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Foreword 

The six papers in this volume focus on artificial intelligence, specifically on applications of 
artificial neural networks and fuzzy set theory in transportation. The papers were presented 
at the 1993 TRB Annual Meeting. 

Hajek and Hurdal compare advantages and disadvantages of using a rule-based paradigm 
versus a neural-network-based paradigm for developing expert systems involving structured 
selection problems. For comparison purposes, two knowledge-based expert systems were 
developed using the two alternative paradigms to solve the same specific problem: selection 
of pavement sections that would benefit most from the routing and sealing maintenance 
treatment. 

Pant et al. performed a survey of utility cuts using the Delphi method and developed a 
neural network to establish a Utility Cut Condition Index for evaluation of these cuts. 

Hua and Faghri discuss an artificial neural network architecture called adaptive resonance 
theory (ART), which has demonstrated successful results when applied to different pattern 
classification problems. ARTl is applied to dynamic traffic pattern classification to determine 
appropriate time intervals and the starting times for those intervals. The results of this case 
study demonstrate the feasibility of ARTl for time interval determination using network
level traffic patterns. 

Juang et al. give an overview of various types of solution approaches in the civil engineering 
application of fuzzy set theory. Emphasis is placed on the Type II approach, in which the 
solution model is deterministic and the input is fuzzy. Issues addressed include representation 
and processing of fuzzy information and interpretation of fuzzy output. 

Kikuchi et al. analyze the anxiety that a driver experiences at the onset of the yellow signal 
during his approach to a signalized intersection. The driver's decision is modeled as a reasoning 
process that consists of a set of fuzzy inference rules for stopping or continuing through the 
intersection. The authors believe that their methodology will be useful to evaluate the accuracy 
and the type of information to be provided to drivers and to analyze the decision process of 
elderly drivers and drivers under the influence of alcohol and drugs. 

Chang and Huarng have developed a knowledge-based expert system for microcomputers 
to assist in urban freeway corridor incident management. Overall study activities included 
literature review, conceptual design, prototype system development, program documentation, 
and user interface design of the expert system. 

v 
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Comparison of Rule-Based and Neural 
Network Solutions for a Structured 
Selection Problem 

JERRY J. HAJEK AND BRIAN HuRDAL 

Advantages and disadvantages are compared o~ using a rule-ba~ed 
paradigm versus a neural-network-based paradigm for developmg 
expert systems involving structured selection problems. For com
parison purposes, two knowledge-based expert systems were de
veloped using the two alternative paradigms to solve the same 
specific problem: selection of pavement sections that would ben
efit most from the routing and sealing maintenance treatment. 
Each expert system used commercially available microcomputer 
software costing less than $1,000. The two programs have been 
compared in terms of the results achieved, software an~ hardware 
requirements, system developmen~ an~ progra~mmg effort, 
knowledge processing, how uncertamty is dealt with, and other 
parameters. Neural networks provide an efficient and appropriate 
computational tool for solving structured selection pr?blems. They 
can be implemented faster and updated more easily than rule
based systems. However, neural networks do not encode knowl
edge in any useful form whether used for future ~eference, ex
planation of reasoning, or knowledge-based updatmg. 

Several investigators and agencies, including the Ontario Min
istry of Transportation (MTO), have developed knowledge
based expert systems to facilitate the selection of the most 
appropriate pavement maintenance and rehabilitation treat
ments (J-3). The selection is made from a known set of pos
sible pavement preservation treatments using a reasoning pro
cess based on judgment and expertise. In other words, the 
objective of the selection process is to seek a solution to the 
structured selection problem by judiciously choosing the best 
solution from a finite set of possibilities. 

Past solutions of the structured selection problem have used 
rule-based or "production" systems. However, structured se
lection problems involving many input parameters, large num
bers of possible solutions, or both, require a fairly complex 
search strategy and consequently considerable development 
and programming effort (4). It was hypothesized that the 
effort to develop and program a system for solving the struc
tured selection problem could be substantially reduced by 
employing an alternative neural network solution. Neural net
works are designed to develop a mathematical model con
necting input parameters with solutions without the need for 
the programmer to define the model. 

J. J. Hajek, Research and Development Branch, Ontario Ministry 
of Transportation, Downsview, Ontario M3M 118, Canada. B, Hur
dal, Department of Systems Design, University of Waterloo, Ontario 
N2L 3Gl, Canada. 

The objective of the research reported here was not only 
to test the foregoing hypothesis but also to 

1. Evaluate advantages and disadvantages of the rule-based 
and (backpropagation) neural-network-based solutions for one 
specific application (considered to provide a typical example 
of the structured selection problem) and 

2. Address more general issues of strengths and weaknesses 
of the two approaches and highlight generic considerations 
for choosing one over the other. 

The two programming models, a rule-based paradigm and a 
neural-network-based paradigm, have been compared against 
the background of an existing knowledge-based expert system 
called ROSE (3,5). ROSE was designed to determine the 
need for one specific pavement maintenance treatment-routing 
and sealing (R&S) of asphalt concrete pavements in cold areas. 

The availability of ROSE, developed using a rule-based 
system, set the stage for the comparison of the two paradigms. 
An alternative solution based on the neural network paradigm 
was developed solely for comparison purposes. For compar
ison purposes also, each of the two solutions was developed 
using a commercially available microcomputer software of 
similar retail value. 

It should be pointed out that the terminology used here is 
not universally accepted (6). Some investigators distinguish 
between expert systems, which they consider part of the ar
tificial intelligence field, and neural networks, which they do 
not (7). Others try to distinguish among procedural lan
guages, expert systems, and neural networks by referring to 
them as ·"three principal information technologies" (8). 

For the purposes of this paper, the term "expert system" 
·is defined as a system that attempts to solve problems nor
mally thought to require human specialists for their solution, 
a rather traditional definition. According to this definition, it 
does not matter which one of the various programming tech
nologies (or their combinations) is employed to make the 
expert system work-conventional procedural languages, sym
bolic languages, if-then rules, neural networks, or generic 
algorithms. Ultimately all software runs on the same digital 
computers and all information is represented on digital com
puters in the same way: computers store and process infor
mation by changing state (6). Also, neural networks are some
times referred to as neural nets (9). These two terms are 
interchangeable. 

, .... 
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PROBLEM DOMAIN: ROUTING AND SEALING 

A case-specific comparison of the two solution paradigms was 
made for the problem of selecting and recommending R&S 
as a maintenance treatment for cracks in asphalt concrete 
pavements in cold areas. Routing, often done with a carbide
tipped router, opens a crack to the width of 20 to 40 mm and 
a depth of approximately 10 mm. This opening, cleaned and 
dried by hot compressed air, is required to accommodate 
enough sealant (hot-poured rubberized or polymerized as
phalt cement) to provide an effective seal even after the pave
ment contracts at low temperatures. The objective is to pre
vent surface water, particularly water containing deicing salts, 
from entering and damaging the pavement structure. 

In general, R&S is recommended as a preventive pavement 
maintenance treatment. R&S should be done before the ini
tially formed single pavement cracks deteriorate (ravel, branch 
out into multiple cracks, or, in the case of transverse cracks, 
become stepped). Nevertheless, it is not usually practical to 
perform R&S on hairline cracks. If only a few cracks are 
suitable for R&S, · the operation may not be economically 
worthwhile. Conversely, if the cracking is extensive, it is usu
ally better to resurface the entire pavement rather than to 
perform R&S on it. 

In addition to the amount and width of cracks, R&S de
cisions also depend on crack type, pavement serviceability, 
pavement structure and age, presence of other pavement dis
tresses (ravelling, flushing, rutting, etc.), and the existence 
of pavement maintenance treatments (5). Altogether, there 
are about 40 different variables and factors influencing R&S 
decisions. 

