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Representation, Processing, and 
Interpretation of Fuzzy Information in 
Civil Engineering 

C. H. JuANG, J. E. CLARK, AND P. GHOSH 

Some of the fundamental issues in the civil engineering appli
cation of fuzzy set theory are addressed, and an overview of 
various types of solution approaches is presented. Emphasis is 
placed on the Type II approach, in which the solution model is 
deterministic and the input is fuzzy. Issues addressed include 
representation and processing of fuzzy information and interpre
tation of fuzzy output. The new methods developed and presented 
in this paper include the interpretation of fuzzy output by the cx
level distance model and a new approach to performing multiple 
linear regression of fuzzy data. An example dealing with fuzzy 
multiple linear regression is presented to illustrate various aspects 
of the issues addressed. 

There is often a need to elicit numerical input from subjective 
information in the process of solving many transportation 
engineering problems. Eliciting numerical input from subjec
tive information naturally induces uncertainty, which is usu
ally of an ambiguous rather than a random nature. In this 
case, the use of fuzzy set theory rather than probability theory 
for modeling the ambiguous uncertainty is generally recom
mended (1,2). 

Fuzzy set theory was developed in 1965 by Zadeh (3), a 
control engineering professor at the University of California 
at Berkeley. Since then it has been applied to many disci
plines, with the most successful applications in control engi
neering, decision science, and management. In recent years, 
"the growth of roughly a billion dollar per year industry in 
Japanese commercial products (such as air conditioners, washing 
machines, camcorders, and train controllers) based on various 
ideas in fuzzy logic" has been reported ( 4, p.83). 

Civil engineering applications of fuzzy sets were pioneered 
by Blockley (5), Brown (6, 7), and Yao (8), mainly in the area 
of structural safety. Numerous applications can now be found 
in many subdisciplines of civil engineering, including trans
portation engineering (9-16). 

The principle of fuzzy sets may be summed up as the trans
formation of ambiguous and fuzzy information into numerical 
data in a systematic way so that subjective information such 
as expert opinions, rules of thumb, and other "nonquantifi
able'_' but significant information can be directly utilized in 
the solution process. 

In this paper practical issues regarding the representation, 
processing, and interpretation of fuzzy information in depth 
are discussed from a civil engineer's perspective. 
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TYPES OF SOLUTION APPROACHES 

There are a number of analytic approaches to solving prob
lems in civil engineering, as shown in Table 1. Of the analytic 
approaches shown, the Type I approach is most commonly 
used by the engineer. If the input data are of a quantitative 
nature (i.e., easy to obtain or measure in crisp, precise nu
merical terms), they are called nonfuzzy data. If the model 
is based on well-established, unarguably precise knowledge 
and the process has no randomness present, the model is 
referred to herein as deterministic. If both conditions are met, 
the Type I approach is the most appropriate choice. 

To use a Type I approach, the engineer must exercise his 
or her best judgment in the selection of input data. If a non
random uncertainty (2) exists in the information from which 
the data are derived, the engineer will be faced with the 
burden of eliciting the numerical input from ambiguous or 
fuzzy information. In this case, considerable engineering judg
ment is needed to use the Type I approach, which significantly 
relies on a professional's judgment and is often variable and 
inconsistent. Hence, the process is subject to scrutiny. A more 
appropriate way to model this problem is by employing the 
Type II approach, in where a deterministic model is retained 
but the fuzzy information is systematically represented by 
fuzzy sets (fuzzy data). 

The Type III approach (the probabilistic approach), in con
trast to the Type II approach, assumes that the process is well 
defined but random. When a random event is considered, the 
framework for incorporating uncertainty can be precisely de
fined. However, if the event is not random, as in many trans
portation problems, the burden of eliciting numerical input 
to the probabilistic model from ambiguous information must 
rest on the engineer. Historically, many nonrandom events 
were modeled with the Type III approach in order to handle 
the uncertainty involved in eliciting the numerical data from 
available information because the probability theory was 
thought to be the only way of handling uncertainty, which is 
not true (17). 

If the process to be modeled is random and the input in
formation is fuzzy, the Type IV approach may be used. In 
this case, a probabilistic treatment of the fuzzy event is deemed 
necessary. If the process or the cause-effect relationship is 
fuzzy, a Type V or VI approach may be used, depending on 
whether the input data are fuzzy. 

