
14 TRANSPORTATION RESEARCH RECORD 1399 

Dynamic Traffic Pattern Classification 
Using Artificial Neural Networks 

}IUYI HUA AND ARDESHIR FAGHRI 

Because of the difficulty of modeling the traffic conditions on a 
roadway network, little has been achieved to date in area control 
using dynamic traffic volume. The most commonly practiced 
method for timing control of area signals that takes into account 
traffic volume changes is time-interval-dependent control. This 
type of control strategy assumes that the traffic volume on each 
roadway of a network is constant over each time interval; it then 
determines different optimal sets of control parameters for each 
interval. Such a control strategy requires a procedure for deter
mining appropriate time intervals. According to this investiga
tion, one possible approach for determining proper time intervals 
for traffic control purposes is the dynamic programming (DP) 
method. This paper introduces an artificial neural network ar
chitecture called adaptive resonance theory (ART), which has 
demonstrated successful results when applied to different pattern 
classification problems. ARTl is applied to dynamic traffic pat
tern classification to determine appropriate time intervals and the 
starting times for those intervals. The results of a case study 
clearly demonstrate the feasibility of ARTl for time interval de
termination using network-level traffic patterns. A comparative 
conceptual analysis of the DP method and the ARTl neural net
work is also included. The computational experience describing 
the advantages and disadvantages of ARTl for general traffic 
pattern recognition and classification problems is summarized, 
and the conclusion that the neural network approach is feasible 
and efficient for network-level traffic pattern classification is 
reached. The methodology introduced in this paper may be ap
plied to other transportation problems. 

Traffic signal-timing control is realized mainly through the 
optimization of three important traffic signal-timing control 
parameters-cycle length, split, and offset. In general, this 
optimization is based on traffic volume information, since 
vehicle travel speed can be formulated as a function of traffic 
volume. Cycle length refers to the total time span of the green, 
yellow, and red phases of the traffic signal; split refers to the 
assignment of green and red time phases (yellow is usually 
deterministic) in one cycle length; offset refers to shifts of 
cycle starting time between different sets of signals. There are 
three major types of traffic signal-timing control: spot control, 
dealing with only one set of traffic signals for only one inter
section; line control, dealing with several sets of signals for 
several intersections on one line; and area control, dealing 
with more sets of signals for a number of intersections on 
multiple lines. 

Many sophisticated methods have been developed and are 
being used for spot control, line control, and static area con
trol. However, little has been achieved for area control with 
dynamic traffic volume because of the difficulty in modeling 
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the traffic status of a roadway network. At present, the most 
common area signal-timing control strategy for dynamic traffic 
is time-interval-dependent control, which splits a day (24 hr) 
into several time intervals such as rush-hour interval, normal 
daytime interval, and nighttime interval according to traffic 
volume. This control strategy assumes that the traffic volume 
on each roadway of the network is constant (normally the 
average traffic volume) over 'each time interval and then de
termines different optimal sets of control parameters for each 
time interval. Although in actual situations such an assump
tion is not true, it is perhaps the only feasible approach for 
implementing a network-level signal-timing control. In fact, 
one expects that traffic signal-timing parameters will remain 
fixed for a certain length of time because frequent changes 
in signal-timing parameters may cause traffic flow disorder 
(1). In order to obtain the minimum disutilities, it is necessary 
to minimize the difference between the average volume and 
the actual volume at each time point within the time inter
val. This can be achieved by appropriately dividing the time 
intervals. 

Traffic patterns express the changes of traffic volume with 
time. It is believed that the appropriate time intervals can be 
found by using a traffic pattern classification procedure. 

Following an in-depth investigation of the inherent nature 
of the problem, this paper introduces a neural network ap
proach for area traffic signal-timing control through a network
level traffic pattern classification procedure. This study first 
focuses on the adaptability of the neural· network paradigm 
to this particular problem with a case study using a hypo
thetical roadway traffic network. Subsequently, the effective
ness of the neural network approach is evaluated. Some of 
the advantages and disadvantages of using the neural network 
approach to deal with traffic pattern classification problems 
are also discussed. Finally, it is concluded that (a) the neural 
network can be used as a feasible and effective approach for 
classifying network-level traffic patterns, and (b) the meth
odology proposed in this paper can be used for general traffic 
pattern classification problems, traffic network monitoring, 
and evaluation of traffic control strategies. 