Function of 
System Developer 

(ill) Problem Analysis 
and Definition 

+ (jg) Detailed Knowledge Acquisition 
- state-of-the-art review 
- interviewing experts 
- in-depth understanding 
of problem domain 

i 

Function of 
System Software 

@ Organization of Knowledge - tools assisting with 
and Reasoning ----+ formulation of decision 
- decision trees trees 
- flow charts 

i 
i) System Development - storage and organization 

- software selection ----+ of knowledge 
- coding knowledge - execution of rules 

and operational rules - conflict resolution i -input/output functions 

Evaluation and Testing ___. - convenient 
programming support 

TRANSPORTATION RESEARCH RECORD 1399 

The economic significance of the R&S treatment has been 
evaluated by Joseph (10). For significant benefits of the treat
ment to be realized, the pavement sections must be selected 
for cost-effectiveness and the R&S applications must be well 
executed. Judicious and timely selection of such sections is 
the subject of the expert system solution described here. 

RULE-BASED SYSTEM 

As stated previously, ROSE provides problem solutions using 
the if-then rules and serves as a benchmark for comparison 
with the neural network solution. The following steps form 
the basic procedure for the development of rule-based systems 
(Figure 1). 

Problem Analysis and Definition 

Recommending R&S treatment was formulated as the selec
tion from a set of numbers 0, 1, 2, 3, ... 10 that indicate the 
desirability of R&S. Definite rejection of R&S is indicated 
by 0, whereas 10 ineans that R&S is a highly desirable and 
cost-effective treatment. 

Detailed Knowledge Acquisition 

The development of a rule-based system requires detailed 
knowledge of the problem domain. It is often necessary to 
select, evaluate, or combine different points of view and to 

Function of 
SystemDeveloper 

@) Problem Analysis 
and Definition 

i 
@ Knowledge Acquisition 

- basic understanding 
- acquisition of a 

training set 

. ! . 

Function of 
System Software 

@ System Development - implicit encoding of 
- software selection ----> knowledge 
- neural rtwork training - inpuVoutput functions 

@) Evaluation and Testing - convenient 
- acquisition of a testing ~ programming 

set support 

FIGURE 1 Comparison of basic functions by system developer and system software for rule-based and 
neural network systems. 
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provide conflict resolution when necessary. Knowledge for 
ROSE was acquired from written sources and by interviewing 
experts using an iterative process (5). 

Organization of Knowledge and Reasoning 

Rule Number: 48 

IF: 

The severity of half, full, and multiple 
transverse cracking is moderate 

and The density of half, full and multiple 
transverse cracking is throughout 

THEN: 
[BASE] .IS GIVEN THE VALUE 3 

3 

D~sirability of R&S is influenced by approximately 40 nu
merical variables, which are routinely collected and stored in 
the MTO pavement management data bank. Thirty of these 
variables describe severity and density of 15 pavement surface 
defects (5). Th

0

e organizational task was to develop a logical 
procedure for utilizing the values ~nd interrelationships of all 
these variables and converting them into one variable: the 
desirability of R&S. This was accomplished by developing a 
general decision model in the form of a flow chart. A more 
typical representation of knowledge for structured selection 
problems is usually provided by decision trees (2 ,4). 

and [CRACK EXTENT] IS GIVEN THE VALUE [CRACK EXTENT] 
+ 0 

System Development 

and routing and sealing is governed by crack extent 
and amount of half, full and multiple transverse 

cracking is too many 
and [TOTAL] IS GIVEN THE VALUE [TOTAL] + 3 

FIGURE 2 Example of ROSE rule coded in EXSYS. 

The programming was done in the form of if-then rules using 
an EXSYS expert system development package (11). An ex
ample of an EXSYS rule is shown in Figure 2. EXSYS has a 
user-friendly interface, and the rule formulation and coding 
were greatly assisted by the EXSYS editing program and in-

ference mechanism. Although the if-then rule program is not 
strictly a procedural program, the rules cannot be arranged 
in an arbitrary order regardless of their context. Indeed, the 
main means of controlling the user's interface and program 
execution is through the arrangement of knowledge rules and 
facts and specifically created operational (strategy control) 
rules. Consequently, rule-based programs may require con
siderable programming effort. Specifically, ROSE required 
about 3 months of development and programming. This and 
other attributes, which will be discussed later, are summarized 
in Table 1. 

TABLE 1 Comparison of Rule-Based and Neural Network Attributes for R&S Problem 

Attribute 

Software Used 

Hardware Used 

Documentation 

Linkage with Software 

Development Effort 

System Size 

Explanatory Capabilities 

Other Computational 
Features 

Knowledge Encoding 

Knowledge Updating 

Dealing with Uncertainty 

Implementation Result 

Solution 

Rule Based 

EXSYS Pro. Cost: $795.00 

IBM compatible microcomputer 

608 page user's guide 

Access to dBase, Lotus. Can call 
external programs during 
execution. 

1 week of knowledge acquisition 
plus 3 months of development 
and programming. 

About 360 rules constituting the 
main program. 

Can explain reasoning by 
recalling applicable rules. Logic 
path is known and can be 
followed. 

Excellent inpuUoutput features. 
Versatile command language. 
User created help and 
explanation files. Direct 
interaction with other programs. 

Detailed encoding of knowledge 
base is mandatory. 

A good understanding of the 
rules is required to make any 
substantial changes. 

Uncertainty can be associated 
with both inputs and outputs, and 
can be quantified. 

Neural Network Based 

BrainMaker Pro. Cost: $795.00 

IBM compatible microcomputer 

422 page user's guide 

Access to dBase, Lotus, Excel. 
Execution can't be interrrupted 
to call external programs. 

1 day of knowledge acquisition 
plus 3 weeks of development. 

148 training facts. No 
programming required. 

Very limited explanatory 
capabilities. Reasoning path is 
unknown. 

Good screen editor but limited 
inpuUoutput features. Easy to 
learn. 

Encoded knowledge cannot be 
accessed. 

Easy: no in-depth knowledge 
required. However, success of 
retraining is not guaranteed. 

Can handle both input and 
output certainties by using 
"fuzzy" inputs and outputs. 
Uncertainty is difficult to 
quantify. 

Both solutions provide comparable results in comparable 
computational time. 
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Evaluation and Testing 

Taking advantage of the editing features and the inference 
engine supplied by EXSYS, ROSE was calibrat.ed, tested, 
and verified on approximately 100 pavement sections. 

NEURAL-NETWORK-BASED SYSTEM 

The computational procedure referred to as the neural net
work derives its name from biological neural systems. These 
systems or networks organize billions of bas~c cel_ls, c~lled 
neurons, into a highly functional organ-the bram. It 1s claimed 
that neural networks attempt to model associative reasoning 
and pattern matching of the human brain, and neural network 
technology has been inspired by studies of the brain and the 
nervous system (8,12): However, at present, neural networks 
only model the process that connects input data with output 
data by exploiting the capacity of computers to perform an 
iterative series of rapid numerical calculations. 

A basic neural network consists of three layers of inter
connected nodes called neurons (Figure 3). Input-layer neu
rons receive data from the user; output-layer neurons send 
information to the user. The middle (hidden) layer of neurons 
receives signals from all the neurons in the input lay~r and 
has the option of sending signals to all the neurons m the 
output layer. The computer is programmed ~o calibrate the 
strength of the signals transmitted within the network by an 
iterative process until the output neurons yield desired results. 
Mathematical formulation of this process is available in sev
eral sources (12,13). 

The basic procedure used for development of the neural 
network solution consisted of the following steps (Figure 1). 

Problem Analysis and Definition 

Problem formulation was the same as that for the rule-based 
system. Input-layer neurons were identified with 40 input var-

Input layer Hidden layer 
with 3 neurons with 2 neurons 

direction of connections feed 
forward 

direction of propagation propagate 

Output layer 
with 1 neuron 

backward 

FIGURE 3 Simple three-layer neural network. 
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iables and output-layer neurons with the R&S desirabilities 
on a scale from 0 to 10. 