Many transportation engineering problems that can be 
modeled by deterministic models often have to deal with fuzzy 



Juang et al. 21 

TABLE 1 Analytic Approaches to Problem Solving in Civil Engineering 

Type of Approach Type of Input Data 

I non-fuzzy number 
II fuzzy number 
III non-fuzzy number 
IV fuzzy number 
v non-fuzzy number 
VI fuzzy number 

input data, and thus are suitable for applying the Type II 
approach. In this paper the focus is on the Type II approach 
with emphasis on the representation and processing of fuzzy 
input data and interpretation of output fuzzy sets. 

REPRESENTATION OF FUZZY INFORMATION 

Ambiguous or fuzzy input is almost always expressed in lin
guistic terms, since it is easier to do so. In order to process 
these linguistic terms, they must be transformed into numer
ical data. Rather than translating a linguistic term into a cer
tain number (and ignoring the associated uncertainty), a fuzzy 
number (18) may be used. 

In a Type II approach, the input data for the engineering 
parameters (or variables) of a deterministic model are fuzzy 
numbers, which may be translations of linguistic terms that 
describe the engineering parameters or direct numerical es
timates of these parameters. In either case, these fuzzy num
bers can be grouped into four classes, as shown in Figure 1. 
The Class I fuzzy number is used to represent a .fuzzy point 
estimate (FPE) or a linguistic term of "about m." There are 
two special cases for the Class I fuzzy number. If the value 
m is an absolute lower bound or upper bound, the fuzzy 
number exhibits only one-half of the Class I fuzzy number. 
In such cases, the fuzzy numbers are labeled Class 1-L and I
R, respectively, as shown in Figure 2. 

The Class II fuzzy number is used to represent a fuzzy 
interval estimate (FIE) or a linguistic term such as "about 
from m - c tom + c." FIE may be considered an extension 
of an FPE. The fuzziness of an FIE, as shown in Figure lb, 
exists around lower and upper bounds of the interval. The 
extent of the fuzziness, represented by the values b and d, 
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FIGURE 1 Four classes of fuzzy numbers. 

Model Type of Output 

deterministic non-fuzzy number 
deterministic fuzzy number 
probabilistic probability distribution 
probabilistic fuzzy probability 
fuzzy fuzzy number 
fuzzy fuzzy number 

may be interpreted in the same way as in the case of an FPE. 
If the value c approaches 0, an FIE would become an FPE. 

The Class III fuzzy number is used to represent the notion 
of "greater than about m." Since real-world engineering pa
rameters almost always have an absolute upper bound, the 
Class III fuzzy number may be defined as shown in Figure 
le. The fuzziness in this case exists only around -the lower 
bound. The Class IV fuzzy number, on the other hand, is 
used to represent the notion of "less than about m." As shown 
in Figure ld, the fuzziness exists around the upper bound 
only, since an absolute lower bound (usually zero) is implied. 
The Class III and IV fuzzy numbers are needed to comple
ment the Class I fuzzy number. 

In summary, fuzzy information commonly encountered in 
transportation engineering can be represented by one of the 
four classes of fuzzy numbers shown in Figure 1. Although 
the concept and use of fuzzy numbers have been discussed in 
the fuzzy set literature (18), the four classes of fuzzy numbers 
are interpreted and presented in this paper in a way suitable 
for direct use in civil engineering. The use of fuzzy numbers 
to represent fuzzy information allows for uncertainty to be 
systematically evaluated and can aid in making better engi
neering decisions. 

Note that in the four classes of fuzzy numbers defined herein, 
a triangular shape is assumed. Although the triangular shape 
is commonly used and deemed appropriate for the application 
presented in this paper, other shapes may be used. 

PROCESSING OF FUZZY INFORMATION 

As discussed earlier, the Type II approach is deemed suitable 
for many transportation engineering problems with fuzzy in
put data. The solution process of this approach is shown in 
Figure 3. Three methods are available for processing fuzzy 
data in a Type II model. One method involves processing 
fuzzy data by defining new mathematical operations. Since 
fuzzy set theory may be considered an extension of ordinary 
set theory, extending ordinary arithmetic to fuzzy arithmetic 
(18) is a natural evolution. Zadeh's "extension principle" (19) 
provides a basis for extending conventional arithmetic into 
fuzzy arithmetic. It is noted that most implementations of the 
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FIGURE 2 Special cases of Class I fuzzy numbers. 
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FIGURE 3. Euclidean distances between FCD 
and standard fuzzy numbers. 

extension principle do not ensure uniqueness. However, this 
may be undesirable in many engineering applications. 

Processing fuzzy data by fuzzy arithmetic based on the ex
tension principle is often inefficient (20-22). A more efficient, 
nonfuzzy computational method, called the vertex method 
(20), has been developed. 