Suppose that traffic volume is counted every 5 min; a traffic 
pattern can be formed in terms of the fluctuations of 5-min 
traffic, namely, the number of vehicles passing through some 
point on a roadway within 5 min. For a single link or single 
line, the term traffic pattern usually implies the curve of traffic 
volume on that link or line at each time point. If 5-min traffic 
is used, the term refers to the changes of traffic volume counted 
every 5 min with 5-min time intervals. Here, the term network
level traffic pattern is defined as the traffic volu-me on each 
roadway counted every 5 min. Thus, the traffic pattern at 
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time point t is the 5-min traffic volume on each roadway in 
the time interval from time point t to time point t + 5 min. 

PROBLEM STATEMENT 

Determining the appropriate time intervals for a single link, 
the roadway between two intersections in one direction, is 
simple because numerical differences in traffic volumes can 
be easily distinguished. However, with more than one link, 
the numerical comparison between traffic volumes becomes 
useless to the solution of the problem. Figures 1 and 2 show 
the failure of numerical traffic pattern classification. In the 
simplest situation, with only one intersection (Figure 1), the 
traffic comes from two directions, up and down and left and 
right. Suppose that there is no turning traffic and that both 
links have the same capacity. The traffic volumes are mea
sured by the ratio of traffic volume to link capacity. At time 
t0 , traffic volumes on both are the same, namely, v0 • This 
forms Pattern 0. At time t1 , the traffic pattern is changed as 
shown in Figure 2(a), which is called Pattern 1. As the time 
moves on to t2 , the traffic pattern changes again (Pattern 2). 

If these three patterns are compared by their numerical 
traffic volume differences, it is found that the difference be
tween Patterns 0 and 1 is 

(v11 - v: )2 + (V'l - V:o)2 D = 1 o 2 
n 2 O.Ql (1) 

where V~1 is the ratio of traffic volume to the link capacity of 
Link 1 at time t1 and V~1 is the ratio of traffic volume to the 
link capacity of Link 2 at time t1 • The numerical difference 
between Patterns 0 and 2 is 

(p2 _ V: )2 + (V'2 _ V:0)2 D - I 0 . 2 
t2 - 2 0.01 (2) 

where q 2 is the ratio of traffic volume to the link capacity of 
Link 1 at time t2 and vq is the ratio of traffic volume to the 
link capacity of Link 2 at time t2 • The numerical difference 
between Patterns 1 and 2 compared with Pattern 0 is the same. 
If one classified Patterns 1 and 2 according to their numerical 
difference compared with Pattern 0, these two patterns would 
be in the same category. If the signal-timing parameters are 
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FIGURE 1 Traffic pattern of Links 1 and 2 at time t0 • 
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FIGURE 2 Traffic patterns at (a) time t1 and (b) time t2 • 
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kept the same as at times t1 and t2 , such a numerical com
parison leads to an obviously wrong classification. Therefore, 
at the network level, traffic patterns should be classified 
analogically. 

In addition to the ability to classify analogic traffic patterns, 
traffic pattern classification should also be tolerant of small 
fluctuations in traffic volumes. Figure 3 shows two consecutive 
traffic patterns on a link. Traffic Patterns 1 and 2 are very 
similar in shape, though not exactly the same. For such a 
situation, it is still desirable that these two patterns be clas
sified in the same category so that frequent changes of signal
timing parameters can be avoided. 

From the foregoing discussion, the requirements for traffic 
pattern classification can be pinpointed as (a) the ability to 
recognize and classify analogic patterns and (b) some degree 
of tolerance to differences between traffic patterns. 