Knowledge Acquisition 

Neural networks do not require (and often cannot utilize) 
detailed knowledge of the problem domain. For example, the 
knowledge of the influence of asphalt concrete thickness on 
R&S desirability, when all other variables are held constant, 
is required for the development of the rule-based system but 
not for the neural-network-based system. However, knowl
edge is always beneficial for building and training (calibrating) 
neural networks. The development of neural networks re
quires at least two pieces of knowledge on the part of the 
developer: (a) factors or _variables that are likely to influence 
the results and (b) recognition of the validity of the results. 
Neural networks can only make predictions based on "ex
perience" -on previous linkages between input and output 
sets. 

Knowledge acquisition consisted mainly of acquiring all rel
evant input data for a random sample of 148 pavement sec
tions. The sections were obtained from the pavement man
agement data bank and were assumed to provide a wide variety 
of data across all ranges of values. The R&S desirability for 
the 148 sections was determined by ROSE because ROSE 
was already available, is considered reliable, and uses the 
same input data. The resulting 148 input-output pairs were 
used as the neural network training set. 

System Development 

The neural network software used, BrainMaker Professional 
2.0 (14), is a representative neural network software designed 
for general use. It forms a complete system for designing, 
building, training, testing, and running neural networks and 
was considered to be an appropriate corresponding counter
part for EXSYS. Figure 4 shows two typical BrainMaker menus: 
a startup menu for creation of training sets and a run menu 
for training and testing of neural networks. 

The bulk of the neural network development involved train
ing the network to provide acceptable results or outputs for 
all 148 cases in the training set. To determine the outputs, 
BrainMaker utilizes a supervised training scheme called back
propagation. The backpropagation algorithm compares. the 
current network output with the desired output for a given 
training fact. If the difference is unacceptable, the weights of 
connectors leading from the input layer to the output layer 
(Figure 3) are adjusted to produce an improved output. This 
algorithm is employed for all other facts in the training set 
and repeated for the whole training set until some predete~
mined training criteria are met, at which time the network 1s 
said to converge. For example, the total error across the whole 
training set is below a certain limit. Although this iteration 
is performed automatically, the user can influence the process 
or observe it by specifying several parameters. 

Transfer (Activation) Function 

When a neuron receives inputs (i.e., outputs from other neu
rons), it calculates its output using an activation function. In 
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NetMaker Professional 

Read in Data File 

Manipulate Data 

Create BrainMaker File 

Go to BrainMaker 

Save NetMaker File 

Exit'NetMaker 

Train Network 

Continue Training 

Test Network 

Run Trained Network 

Get Next Fact 

Erase Network Input 

Hypersonic Train 

v2.0 

Ctrl-F 

Ctrl-M 

Ctrl-C 

Ctrl-B 

Ctrl-S 

Ctrl-Z 

"T 

"C 

"G 

"E 

NetMaker 

Start-up 

Menu/List 

BrainMaker 

Run 

Menu/List 

FIGURE 4 NetMaker startup menu and BrainMaker 
run menu. 

the simplest models, this is just the weighted sum of its inputs. 
The transfer function used in this application was a sigmoidal 
or an S-shaped function, which has asymptotic approaches at 
the high and low ends of input values. 

Learning Rate 

Learning rate influences the amount of adjustment to the 
connection weights between successive iterations. For ex
ample, a learning rate of 0 means that the weights never 
change, no adjustments are made, and "learning" never takes 
place. The application used a default learning rate of 1, which 
guarantees convergence if convergence is possible. Only lim
ited experimentation was done with higher learning rates be
cause the total training period of about 2 hr required for the 
learning rate of 1 was acceptable. 

Number of Hidden Neurons 

The number of hidden neurons can significantly affect the 
training and performance of neural networks. BrainMaker 
was set to automatic neuron selection. 

Training Tolerance 

Training tolerance indicates the range for which outputs are 
considered correct. The best results for the application were 
achieved at around 10 percent tolerance. The higher tolerance 
settings resulted in disorderly predictions. If the tolerance is 
set too low, the network runs the danger of memorizing rather 
than predicting outputs and requires excessive computer time. 
The training period was about 2 hr· at 10 percent tolerance 
on a Compaq Deskpro with a 387 numeric coprocessor. 

5 

Number of Training Facts 

A relatively low number of training facts (148) was used. 
Although there were 40 input variables and some of these 
variables were categorical ones, many variable combinations 
do not occur [e.g., high pavement age and high Pavement 
Condition Index (PCI)]. Also, there are dominant variables 
(such as the PCI) that may overshadow the influence of mar
ginal variables. Finally, the objective was to create a workable 
neural network solution for comparative purposes only. 

Sequence of Training Facts 

Neural network solutions often converge most effectively when 
the training facts are in a specific order, which is often a 
random order as used in this application. 

Diagnosing Problems 

BrainMaker has the capacity to display histograms of the 
weight matrixes placed on the connections between neurons 
in the input and hidden layers or in the hidden and output 
layers (Figure 5). For example, the histogram in Figure 5, 
obtained for the final (trained) network, shows that there are 
about 26 neuron connections with the value of 3 between the 
input and hidden layers. Histograms are useful for assisting 
in evaluating overall network performance. The histogram in 
Figure 5 resembles a bell-shaped curve and has a lot of spare 
capacity for weights in the higher ranges ( - 8 to - 3 and + 3 
to +8). 

Evaluation and Testing 

Neural network testing is done by giving the network infor
mation not available before and observing the results. The 
common way of doing this is to reserve about 10 percent of 
the training set for testing. In this application, testing was 
done using a random set of 20 additional pavement sections. 

An integral part of evaluation and testing of an expert 
system is to study how the system reaches its conclusion. Rule
based systems provide a clear trail of rules that fully explain 
how the system works. The explanatory capability of rule
based expert systems is particularly useful for the prediction 
of unusual cases. Unlike rule-based systems, neural networks 

(/) 
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I 
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Connection Weights 

FIGURE 5 Histogram of weight matrix between input and 
hidden layers. 
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do not rely on causal relationships and existing expertise and 
attempt to model only the process by which the inputs become 
outputs. Consequently, neural networks provide limited op
portunities for purposes of causal analysis. 

Some knowledge of the relative importance of input factors 
used by the network can be obtained by examining connection 
weights (9). For example, BrainMaker software indicates the 
importance of input variables using neuron sensitivity graphs. 
Some insights are also provided in terms of "neuron activity" 
by a series of little bar graphs called thermometers. Figure 6 
shows 40 such thermometers (for the 40 input variables) ob
tained for the first section of the testing set (pavement test 
section 1 in Table 2). For this particular case, variable PCI 
has a relative influence on the output (R&S desirability of 
1.676) equal to %, and variable density of machine patching 
( dmcp) has no influence on the output._ 

COMPARISONS 

The BrainMaker neural network solution was designed to 
replicate the R&S desirabilities determined by the EXSYS 
rule-based system. The results obtained by the two alternative 
solutions for the random sample of 20 pavement sections are 
summarized in Table 2, from which several observations can 
be made. 

1. For lower desirabilities, in the 0 to 5 range, there are 
some substantial differences between the two solutions. 

2. For higher desirabilities, in the 6 to 10 range, the results 
provided by the two solutions are quite similar. Of the six 
occurrences, two are identical, three are 1 point apart, and 
one is 2 points apart (6 versus 4). 

3. In practice, only the ranking of sections with the higher 
desirabilities is important, because only these sections are 
actually considered for the R&S treatment and, usually, only 
the sections with highest desirabilities receive the treatment. 

4. Recommendations expressed on the scale of 0 to 10 are 
probably more detailed than necessary. The expert is likely 
to express his or her recommendations using only three or 
four categories [e.g., priority for R&S is none (0-3), low 
(3-5), medium (6-7), or high (8-10)]. 

The results for several other evaluation parameters are de
scribed in Table 1. Overall, it is concluded that the two al
ternative solutions are comparable and that the neural net
work solution is considerably easier and faster to develop. 

On the basis of this application and previous experience, 
the following additional comments are offered. 