Although the vertex method has been successfully applied 
in solving many engineering problems (10,21,23 ,24), there are 
cases in which a computationally more efficient method is 
desired. For example, in a recent study on liquefaction sus
ceptibility (2), 22 fuzzy variables were involved in a simple 
deterministic model. Use of the vertex method in this case is 
very time consuming because of the large amount of interval 
computations required. In such cases, a technique called the 
JHE method (22) was used for processing fuzzy data. The 
JHE method is based on the Monte Carlo simulation tech
nique and involves a rigorous treatment of membership func
tions. Some applications of this method have been reported 
(2, 25-28). 

INTERPRETATION OF FUZZY OUTPUT 

The output of a Type II approach is a fuzzy set, the output 
of which presents more information than a single-value out
put. For example, it gives the lower and upper bounds, the 
most appropriate value (the mode), and the possibility ( mem
bership grade) of each value. In many applications, however, 
it may be desired to interpret the fuzzy set output. Two com
mon approaches are used: application of a mapping model 
that measures the fuzzy set (2) and translation of the fuzzy 
set into an appropriate linguistic term. 

The translation of the output fuzzy set into an appropriate 
linguistic term requires three elements: (a) a group of standard 
linguistic terms commonly used to describe the subject matter; 
(b) a group of fuzzy sets, each of which represents one of the 
standard linguistic terms; and (c) a model for determining 
similarity between the output fuzzy set and each of the stan
dard fuzzy sets. The most appropriate translation is the lin
guistic term whose fuzzy set is most similar to the output fuzzy 
set. 

The similarity may be measured by the Euclidean distance 
defined below (18): 

(1) 

where 
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distance between the output fuzzy set A and the 
fuzzy set j, 
membership grade of x in the fuzzy set A, and 
membership grade of x in the fuzzy set j. 

Here the Euclidean distance is a measure of similarity be
tween fuzzy sets. Thus, the most appropriate translation is 
the one with the smallest distance. Although this equation 
provides a simple measure of the similarity, there are some 
drawbacks (which will be discussed later). In this paper, a 
new measure, called a-level (a-cut) distance, is developed. 
The a-level distance is defined as follows: 

(2) 

where 

dj = a-level distance between the output fuzzy number 
A and the predefined standard fuzzy number j, 

aa,min lower bound of the a-cut interval of the fuzzy num
ber A, 

aa,max upper bound of the a-cut interval of the fuzzy num
ber A, 

ja,min lower bound of the a-cut interval of the predefined 
standard fuzzy number j, 

ja,max upper bound of the a-cut interval of the predefined 
standard fuzzy number j, and 

N = number of a-cut intervals taken. 

Note that if the a-cuts are made at an equal spacing of ~a, 
then the total number of a-cut intervals will be 

N = (l/~a) + 1 (3) 

The a-level distance defined in Equation 2 is a simple average 
model. Although a weighted average model might be more 
attractive in theory, Equation 2 is found to be adequate for 
translating a fuzzy number into the most appropriate linguistic 
term. Assessment of the above two similarity models is pre
sented in the next section. 

HYPOTHETICAL EXAMPLE 

In many engineering problems, the basis for deriving a so
lution is often some rules of thumb provided by experts. For 
example, the possibility of meeting the Environmental Pro
tection Agency (EPA) requirements for constructing a clay 
liner to contain hazardous wastes is often assessed with a set 
of rules of thumb regarding the hydraulic conductivity of the 
liner. Symbolically, each of these rules of thumb is expressed 
as follows: 

IF 
THEN 

Xi is Aij and X 2 is A 2j and X 3 is A 3j 
Y is Bj. 

Here Xi, X 2 , and X 3 are linguistic variables representing some 
factors that are thought to have an important influence on 
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the possibility of meeting the EPA requirements, such as the 
plasticity index, colloid percentage, and swelling potential of 
the clay used. The values of the linguistic variables A 1j, A 2j, 

A 3j, and Bj are descriptions commonly used in the assessment 
of a clay liner. As a hypothetical example, a rule of thumb 
may state: 

IF 

THEN 

the plasticity index is medium, and the colloidal 
percentage is low, and the swelling potential is high, 
the possibility of meeting the EPA liner require
ments is very low. 