EXISTING APPROACH 

One of the major methods that has been proposed for use in 
the determination of appropriate time intervals is the dynamic 
programming (DP) method. The DP method initially sets up 
M sets of signal control timing parameters and then tries to 
find out the best time points for switching different sets of 
control parameters. If Q(t) is the traffic pattern at time t; P;(t;) 
is the optimal set of control parameters for Q(t) in terms of 
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FIGURE 3 Tolerance of traffic pattern classification 
procedure. 
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a vector including cycle length, split, and offset; and D[P;(t;), 
Q(t;)] is the disutility, say, total delay, produced by P;(t;) 
(i = 0, 1, 2, ... , M), then the following equation must be 
satisfied: 

D[P;(t;), Q(t;)] :5 D[Pit), Q(t;)] (3) 

. Equation 3 is tenable when i = j. The time intervals covered 
by these M sets of control parameters will include a whole 
day. The number of switches of control parameters, N, can 
be calculated. To find the optimal switching time points for 
N switches during a day, the following simple one-dimensional 
DP assignment procedure is used: 

(4) 

where fo = 0 and x0 = 0. In Equation 4, fn(xn) is the total 
disutility over the time span from x0 to xn under optimal con
trol. Computing for n = 1, 2, ... , N, the optimal switching 
time xi, x;, ... , x~ can be found. 

For the DP method, it has been pointed out (J) that ob
taining the value of P; that satisfies Equation 3 may not- be 
easy, and determining cycle length and offset is difficult, es
pecially when the difference between Q(t;) and Q(t) is small. 
The difficulty of solving P; when M is large has also been 
discuss,ed. Obviously, the huge amount of computation re
quired in the DP process is another drawback. With a large 
roadway network, this method may not be practical. 

NEURAL NETWORK APPROACH 

It is apparent that the optimization of dividing appropriate 
time intervals can be achieved through a pattern classification 
procedure. When similar consecutive traffic patterns are 
grouped, the dynamic traffic volumes can be approximately 
dealt with as static over the time period in which there are 
similar traffic patterns. 

A variety of artificial neural network models, such as back
propagation, Perceptron, and the Hopfield network, have 
proven to be applicable to classification problems (2). Some 
of them have recently been proposed for transportation en
gineering classification problems (3). After careful investi
gation into the inherent nature of the problem involved in 
this study, an Adaptive Resonance Theory (ART) neural net
work, ARTl, was selected to complete the classification pro
cess. ARTl is compared with other neural network para
digms, and some of its unique characteristics for meeting the 
needs of the problem are discussed in the next section. 

Introduction to ARTl 

Three ART neural networks were developed by Carpenter 
and Grossberg of Boston University in 1987 (4,5). ARTl deals 
with integers, ART2 deals with continuous values between 0 
and 1, and ART3 is a refinement of ART2. ART networks 
automatically stabilize pattern categories and automatically 
activate new processing units when they are needed to create 
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new categories. The number of patterns being grouped into 
the same category and the number of groups are theoretically 
unlimited. The major considerations in deciding to employ 
ARTl were as follows: 

• ARTl can classify analogic patterns into appropriate 
categories. 

• ARTl can automatically set up the proper number of 
categories. 

• ARTl is flexible in dealing with new patterns presented 
to it because it is a self-organizing network; that is, it can be 
trained on line. 

• ARTl is tolerant of the differences between traffic pat
terns. This means that if traffic patterns are similar in shape 
but not exactly the same, they will still be. classified into the 
same category. 

Operation of ARTl 

Figure 4 shows the schematic architecture of ARTl. There 
are two layers of processing units, which are fully connected 
between the layers. Two types of weight sets are used in the 
network. The notation used in Figure 4 is defined as follows: 

n = number of inputs to the network, 
x; = ith component of input vector (0 or 1), 
Yi = jth output, 

W;i = weight for connection from jth output to ith input, 
wii = weight for connection from ith input to jth output, 

rho 

k 

constant having a value between 0 and 1 (the "vig
ilance parameter"), and 
index that denotes winner of output element that 
has the largest value among the output elements. 

The two types of weight vectors have a relationship that is 
always 

wii 
wij 

(5) n 

1 + 2: wki 
k=1 

and initially, all w;i are set to 1 and all wii = 1/(1 + n). w;i 
is the connection from input layer to output layer, and wii is 

Lateral inhibition 

Processing units 

X1 X2 Xn 

Input buffer 

FIGURE 4 Schematic architecture of ARTl. 
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the feedback connection from output layer to input layer. 
Note that in Figure 4 only two such connections are shown. 
The lateral connections are invisible, but they pass through 
the information between the processing units in the output 
layer so that a competition takes place to produce a winner 
of the processing units. The output of the winner is taken as 
the network output. ARTl operates as follows: 

Step 1. Compute the _outputs according to the formula 

(6) 

Step 2. Determine the network output with a "winner take 
all" strategy; that is, let the output that has the greatest value 
be the output of the network for one run of computation and 
let the winner be xk. 