TABLE 2 Comparison of R&S Desirabilities 

Pavement Section 2 3 4 5 6 7 8 9 

Target Value for 3 6 0 0 3 5 8 2 6 
R&S(ROSE) 

Value Obtained by 2 7 3 0 2 3 8 3 7 
Neural Network 

TRANSPORTATION RESEARCH RECORD 1399 

PCI dmnp dmcp dspp R&SD 

1¥¥¥¥¥ ~¥¥¥¥ I ~ Out:l.676 
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1¥¥¥¥¥¥¥¥1 l\'¥¥¥¥¥¥¥1 1¥¥¥¥¥¥ _-I 
swtc dwtc sclc dclc 
~¥¥ I 1¥¥ :.1 I 
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1¥¥ 1¥¥ 
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1¥¥¥ j¥¥¥¥¥ 1¥¥¥¥¥ 
srss drss swtr dwtr 
1¥¥¥¥¥¥¥¥1 1¥¥¥¥¥¥¥¥1 1¥¥¥¥¥¥¥¥1 !¥¥¥¥¥¥¥¥I 

sdis ddis over thic 
~¥¥¥¥¥ i¥¥¥¥ 

FIGURE 6 Thermometer display obtained during network 
testing. [See section 1 in Table 2; Out: 1.676 is output, 
predicted number; Ptn: 3 is pattern, actual (or ROSE) number. 
Abbreviations above thermometers denominate input-layer 
variables.] 

Explanatory Capabilities 

Unlike neural networks, rule-based systems can explain how 
the system reached its conclusions. However, the explanation 
provided automatically by the rule-based systems only iden
tifies the (chain of) applicable rules used by the system. The 
rules themselves, even if fully defined by the explanatory 
facility, are often quite cryptic and may require further 
explanation or translation to be useful to many users (Fig
ure 1). Explanatory facilities of the rule-based system can 
be expanded and enhanced, but this requires additional 
programming. 

Knowledge Encoding and Recall 

Several different viewpoints can be advanced on this issue. 
Rule-based systems demand (and enable) detailed encoding 
of the domain knowledge. However, this knowledge is not 
really-readily accessible to the user. Nevertheless, a typical 
user is usually not interested in minute details; he or she is 
interested principally in the results and their reliability and 
only then, to some degree, in the main features behind the 
program. 

The need to develop knowledge rules for the rule-based 
system has several positive consequences. The need may pro
vide motivation to finally capture and declare rules, identify 
discrepancies, and develop precise guidelines. Once known, 

10 11 12 13 14 15 16 17 18 19 20 

5 6 8 4 5 8 5 0 5 5 

3 4 7 3 8 0 5 3 5 

Notes: All results are rounded and reported as integers. 
10 represents the highest R & S desirability, O is least desirable. 
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rules can be translated into different computer languages and 
utilized by different hardware and software systems. The ex
istence of the rules allows other experts to supplement or 
correct the knowledge base. 

Neural networks are particularly useful when there is no 
effective way to explain reasoning, models or algorithms are 
unavailable, or there is no interest in generating models. 

Updating of Programs 

Both rule-based or neural network programs must be updated 
by someone who knows the specific programming or devel
opment environment (e.g., EXSYS, BrainMaker). Neural 
network updating by increasing the size of the training set is 
quite efficient and simple compared with updating rule-based 
systems, in which the context of the rules may also be im
portant. However, neural network updating may require a 
considerable amount of training time and additional, perhaps 
scarce, training facts. 

Dealing with Uncertainty and Missing Data 

Neural networks have greater generalization ability and can 
include uncertainty implicity as part of the training set. Rule
based systems cannot deal with situations that are not covered 
by the rules. Also, the rules require an exact linguistic match 
between the names of variables in the rules and the names 
used by the user for inputting data. 

Unusual Cases 

Neural networks require special training to accommodate spe
cial or unusual cases, and an adequate solution is not guar
anteed. Rule-based systems can handle unusual cases using 
explicit rules. 

CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions were drawn and recommendations 
were made: 

1. The two alternative solutions, the EXSYS rule-based 
solution and the BrainMaker neural network solution, yield 
comparable results. 

2. Neural networks provide an efficient and appropriate 
computational tool for solving structured selection problems 
(a) that do not require detailed encoding of causal relation
ships, (b) for which detailed knowledge is unavailable, or (c) 
that are not of interest to the users. 

3. Neural networks would benefit from development of 
techniques for interpreting their inner workings in terms of 

7 

causal relationships. Some limited tools exist, such as ana
lyzing connection -weights by graphing neuron sensitivity, but 
they are far from satisfactory. At present, neural networks 
are reliable pattern matchers and not much more. 

4. Since rule-based and neural network solutions exhibit 
strengths and weaknesses in different areas and supplement 
each other, their combination in one software system or their 
use for one application would be advantageous. 
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Neural-Network-Based Procedure for 
Condition Assessment of Utility 
Cuts in Flexible Pavements 

PRAHLAD D. PANT, X1N Zttou, RAJAGOPAL S. ARUDI, ANDREW B0Docs1, 

AND A. EMIN AKTAN 

On city streets utility companies often dig up a section of pave
ment to install or inspect utility services. Such locations, termed 
utility cuts, introduce discontinuities, weaken pavements, and cause 
localized distresses. Their condition evaluation requires a small
area investigation, for which no specific guidelines are available. 
A procedure for investigation of utility cuts and a rating index 
called the Utility Cut Condition Index (UCCI) are described. A 
survey of utility cuts in the city of Cincinnati was performed using 
the Delphi method. Field data were used to develop a neural 
network for predicting UCCI on the basis of the type and severity 
of distresses. The model was trained and tested for its accuracy. 
The UCCI predicted by the neural network can be used as a 
management tool for identifying conditions of utility cuts and for 
assigning priorities for their maintenance. 

Periodic monitoring of highway pavement for condition eval
uation is an essential aspect of a maintenance program. Ac
cording to the AASHTO guidelines for pavement manage
ment systems (1), a condition evaluation includes four basic 
classes of information: (a) ride quality or roughness, (b) phys
ical distresses, (c) structural capacity, and (d) safety. 

Considerable research has been applied to the monitoring 
of distresses on Interstate and state road systems, on which 
the surface distresses are normally spread over a wider area. 
The distress manuals developed by the Strategic Highway 

· Research Program (SHRP) (2), the U.S. Army Corps of En
gineers Construction Engineering Research Laboratory 
(CERL) (3), and various state agencies (4,5) provide specific 
guidelines for evaluating the severity and extent of distresses 
in a given highway segment on a global level. However, when 
the distresses are localized, engineers are required to inves
tigate a small area of the pavement, for which no specific 
guidelines are available. 

On city streets utility companies often dig up a section of 
a pavement to install or inspect utility services. After the 
installation or inspection, the section is restored in accordance 
with existing guidelines and specifications ( 6). Such a location 
within a pavement section is termed a utility cut. These cuts 
introduce discontinuities, weaken the pavements, and cause 
localized distresses. 

A procedure developed for microlevel investigation of lo
calized distresses in asphalt pavements in and around utility 
cuts is outlined. Then the development of a neural network 

Department of Civil and Environmental Engineering, University of 
Cincinnati, 741 Baldwin Hall #71, Cincinnati, Ohio 45221-0071. 

that can establish a rating index for condition evaluation of 
utility cuts is described. 

UTILITY CUTS VERSUS PAVEMENT SECTIONS 

Utility cuts differ from highway pavement sections in terms 
of their size and mechanical behavior. These cuts are relatively 
small in comparison with the surrounding pavement sections: 
normally the cut ranges from 15 to 50 ft2 (1.4 to 4.6 m2) in 
the horizontal plane. 

