. 

COMPARISON OF OVERLOAD FACTORS WITH 
PROBABILITIES OF OVERLOAD 

Figure 6 shows the comparison of simulated overload factors 
with the various forms of probability of discharge overload. 
The probability of arrival overload is included as the proba
bility of discharge overload in the first cycle. It is encouraging 
to see the consistency of the patterns. Generally, the simu
lated overload factors fall between the probabilities of a dis-

Overload Factor 
or Probability 

Overload Factor 
or Probability 

TRANSPORTATION RESEARCH RECORD 1398 

1.0-r-~~~~~~~~~~~~~~~~~~~~~---, 

0.8 

0.6 

0.4 

0.2 
1 In 4 
1 In 3 
1 In 2 

~F=:::::t:i::::::=.:l: ~~i:;~:~•d 
1st Of 2 

10 7 4 2 6 8 3 5 
0.95 0.85 0.83 o. 78 0. 76 0. 74 o. 74 0. 73 0. 71 0.67 

Survey Number 
m/X 

FIGURE 6 Comparison of simulated overload factors with 
different forms of probability of discharge overload (ranked by 
their degrees of saturation m!X, where m = average number of 
arrivals and X = cycle capacity). 

charge overload in the second cycle and a discharge overload 
in at least one of two cycles. Probability of at least one over
load in two cycles would be a good approximation for all 
overload factors and offers a somewhat conservative estimate. 

Figure 7 depicts the overload factor values generated by 
individual simulation series and identifies the ranges of ± 1 
standard deviation. Because the measured overload factors 
are included, comparisons are possible, keeping in mind the 
previously discussed problems associated with a one-point 
measurement in an unknown distribution and the wide range 
of values for identical input values. Under the assumption of 
a normal distribution of overload factors, about two-thirds of 
all values should fall within the indicated range. The measured 
overload factor falls well within that range for most of the 
surveys. An examination of the distributions in Figure 5 in
dicates that even for Surveys 7 and 4, the measured values 
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FIGURE 7 Comparison of simulated and measured overload factors with probability 
of discharge overload in at least one of two consecutive cycles (range represents ± 1 
stam~ard deviation from simulation series). 
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FIGURE 8 Overload factors shown in a tentative system of probability of discharge overload 
represented by probabilities of at least one overload in two consecutive cycles. 

are still quite representative of the main distribution classes. 
The limited scope of data in this pilot study did not provide 
sufficient basis for rigorous statistical testing. 

FINDINGS AND CONCLUSIONS 

This pilot study indicates that a close link exists between the 
probabilities of discharge overload and the overload factor. 
The comparison of the measured and simulated overload fac- " 
tors with the probabilities of discharge overload shown in 
Figure 7 suggest that for the studied situations, the overload 
factors may be approximated by the formula for the proba
bility of 'discharge overload in at least one of two consecutive 
cycles. 

Assuming that the conditions described by the arrival mean 
and capacity have already lasted for some time, the probability 
values for oversaturated situations are 1.0, and the calculated 
values do not apply. This constraint is shown in Figure 8, 
which illustrates the tentatively proposed system to determine 
the probability of discharge overload. 

An extension of this University of Alberta study will ex
amine the problem in detail on the basis of broad field and 
simulation data. The results so far provide evidence that it is 
possible to devise a practical measure that would allow the 
analyst or designer to determine the seriousness of random 
overloads. Such an evaluation criterion would be instrumental 
in understanding suitable signal coordination conditions and 
assessing the impact of the random delay component or of all 
three traditional delay elements (uniform, random, and con
tinuous). The newly defined overload factor would represent 
an easy way of verifying the magnitude of the probability of 
discharge overload by surveys. 
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