Step 3. Rate the input pattern match with_ the following 
formula: · 

r = -n-- (7) 

L Xi 
i=l 

Step 4. If r < rho, set yi = 0 and go to Step 2. 
Step 5. If r > rho, for all i, if Yi = 0 and wik = 1, set wik = 

0 and recompute w7k for all i if any weights have been changed. 

ARTl can store vectors and check the committed pro
cessing units according to how well the vectors [ wi~, ... , 
wi":i] being stored match the input pattern. If none of the 
committed processing units matches well enough, an uncom
mitted unit will be chosen. In other words, the network sets 
up certain categories for the input patterns and classifies the 
input patterns into the proper category. If the input pattern 
does not match any of those categories, the network will 
create a new category for it. 

With ARTl, similar traffic patterns can be grouped into 
the same category. Therefore, the proper length and starting 
and ending times of the time intervals can be automatically 
determined. Such an approach can also be used for on-line 
traffic pattern recognition and monitoring network traffic sta
tus changes. 

ASSUMPTIONS 

In this study it was assumed that the traffic volume does not 
exceed the link capacity. The purpose of making such an 
assumption is very simple: all traffic volumes are below the 
corresponding capacities of the links such that the traffic vol
ume can be described by the ratio of actual traffic volume to 
link capacity, which is a number between 0 and 1. Here the 
capacity of the roadway is defined as the number of vehicles 
passing a point on the road within a time unit if the traffic 
signal is green all the time. If one considers congested flow, 
imposing the ratio of the current density to the maximum 
density of the link, the traffic information can also be con
verted into a number with a value between 0 and 1. 
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CASE STUDY 

To verify the feasibility of neural networks in traffic pattern 
classification problems, ARTl is applied to a hypothetical 
roadway network. 

Data Base 

A hypothetical roadway network containing six intersections 
and seven links is shown in Figure 5. For simplicity, all links 
are set to be one way. It is also assumed that there is no 
turning traffic in this network. Those links that are unnum
bered are of no concern in this study, but they are considered 
as inflow or outflow links of the network. The roadway ca
pacity is assumed to be 1,800 vehicles/hr for all links. 

The traffic volumes are generated on the basis of a "mother 
traffic pattern," which is a typical street traffic pattern from 
6:00 to 10:00 a.m. for one link. The traffic pattern of each 
link contained is derived from this mother pattern. The pro
cedure followed is to suppose that the traffic volume of the 
mother pattern at time t is Vs. Let Vs be the mean of traffic 
volumes at time t for all links of this hypothetical network. 
On the basis of normal distribution, the error of the traffic 
volume at time t compared with that of the mother pattern is 
randomly generated for every link with a variance of 30 ve
hicles/hr. 

Since ARTl takes only binary values, the traffic volumes 
are transformed into binary vectors. The procedure for trans
forming traffic volume into binaries is as follows: 

• Compute the ratio of traffic volume to link capacity so 
that all traffic volumes are now represented by a decimal 
number between 0 and 1. 

• Transform the ratios into a 10-element binary vector, for 
example, 0.8 ~ [1, 1, 1, 1, 1, 1, 1, 1, 0, O]. 

After the transformation, traffic volumes are represented 
by 10-element vectors. Each vector will be a line of the input 
pattern. For all seven links, a 10 x 7 array was produced. 

Traffic Pattern Classification Process 

With the traffic volumes represented by binary vectors, the 
data base is now adaptable to ARTl. If ARTl is applied with 

2 

6 7 

FIGURE 5 Hypothetical roadway network. 
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TABLE 1 Results of Time Interval Determination by ARTl 

Time 6:05 6:10 6:15 6:20 6:25 6:30 6:35 6:40 6:45 6:50 6:55 7:00 

Category to which 
current traffic 0 0 1 1 2 4 3 2 4 4 4 5 

pattern belongs 

Time 7:05 7:10 7:15 7:20 7:25 7:30 7:35 7:40 7:45 7:50 7:55 8:00 

Category to which 
current traffic 6 6 6 7 7 7 7 7 7 7 7 7 

pattern belongs 

Time 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 8:50 8:55 9:00 

Category to which 
current traffic 7 7 7 7 

pattern belongs 

Time 9:05 9:10 9:15 9:20 

Category to which 
current traffic 7 7 ·7 

pattern belongs 

a vigilance parameter value of 0.83, the traffic patterns are 
grouped as shown in Table 1. The grouping process is quite 
ideal. The "peak-hour" interval is successfully indicated by 
Category 7. 