Once a pavement section has been built, it experiences a 
decline in its condition primarily because of traffic and en
vironmental factors. The construction and composition of a 
pavement section may be assumed to be fairly uniform within 
a given section. The life cycle of pavements has become well 
understood through the development of life-cycle models. A 
utility cut, however, normally deteriorates at an accelerated 
pace. Type of backfill materials used and inadequate com
paction characteristics have been found to be the most im
portant factors affecting the performance of utility cuts (7). 
Few cities have guidelines for the evaluation of utility cuts. 
Chong et al. (8) provide guidelines for municipalities to eval
uate distress conditions in utility trenches and suggest alter
native maintenance treatments for various severity levels. 
Shahin and Crovetti (9) adopted the techniques used for pave
ment evaluation and design without any modifications for 
utility cuts. 

NEED TO DEVELOP RATING INDEX FOR 
UTILITY CUTS 

There is considerable variety in the ways that individual agen
cies use pavement condition data. The two most common 
methods are 

1. To combine attributes in a specific manner to determine 
a single (aggregate) index and 

2. To use these data in decision trees (disaggregate them) 
to determine condition states or to tabulate them in the form 
of a pavement condition matrix. 

Aggregating pavement condition data into a single rating 
index is a widely used concept to support project- and network-
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level pavement management decisions (10). Typical condition 
indicators for highway pavements referred to in the literature 
are the Present Serviceability Index (PSI) of AASHTO (11), 
the Pavement Condition Index (PCI) of CERL (3), the Pave
ment Condition Rating (PCR) of Ohio and Ontario ( 4,12), 
and the Pavement Quality Index (POI) of Alberta (13). Spe
cific guidelines are available to gather the data required to 
develop any of these indexes, which assist in evaluating the 
condition of pavements on a global level for an extended 
highway segment. To assemble individual distresses into a 
single matrix, several procedures have been used in the past, 
with the deduct-points method being the most common (3,4). 
However, no specific guidelines are available for condition 
evaluation of utility cuts or the establishment of a rating index. 
Engineers have so far relied on their experience to evaluate 
utility cuts since the condition indicators mentioned earlier 
have not been used for localized distress evaluation. Devel
opment of a new rating index for utility cuts is needed. 

DISTRESS MANUAL 

Several manuals have been developed for identification of 
distresses in pavements. Generally these manuals describe 
methods for identifying commonly observed distresses and 
measuring their severity. The distress manuals developed by 
SHRP (2) and CERL (3) encompass all categories of pave
ments and possible distress types. Unfortunately, the manuals 
currently available do not make a clear distinction between 
the evaluation of extended pavement sections and the eval
uation of utility cuts. Hence a distress manual for utility cuts 
(14), which was a first attempt to list the most predominant 
distresses in utility cuts, was developed. The manual considers 
various types and severity of distresses but not their extent, 
because of the relatively small area involved. The manual lists 
the following nine types of distresses and their severity at low, 
moderate, and high levels: 

1. Alligator cracking, 
2. Edge cracking, 
3. Transverse cracking, 
4. Potholes, 
5. Rutting, 
6. Ravelling and weathering, 
7. Pavement drop-off, 
8. Edge separation, and 
9. Corner breaks. 

All of the foregoing distresses except 6, 8, and 9 are also 
applicable for evaluation of distresses in the vicinity of cuts. 

FIELD STUDIES 

Distress surveys were carried out to identify the type and 
severity of distresses in and around utility cuts. Although the 
distress manual provides necessary guidelines, the experience 
of the engineer or inspector plays a critical role in the survey 
because the severity of a distress must be subjectively assessed 
as low, moderate, or high, as described in the manual. In 
order to reduce variations in the evaluation of distress con-
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ditions, the collective judgment of engineers and inspectors 
was used. The condition data were collected on selected utility 
cuts in the city of Cincinnati using the Delphi method. 

The Delphi method is a spin-off from defense research (15) 
in which expert opinions are extracted on items that are sub
jective and the variation in the responses is reduced. The 
Delphi technique is an iterative procedure characterized by 
three features: anonymity, iteration with controlled feedback, 
and statistical response. The opinions of the panelists, who 
respond to a series of questions, remain unknown to one 
another. After the survey is completed, feedback is provided 
to each participant regarding the summary results. If there 
are wide variations in the opinions of the panelists on any 
item, a new round of survey is performed based on the results 
of the previous round. This process is continued until an 
agreement or near agreement is reached on various items 
under consideration, or until it becomes evident that no such 
agreement can be reached. 

The panel for the Delphi study consisted of 4 engineers 
from the Cincinnati Central Engineering Office and 11 in
spectors from the Highway Maintenance Department. Nor
mally the inspectors from the Maintenance Department are 
responsible for routine evaluation and inspection of utility 
cuts. Since the objective of the study was to collect opinions 
from a wide range of experts, engineers from the Central 
Engineering Office were included in the Delphi panel. 

The Delphi method required asking the panelists simple 
questions as to the type and severity of distresses present in 
each utility cut. A questionnaire was prepared in the form of 
an evaluation form (Figure 1). This form was designed to ask 
the panelist about the surface profile, type and severity of the 
existing distresses, overall condition of the cut, and recom
mended action. One evaluation form was used by panelists 
for each cut. 

In all, 75 cuts with granular base and asphalt surfacing and 
various levels of traffic and distresses were surveyed by the 
panelists. The samples were randomly drawn from a large 
population of utility cuts on major arterials, collectors, and 
residential streets. The size of the cut generally varied from 
3 by 3 ft to 7 by 10 ft (0.91 by 0.91 m to 2.1 by 2.1 m). 

Round 1 

Initially, the research team held a series of discussions with 
the panelists to familiarize them with the objectives of the 
project. Each panelist was given a distress manual, a set of 
blank evaluation forms, and a list of utility cuts to be eval
uated. The use of the distress manual and evaluation form 
was explained. Trial sessions were held on two typical cuts to 
ensure that the panelists understood the use of the distress 
manual and evaluation form. 

During the first round, the panelists surveyed 75 cuts over 
a period of 2 months. During the distress survey, no discussion 
was allowed among the panelists. The first round yielded 1, 125 
evaluation forms. 

Round 2 

The information obtained during Round 1 was input into a 
data base and analyzed. A large deviation in the identification 
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City of Cincinnati 

Prepared by: ___ _ 

Location: ____ _ 

Surface Profile very poor poor 

(enter a number here) 0 - 20 21 - 40 

Distresses 

Alligator-cracking 

Edge Cracking 

Transverse Cracking 

Potholes 

Rutting 

Ravelling & Weathering 

Cut-to-Adjacent Pavement 
Drop-off 

Edge Separation 

Corner Breaks 

Additional Remarks: 

Cut 
low moderate 

FIGURE 1 Evaluation form for utility cuts. 

high 

and severity of the distresses as well as in the overall condition 
of the utility cuts was found for most of the locations. Hence 
a second series of meetings was held and a statistical summary 
of the results for each cut was given to the panelists. They 
were specifically told to refer to the summary and appropri- _ 
ately revise their opinion only if they believed it was neces
sary. The panelists visited all 75 cuts. 

Round 3 

When the results of Round 2 were tabulated, it was found 
that the panelists still differed in some aspects of evaluation 
of the utility cuts. In particular, eight panelists seemed to 
disagree on some 26 cuts. Hence only these eight panelists 
and 26 cuts were included in Round 3 of the survey. No further 
rounds of survey were performed since the results indicated 
that there might not have been any improvement of practical 
significance. Table 1 shows the final distribution of the sample 
for different conditions of the utility cuts. 

The overall condition given by the panelist for each cut is 
an aggregate measure of individual distresses that will be called 
the Utility Cut Condition Index (UCCI). The data collected 
by the Delphi method were used to develop a neural network 
for predicting the UCCI. 

DEVEiOPMENT OF NEURAL NETWORK MODEL 

In recent years, artificial neural networks (ANNs) have been 
gaining wide application in business and industry. In many 

fair 

41 - 60 

Vicinity 
low moderate high 

Date of Survey: ___ _ 

Time of Survey: ___ _ 

good excellent 

61 - 80 81 - 100 

Any additional Distress? 