Now, if it is assumed that a group of rules of thumb on this 
subject is available as listed in Table 2, these rules, as a form 
of fuzzy information, may be used to establish a predictive 
equation for assessing the possibility of meeting the EPA liner 
requirements. To begin with, all possible values of the lin
guistic variables used in the model need to be translated into 
fuzzy sets or numbers. Various classes of fuzzy numbers de
fined earlier can be used to represent the linguistic terms 
adopted. In this hypothetical example, the actual definitions 
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of the fuzzy numbers used are based on knowledge extracted 
from the literature. The linguistic terms and the corresponding 
fuzzy numbers selected are given in Tables 3-6. Using these 
tables, the fuzzy information (the rules of thumb collected 
and shown in Table 2) can be translated into some fuzzy 
numbers, and a set of fuzzy data (Y versus X,, X 2 , and X 3) 

is thus obtained. 
One way to extract knowledge from these fuzzy data is to 

establish a trend using a regression analysis. In this case, a 
multiple linear regression can be performed since the de
pendent variable Y is assumed to be a function of the inde-
pendent variables X1 , X 2 , and X 3 • Since all input data are 
fuzzy numbers and the multiple linear regression is a deter
ministic process, a Type II approach is appropriate. The fuzzy 
input data are processed in the framework of a regression 
analysis and the JHE method (22) is readily applicable. 

Note that use of the Type II approach and the JHE method 
for the fuzzy regression analysis is different from reports in 
the literature. One of the first introductions of fuzzy regres
sion was by Tanaka et al. (29). Fuzzy regression analysis, as 
the name implies, uses the tools of fuzzy set theory to analyze 

TABLE 2 Hypothetical Example: Rules of Thumb for Assessing the Possibility of 
Meeting EPA Clay Liner Requirements 

Plasticity index Colloidal Percentage Swelling potential Possibility of Meeting 

CX1) (XJ (X3) EPA Requirements (Y) 

high high high very low 
high high medium low 
high high low medium 
high medium high very low 
high medium medium low 
high medium low medium 
high low high very low 
high low medium low 
high low low low 
medium high high low 
medium high medium medium 
medium high low very high 
medium medium high low 
medium medium medium medium 
medium medium low very high 
medium low high very low 
medium low medium low 
medium low low medium 
low high high low 
low high medium medium 
low high low high 
low medium high low 
low medium medium medium 
low medium low high 
low low high very low 
low low medium low 
low low low medium 

TABLE 3 Linguistic Terms and Their Corresponding Fuzzy Numbers: 
Plasticity Index 

Linguistic Term Fuzzy Number Characteristics (see Figure 1) 
for Describing 
Plasticity Index (X1) b m-c m m+c d u Class 

high 25 ---a 30 50 III 
medium 10 15 25 30 II 
low 10 15 0 IV 

"Not applicable. 
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TABLE 4 Linguistic Terms and Their Corresponding Fuzzy Numbers: 
Colloid Percentage · 

Linguistic Term 
for Describing 

Fuzzy Number Characteristics (see Figure l) 

Colloid Percentage (Xi) 

high 
medium 
low 

•Not applicable. 

b 

20 
5 

m-c 

a 

10 

m m+c 

25 
20 

5 

d u Class 

40 III 
25 II 
10 0 IV 

TABLE 5 Linguistic Terms and Their Corresponding Fuzzy Numbers: 
Swelling Potential 

Linguistic Term Fuzzy Number Characteristics (see Figure l) 
for Describing 
Swelling Potential (X3) b 

high 25 
medium 5 
low 

•Not applicable. 

fuzzy variables. In contrast to the statistical least-squares cri
terion, a fuzzy criterion based on a "vagueness" measure for 
the goodness of the regression was used in the approach of 
Tanaka et al. Although this approach has been applied to the 
solution of many engineering problems, some questions re
main to be answered. Among them are questions regarding 
uniqueness of the fitting, selection of the vagueness criteria, 
and the interpretation of the fuzzy regression. Other fuzzy 
regression models, including one based on neural networks 
(30), have been reported. The JHE-based approach for fuzzy 
regression follows conventional regression techniques closely. 
Comparison of these fuzzy regression methods, however, is 
beyond the scope of this paper. 

Using the data given in Tables 2 through 6, a fuzzy multiple 
linear regression can be performed using the JHE method 
(22,28). The results of this analysis, including the fuzzy coef
ficients of the predictive equation (a0 , a1, a2 , and a3) and the 
fuzzy coefficient of determination (FCD), are given in Table 
7. The fuzzy number output reflects the uncertainty in the 
input in this case. 