Figure 6 shows a three-dimensional plot of the traffic pat
terns. The section between the two boards indicates the "peak
hour" time interval for the entire network. To verify the 
performance.of ARTl in traffic pattern classification, the var
iance of the "peak-hour" interval for a different starting time 
was computed. In Figure 7 the x-axis indicates the shifts of 
the "peak-hour" interval starting time: 0 is the case without 
shifting, the positive numbers indicate forward shifts, and the 
negative numbers indicate backward shifts. The unit for one 
shift is 5 min. If x = -1, the "peak-hour" interval starting 
time is shifted backward 5 min. If x = 2, the "peak-hour" 
interval starting time is shifted forward 10 min, and so on. 

FIGURE 6 Three-dimensional drawing of network-level 
traffic patterns. 

6 

7 7 7 7 7 7 7 7 

9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 

6 6 6 6 6 6 6 6 

DISCUSSION OF NEURAL NETWORK 
APPROACH 

In classifying traffic patterns by their analogic differences rather 
than their numerical differences, the neural network approach 
seems to be more natural and reasonable than the conven
tional method. The neural network is also more effective and 
efficient in determining appropriate number of time intervals 
than the DP method since it performs on-line training. Both 
the number of time intervals and the positions of the intervals 
on the time axis are automatically determined by the neural 
network, whereas determining the appropriate number of time 
intervals is time consuming and inefficient in the DP method. 
The vigilance parameter of ARTl controls the tolerance of 
the classification process. It can adjust the degree of difference 
between traffic patterns belonging to the same category. With 
this property, the user is able to obtain the expected number 
of groups by adjusting the value of the vigilance parameter. 
However, there is no criterion for determining a proper value 
of the vigilance parameter in general. This leads ARTl to be 
problem dependent. Different values of the vigilance param-

Grouping Effects of ART1 

-5 -4 -3 -2 -1 0 2 3 4 5 
Peak-Hour Interval Shifts From 7:15 AM 

FIGURE 7 Verification of the effects of 
determination of "peak-hour" interval. 



Hua and Faghri 

eter may be required for different roadway network and traffic 
patterns. The degree of tolerance must also be determined 
by the user's experience to arrive at an appropriate control 
strategy on a particular roadway network. 

In summary, ARTl brings two remarkable contributions 
to traffic pattern classification problems: (a) a parallel process 
with an on-line training property that enables it to deal with 
large amounts and a dynamic data base, and (b) the ability 
to deal with an analogic input data base. 

CONCLUSION 

In the case study, an optimization procedure for dividing ap
propriate time intervals for traffic signal-timing control is im
plemented. The feasibility of the neural network approach 
has been identified. Furthermore, it was demonstrated that 
ARTl is efficient in classifying traffic patterns in terms of 
computing cost, whereas the conventional approaches have 
serious shortcomings. 

The significance of the neural network approach introduced 
in this study is not only in solving the traffic control problem, 
but also in dealing with general network-level traffic pattern 
classification problems. The capability of the neural network 
to classify network-level traffic patterns provides an effective 
means for transportation engineering to expedite traffic data 
collection and roadway network traffic status identification. 
The methodology discussed in this paper can also be used for 
other transportation problems such as traffic network moni
toring by expressing the status of the entire traffic network 
with a single index and evaluation of traffic signal-timing con
trol strategies. 
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As can be seen in this paper, the neural network accesses 
the traffic pattern classification problem from a totally dif
ferent perspective than the conventional method. Some dif
ficulties that exist in conventional methods were easily solved 
by the neural network approach. The extension of this work 
is planned to explore the applicability of ART2, which is able 
to deal with continuous values within a range from 0 to 1, as 
well as a deeper investigation of determination of the appro
priate vigilance parameter. 
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