Overall Condition (UCCI) 

0 Very Poor(0-20) 
0 Poor(21-40) 
0 Fair(41-60) 
0 Good(61-80) 
0 Excellent(81-100) 

Recommended Action 

0 Do Nothing 
0 Surf. Treatment 
0 Overlay 
0 Reconstruct 

instances, ANNs have been found to provide better results 
than conventional modeling techniques, particularly if the re
lationships among the variables of interest are complex. There 
are several advantages to using a neural network to predict 
the UCCI on the basis of subjective views of human experts. 
For instance, the deduct-points method used to convert word 
ratings into numerical values for highway pavement sections 
makes several assumptions about distress weighing factors. A 
neural network can use word ratings to develop a rating index 
without the need for such assumptions. As explained in the 
following paragraphs, in this study the neural network derived 
expertise from examples of the distress survey and was trained 
to solve problems of a similar nature in the future. The back
propagation method (16) was used to develop a neural net
work consisting of an input layer, an output layer, and a 
hidden layer (Figure 2). 

Data Preprocessing and Training 

As mentioned before, the Delphi method was used to collect 
data on the con,9itions of utility cuts. The data base was ini
tially prepared to contain information on the types and se
verity of distresses in the cut and its vicinity and overall con
dition. The information on surface profile and recommended 
action was not used in the development of the neural network. 

Before a neural network could be developed, preprocessing 
of the data was necessary since neural networks cannot rec
ognize categorical information such as low, moderate, or high 
distresses. A computer program was written to convert the 
categorical information into numerical codes as follows: 
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TABLE 1 Final Results of Distress Survey 

Surface Profile 

Distresses 

Alligator Cracking (A/J) 

Edge Cracking (B/K) 

Transverse Cracking (C/L) 

Potholes (DIM) 

Rutting (E/N) 

Ravelling & Weathering (F) 

Drop off (G/O) 

Edge Separation (H) 

Corner Breaks (I) 

Overall Condition 

Action 

Category 

No distress 
Low severity 
Moderate severity 
High severity 

Numerical Code 

(0,0) 
(0,1) 
(1,0) 
(1,1) 

1-10 

17 

51-60 

173 

L 

155 -

222 

147 

155 

319 

476 

389 

527 

228 

1-10 

28 

51-60 

159 

Do Nothing 

288 

The observations were classified into 10 groups on the basis 
of UCCis ranging from 1 to 100: For example, a UCCI of 
100 represents a utility cut with absolutely no distress. 

To develop a neural network, training data and testing data 
are required. A network needs to be trained so that the ap
plication of a set of inputs can produce a desired set of outputs. 
The testing data are used to check the accuracy of the de
veloped neural network. Hence, the original data, consisting 
of 1,032 observations, were separated into two parts: 709 
observations (69 percent of the total sample) for training and 
the remaining 323 observations (31 percent) for testing. Ob-

0 Processing Element/Neuron 

FIGURE 2 Neural network structure. 

Output 
Layer 

Hidden 
Layer 

Input 
Layer 

Cut 

M 

227 

270 

206 

105 

172 

297 

148 

272 

137 

11 

11-20 21-30 31-40 41-50 

50 60 120 180 

61-70 71-80 81-90 91-100 

231 197 84 13 

Vicinity 

H L M H 

224 81 143 60 

147 96 57 23 

95 232 415 70 

61 32 13 4 

93 142 61 11 

145 

57 16 12 3 

103 

103 

11-20 21-30 31-40 41-50 

74 101 153 132 

61-70 71-80 81-90 91-100 II 

109 172 95 9 

Surf. Treat. Overlay Reconstruct 

249 139 356 

servations were selected for the training and testing data sets 
randomly within each UCCI group. 

A software called NeuralWorks Professional II/Plus (16) 
was used to develop the neural network described in this 
paper. There were 30 processing elements in the input layer 
to represent nine types of distresses in the cut and six in the 
vicinity. The hidden layer consisted of 10 processing elements. 
The output layer had only one processing element, that is, 
one UCCI for each utility cut. In this study, the sigmoid 
function (17) was chosen to be the transfer function. Although 
other transfer functions such as hyperbolic tangent or sine 
were also tried, the sigmoid transfer function was found to 
allow the root-mean-square convergence most quickly. 

The selection of a set of proper learning coefficients and a 
momentum value is important, since they are sensitive and 
critical to the network learning. After a few trial runs, the 
initial learning coefficients were set at 0.3 for the hidden layer 
and 0.2 for the output layer and the momentum was 0.8. These 
values were gradually reduced for higher numbers of training 
iterations as shown in Table 2. 

Neural Network Testing 

The neural network was tested with the testing data. A com
parison of the actual UCCI with the predicted UCCI showed 
that the average absolute error (actual UCCI minus predicted 
UCCI) was 6.5 and the average relative error [(actual UCCI 
minus predicted UCCI)/actual UCCI] was 4.0 percent. When 
the output band was set to ± 12, the neural network was found 
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· TABLE 2 Learning· Coefficient and Momentum Values 

Number of Iterations < 10000 

Lcoef for Hidden Layer 0.30 

Lcoef for Output Layer 0.15 

Mmomentum 0.80 

to correctly predict 92 percent of the outputs. A graphical 
plot of the actual and predicted UCCis and the output band 
is shown in Figure 3. 

DISCUSSION OF RESULTS 

The neural network technique was used to develop the re
lationship between observed distresses and rating index for 
utility cuts. Although the Delphi method was used to reduce 
variation in the condition evaluation of utility cuts, the data 
are still noisy because the inspectors and engineers did not 
always agree on the type and severity of distresses and the 
overall rating of the utility cuts. The neural network showed 
that a larger discrepancy between the predicted and actual 
outputs existed when the UCCis were either very large or 
very small, for example, when UCCI was greater than 90 or 
lower than 10. It is believed that these errors were caused by 
the small sample size within these groups. 

A question might arise at this time regarding the threshold 
value of the UCCI for practical purposes. In the case of high
way pavements, many state agencies have used a value of 50 
to 65, on a scale of 0 to 100, as the threshold value for main
tenance management of highway pavements. When the con
dition of a pavement reaches the threshold value, some sort 
of maintenance action will be implemented. The same analogy 
should apply for utility cuts. In the present study, utility cuts 
were found to have ratings of less than 10, indicating that the 
existing threshold values for highway pavements will not be 
suitable for utility cuts. It is suggested that a threshold value 
for utility cuts be established in the future. 
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FIGURE 3 Comparison of predicted UCCI and actual UCCI. 

<20000 <70000 < 150000 

0.1500 0.0375 0.00234 

0.0175 0.0188 0.00117 

0.4000 0.1000 0.00625 

CONCLUSIONS 

The performance characteristics of utility cuts differ widely 
from those of highway pavement sections. A periodic eval
uation of the conditions of utility cuts is essential for better 
management of city pavements. Once the condition evalua
tions are made, it is desirable to transform the individual 
distress data into a condition indicator or a rating index. No 
systematic studies have been performed for evaluating distress 
conditions in and around utility cuts, and none of the existing 
pavement condition indicators can be used for defining the 
condition of utility cuts. This study is a first attempt to eval
uate distresses in and around utility cuts. It utilizes a rational 
procedure to develop a rating index for such cuts. 

The distress manual for utility cuts is a valuable tool for 
city engineers and inspectors engaged in the evaluation of 
utility cuts. The Delphi method assists in narrowing the var
iations of opinion among panel members and provides an 
advantage in training city engineers and inspectors to make 
condition evaluations of utility cuts on a uniform basis. 