Results of the above fuzzy regression analysis may be in
terpreted as in conventional multiple linear regression. If the 
range over which the resulting FCD (a fuzzy number) is de
fined is very small, the mode (m) of this fuzzy number may 
be used to represent the FCD. A higher value of the mode, 
say closer to 1, indicates a better fit. If the FCD i.s quite fuzzy, 
an interpreting model is required. One way to interpret the 
goodness of the fit is to translate the FCD fuzzy number into 

TABLE 6 Linguistic Terms and Their Corresponding Fuzzy 
Numbers: Possibility of Meeting EPA Requirements 

Linguistic grade for Fuzzy number characteristics (see Fig. l) 
possibility of meeting 
EPA requirement (Y) b m d class 

very low 0.00 0.00 0.25 1-R 
low 0.00 0.25 0.50 I 
medium 0.25 0.50 0.75 I 
high 0.50 0.75 l.00 I 
very high 0.75 l.00 l.00 1-L 

m-c 

a ---
15 

m m+c d u Class 

30 45 III 
25 30 II 

10 15 0 IV 

a linguistic term. A dictionary of linguistic terms for describing 
the goodness of fit, such as those shown in Table 8, may be 
defined and used. The translation may be made by measuring 
the similarity between the resulting FCD fuzzy number and 
those predefined fuzzy numbers. The concept and formulation 
defined in Equations 1 and 2 are examined here using the 
output of this example application shown in Table 7. 

Figur~ 3 shows the Euclidean distances between the re
sulting FCD fuzzy number (shown in Table 7) and each of 
the predefined fuzzy numbers shown in Table 8. Since the 
term "excellent" has the least Euclidean distance, it is the 
most appropriate translation for the "goodness of fit" rep
resented by the resulting FCD. 

Although the Euclidean distance model, such as that in 
Equation 1, is commonly used in the literature and is able to 

TABLE 7 Results of Fuzzy Regression Analysis 

Fuzzy Number Characteristics 
Regression 
Coefficient b m d 

~ 0.35 0.70 0.91 
a1 -0.0028 -0.0025 -0.0019 

~ 0.01 0.014 0.014 
a3 -0.02 -0.02 -0.016 
FCD 0.60 0.90 0.91 

TABLE 8 Linguistic Terms and Their Corresponding Fuzzy 
Numbers: Goodness of Fit 

Linguistic term for Fuzzy number characteristics (see Fig. I) 
describing 
goodness of fit b m d class 

poor 0.00 0.00 0.25 1-R 
fair 0.00 0.25 0.50 I 
good 0.25 0.50 0.75 I 
very good 0.50 0.75 l.00 I 
excellent 0.75 l.00 l.00 1-L 
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"pick" the most appropriate translation in this case, a closer 
look at Figure 3 reveals some drawbacks. First, it may be 
seen from Figure 3 that the Euclidean distance defined in 
Equation 1 depends on Llx (a step size or width) selected in 
the discretization process. The result shows that a smaller Llx 
yields a larger "calculated distance." Any variation in the 
calculated distances between the same two fuzzy numbers, 
caused by use of different Llx, is obviously undesirable. 

Second, the distances between the resulting FCD and the 
fuzzy numbers that represent the terms "good," "fair," and 
"poor" reveal an inconsistency of the Euclidean distance de
fined in Equation 1. Here, the distance between the FCD and 
the fuzzy number representing the term "good" is equal to 

' that between the FCD and the fuzzy number representing the 
term "fair." In addition, the distance between the FCD and 
the fuzzy number representing the term "poor" is smaller 
than that between the FCD and the fuzzy number representing 
the term "good." Thus, translation models commonly seen 
in the literature, such as Equation 1, may yield incorrect 
conclusions. 

An improved model for translation of a fuzzy number to a 
proper linguistic term is presented in this paper (Equation 2). 
Figure 4 shows the a-level distances between the resulting 
FCD (Table 7) and each of the predefined fuzzy numbers 
(Table 8) obtained from this new model (Equation 2). The 
same conclusion about the most appropriate term for trans
lation is reached from Figure 4. However, it eliminates the 
two undesirable characteristics observed in Figure 3. As shown 
in Figure 4, the a-level distance is more or less constant re
gardless of the Lla (step size) used in the discretization. In 
addition, the distances calculated are consistent with the com
mon intuition. 

CONCLUDING REMARKS 

An overview of various types of solution approaches for ap
plications of fuzzy set theory in civil engineering is presented. 
The Type II approach is considered appropriate for solving 
many transportation engineering problems in which the pro
cess (model) is deterministic and the input is fuzzy. Some 
practical issues in applying the Type II approach, including 
representation, processing, and interpretation of fuzzy infor
mation, have been addressed in depth. The new a-level dis-
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25 

tance model developed and presented in this paper is shown 
to be superior to the commonly used Euclidean distance model 
for interpretation of fuzzy output. 

An example dealing with multiple linear regression of fuzzy 
data is presented to illustrate the concept and method of the 
Type II approach. This hypothetical example, although ab
stract in content, has demonstrated the use of the Type II 
approach. 
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