The neural network for predicting the UCCI was developed 
by using a large amount of field data. The model was trained 
and tested for its accuracy. The UCCI predicted by the neural 
network can be used as a management tool for identifying 
conditions of utility cuts in a city and assigning priorities for 
their maintenance. 
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Dynamic Traffic Pattern Classification 
Using Artificial Neural Networks 

}IUYI HUA AND ARDESHIR FAGHRI 

Because of the difficulty of modeling the traffic conditions on a 
roadway network, little has been achieved to date in area control 
using dynamic traffic volume. The most commonly practiced 
method for timing control of area signals that takes into account 
traffic volume changes is time-interval-dependent control. This 
type of control strategy assumes that the traffic volume on each 
roadway of a network is constant over each time interval; it then 
determines different optimal sets of control parameters for each 
interval. Such a control strategy requires a procedure for deter
mining appropriate time intervals. According to this investiga
tion, one possible approach for determining proper time intervals 
for traffic control purposes is the dynamic programming (DP) 
method. This paper introduces an artificial neural network ar
chitecture called adaptive resonance theory (ART), which has 
demonstrated successful results when applied to different pattern 
classification problems. ARTl is applied to dynamic traffic pat
tern classification to determine appropriate time intervals and the 
starting times for those intervals. The results of a case study 
clearly demonstrate the feasibility of ARTl for time interval de
termination using network-level traffic patterns. A comparative 
conceptual analysis of the DP method and the ARTl neural net
work is also included. The computational experience describing 
the advantages and disadvantages of ARTl for general traffic 
pattern recognition and classification problems is summarized, 
and the conclusion that the neural network approach is feasible 
and efficient for network-level traffic pattern classification is 
reached. The methodology introduced in this paper may be ap
plied to other transportation problems. 

Traffic signal-timing control is realized mainly through the 
optimization of three important traffic signal-timing control 
parameters-cycle length, split, and offset. In general, this 
optimization is based on traffic volume information, since 
vehicle travel speed can be formulated as a function of traffic 
volume. Cycle length refers to the total time span of the green, 
yellow, and red phases of the traffic signal; split refers to the 
assignment of green and red time phases (yellow is usually 
deterministic) in one cycle length; offset refers to shifts of 
cycle starting time between different sets of signals. There are 
three major types of traffic signal-timing control: spot control, 
dealing with only one set of traffic signals for only one inter
section; line control, dealing with several sets of signals for 
several intersections on one line; and area control, dealing 
with more sets of signals for a number of intersections on 
multiple lines. 

Many sophisticated methods have been developed and are 
being used for spot control, line control, and static area con
trol. However, little has been achieved for area control with 
dynamic traffic volume because of the difficulty in modeling 
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the traffic status of a roadway network. At present, the most 
common area signal-timing control strategy for dynamic traffic 
is time-interval-dependent control, which splits a day (24 hr) 
into several time intervals such as rush-hour interval, normal 
daytime interval, and nighttime interval according to traffic 
volume. This control strategy assumes that the traffic volume 
on each roadway of the network is constant (normally the 
average traffic volume) over 'each time interval and then de
termines different optimal sets of control parameters for each 
time interval. Although in actual situations such an assump
tion is not true, it is perhaps the only feasible approach for 
implementing a network-level signal-timing control. In fact, 
one expects that traffic signal-timing parameters will remain 
fixed for a certain length of time because frequent changes 
in signal-timing parameters may cause traffic flow disorder 
(1). In order to obtain the minimum disutilities, it is necessary 
to minimize the difference between the average volume and 
the actual volume at each time point within the time inter
val. This can be achieved by appropriately dividing the time 
intervals. 

Traffic patterns express the changes of traffic volume with 
time. It is believed that the appropriate time intervals can be 
found by using a traffic pattern classification procedure. 

Following an in-depth investigation of the inherent nature 
of the problem, this paper introduces a neural network ap
proach for area traffic signal-timing control through a network
level traffic pattern classification procedure. This study first 
focuses on the adaptability of the neural· network paradigm 
to this particular problem with a case study using a hypo
thetical roadway traffic network. Subsequently, the effective
ness of the neural network approach is evaluated. Some of 
the advantages and disadvantages of using the neural network 
approach to deal with traffic pattern classification problems 
are also discussed. Finally, it is concluded that (a) the neural 
network can be used as a feasible and effective approach for 
classifying network-level traffic patterns, and (b) the meth
odology proposed in this paper can be used for general traffic 
pattern classification problems, traffic network monitoring, 
and evaluation of traffic control strategies. 

Suppose that traffic volume is counted every 5 min; a traffic 
pattern can be formed in terms of the fluctuations of 5-min 
traffic, namely, the number of vehicles passing through some 
point on a roadway within 5 min. For a single link or single 
line, the term traffic pattern usually implies the curve of traffic 
volume on that link or line at each time point. If 5-min traffic 
is used, the term refers to the changes of traffic volume counted 
every 5 min with 5-min time intervals. Here, the term network
level traffic pattern is defined as the traffic volu-me on each 
roadway counted every 5 min. Thus, the traffic pattern at 



Hua and Faghri 

time point t is the 5-min traffic volume on each roadway in 
the time interval from time point t to time point t + 5 min. 

PROBLEM STATEMENT 

Determining the appropriate time intervals for a single link, 
the roadway between two intersections in one direction, is 
simple because numerical differences in traffic volumes can 
be easily distinguished. However, with more than one link, 
the numerical comparison between traffic volumes becomes 
useless to the solution of the problem. Figures 1 and 2 show 
the failure of numerical traffic pattern classification. In the 
simplest situation, with only one intersection (Figure 1), the 
traffic comes from two directions, up and down and left and 
right. Suppose that there is no turning traffic and that both 
links have the same capacity. The traffic volumes are mea
sured by the ratio of traffic volume to link capacity. At time 
t0 , traffic volumes on both are the same, namely, v0 • This 
forms Pattern 0. At time t1 , the traffic pattern is changed as 
shown in Figure 2(a), which is called Pattern 1. As the time 
moves on to t2 , the traffic pattern changes again (Pattern 2). 

If these three patterns are compared by their numerical 
traffic volume differences, it is found that the difference be
tween Patterns 0 and 1 is 

(v11 - v: )2 + (V'l - V:o)2 D = 1 o 2 
n 2 O.Ql (1) 

where V~1 is the ratio of traffic volume to the link capacity of 
Link 1 at time t1 and V~1 is the ratio of traffic volume to the 
link capacity of Link 2 at time t1 • The numerical difference 
between Patterns 0 and 2 is 

(p2 _ V: )2 + (V'2 _ V:0)2 D - I 0 . 2 
t2 - 2 0.01 (2) 

where q 2 is the ratio of traffic volume to the link capacity of 
Link 1 at time t2 and vq is the ratio of traffic volume to the 
link capacity of Link 2 at time t2 • The numerical difference 
between Patterns 1 and 2 compared with Pattern 0 is the same. 
If one classified Patterns 1 and 2 according to their numerical 
difference compared with Pattern 0, these two patterns would 
be in the same category. If the signal-timing parameters are 

Traffic volume to 
link capacity 

Traffic pattern at time t o 

Schematic roadway intersection link I link2 

rulfill : Pattern 0 

FIGURE 1 Traffic pattern of Links 1 and 2 at time t0 • 
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Traffic pattern 
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(a) 

Traffic volume to 
link capacity 

Traffic pattern 
at time tz 

link I link2 

(b) 

Ill : Traffic Pattern at time 1 and time 2 

FIGURE 2 Traffic patterns at (a) time t1 and (b) time t2 • 

15 

kept the same as at times t1 and t2 , such a numerical com
parison leads to an obviously wrong classification. Therefore, 
at the network level, traffic patterns should be classified 
analogically. 

In addition to the ability to classify analogic traffic patterns, 
traffic pattern classification should also be tolerant of small 
fluctuations in traffic volumes. Figure 3 shows two consecutive 
traffic patterns on a link. Traffic Patterns 1 and 2 are very 
similar in shape, though not exactly the same. For such a 
situation, it is still desirable that these two patterns be clas
sified in the same category so that frequent changes of signal
timing parameters can be avoided. 

From the foregoing discussion, the requirements for traffic 
pattern classification can be pinpointed as (a) the ability to 
recognize and classify analogic patterns and (b) some degree 
of tolerance to differences between traffic patterns. 

EXISTING APPROACH 

One of the major methods that has been proposed for use in 
the determination of appropriate time intervals is the dynamic 
programming (DP) method. The DP method initially sets up 
M sets of signal control timing parameters and then tries to 
find out the best time points for switching different sets of 
control parameters. If Q(t) is the traffic pattern at time t; P;(t;) 
is the optimal set of control parameters for Q(t) in terms of 

Traffic Volume 

FIGURE 3 Tolerance of traffic pattern classification 
procedure. 

Pattern 1 

Pattern 2 

Time 
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a vector including cycle length, split, and offset; and D[P;(t;), 
Q(t;)] is the disutility, say, total delay, produced by P;(t;) 
(i = 0, 1, 2, ... , M), then the following equation must be 
satisfied: 

D[P;(t;), Q(t;)] :5 D[Pit), Q(t;)] (3) 

. Equation 3 is tenable when i = j. The time intervals covered 
by these M sets of control parameters will include a whole 
day. The number of switches of control parameters, N, can 
be calculated. To find the optimal switching time points for 
N switches during a day, the following simple one-dimensional 
DP assignment procedure is used: 

(4) 

where fo = 0 and x0 = 0. In Equation 4, fn(xn) is the total 
disutility over the time span from x0 to xn under optimal con
trol. Computing for n = 1, 2, ... , N, the optimal switching 
time xi, x;, ... , x~ can be found. 

For the DP method, it has been pointed out (J) that ob
taining the value of P; that satisfies Equation 3 may not- be 
easy, and determining cycle length and offset is difficult, es
pecially when the difference between Q(t;) and Q(t) is small. 
The difficulty of solving P; when M is large has also been 
discuss,ed. Obviously, the huge amount of computation re
quired in the DP process is another drawback. With a large 
roadway network, this method may not be practical. 

NEURAL NETWORK APPROACH 

It is apparent that the optimization of dividing appropriate 
time intervals can be achieved through a pattern classification 
procedure. When similar consecutive traffic patterns are 
grouped, the dynamic traffic volumes can be approximately 
dealt with as static over the time period in which there are 
similar traffic patterns. 

A variety of artificial neural network models, such as back
propagation, Perceptron, and the Hopfield network, have 
proven to be applicable to classification problems (2). Some 
of them have recently been proposed for transportation en
gineering classification problems (3). After careful investi
gation into the inherent nature of the problem involved in 
this study, an Adaptive Resonance Theory (ART) neural net
work, ARTl, was selected to complete the classification pro
cess. ARTl is compared with other neural network para
digms, and some of its unique characteristics for meeting the 
needs of the problem are discussed in the next section. 

Introduction to ARTl 

Three ART neural networks were developed by Carpenter 
and Grossberg of Boston University in 1987 (4,5). ARTl deals 
with integers, ART2 deals with continuous values between 0 
and 1, and ART3 is a refinement of ART2. ART networks 
automatically stabilize pattern categories and automatically 
activate new processing units when they are needed to create 
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new categories. The number of patterns being grouped into 
the same category and the number of groups are theoretically 
unlimited. The major considerations in deciding to employ 
ARTl were as follows: 

• ARTl can classify analogic patterns into appropriate 
categories. 

• ARTl can automatically set up the proper number of 
categories. 

• ARTl is flexible in dealing with new patterns presented 
to it because it is a self-organizing network; that is, it can be 
trained on line. 

• ARTl is tolerant of the differences between traffic pat
terns. This means that if traffic patterns are similar in shape 
but not exactly the same, they will still be. classified into the 
same category. 

Operation of ARTl 

Figure 4 shows the schematic architecture of ARTl. There 
are two layers of processing units, which are fully connected 
between the layers. Two types of weight sets are used in the 
network. The notation used in Figure 4 is defined as follows: 

n = number of inputs to the network, 
x; = ith component of input vector (0 or 1), 
Yi = jth output, 

W;i = weight for connection from jth output to ith input, 
wii = weight for connection from ith input to jth output, 

rho 

k 

constant having a value between 0 and 1 (the "vig
ilance parameter"), and 
index that denotes winner of output element that 
has the largest value among the output elements. 

The two types of weight vectors have a relationship that is 
always 

wii 
wij 

(5) n 

1 + 2: wki 
k=1 

and initially, all w;i are set to 1 and all wii = 1/(1 + n). w;i 
is the connection from input layer to output layer, and wii is 

Lateral inhibition 

Processing units 

X1 X2 Xn 

Input buffer 

FIGURE 4 Schematic architecture of ARTl. 
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the feedback connection from output layer to input layer. 
Note that in Figure 4 only two such connections are shown. 
The lateral connections are invisible, but they pass through 
the information between the processing units in the output 
layer so that a competition takes place to produce a winner 
of the processing units. The output of the winner is taken as 
the network output. ARTl operates as follows: 

Step 1. Compute the _outputs according to the formula 

(6) 

Step 2. Determine the network output with a "winner take 
all" strategy; that is, let the output that has the greatest value 
be the output of the network for one run of computation and 
let the winner be xk. 

Step 3. Rate the input pattern match with_ the following 
formula: · 

r = -n-- (7) 

L Xi 
i=l 

Step 4. If r < rho, set yi = 0 and go to Step 2. 
Step 5. If r > rho, for all i, if Yi = 0 and wik = 1, set wik = 

0 and recompute w7k for all i if any weights have been changed. 

ARTl can store vectors and check the committed pro
cessing units according to how well the vectors [ wi~, ... , 
wi":i] being stored match the input pattern. If none of the 
committed processing units matches well enough, an uncom
mitted unit will be chosen. In other words, the network sets 
up certain categories for the input patterns and classifies the 
input patterns into the proper category. If the input pattern 
does not match any of those categories, the network will 
create a new category for it. 

With ARTl, similar traffic patterns can be grouped into 
the same category. Therefore, the proper length and starting 
and ending times of the time intervals can be automatically 
determined. Such an approach can also be used for on-line 
traffic pattern recognition and monitoring network traffic sta
tus changes. 

ASSUMPTIONS 

In this study it was assumed that the traffic volume does not 
exceed the link capacity. The purpose of making such an 
assumption is very simple: all traffic volumes are below the 
corresponding capacities of the links such that the traffic vol
ume can be described by the ratio of actual traffic volume to 
link capacity, which is a number between 0 and 1. Here the 
capacity of the roadway is defined as the number of vehicles 
passing a point on the road within a time unit if the traffic 
signal is green all the time. If one considers congested flow, 
imposing the ratio of the current density to the maximum 
density of the link, the traffic information can also be con
verted into a number with a value between 0 and 1. 
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CASE STUDY 

To verify the feasibility of neural networks in traffic pattern 
classification problems, ARTl is applied to a hypothetical 
roadway network. 

Data Base 

A hypothetical roadway network containing six intersections 
and seven links is shown in Figure 5. For simplicity, all links 
are set to be one way. It is also assumed that there is no 
turning traffic in this network. Those links that are unnum
bered are of no concern in this study, but they are considered 
as inflow or outflow links of the network. The roadway ca
pacity is assumed to be 1,800 vehicles/hr for all links. 

The traffic volumes are generated on the basis of a "mother 
traffic pattern," which is a typical street traffic pattern from 
6:00 to 10:00 a.m. for one link. The traffic pattern of each 
link contained is derived from this mother pattern. The pro
cedure followed is to suppose that the traffic volume of the 
mother pattern at time t is Vs. Let Vs be the mean of traffic 
volumes at time t for all links of this hypothetical network. 
On the basis of normal distribution, the error of the traffic 
volume at time t compared with that of the mother pattern is 
randomly generated for every link with a variance of 30 ve
hicles/hr. 

Since ARTl takes only binary values, the traffic volumes 
are transformed into binary vectors. The procedure for trans
forming traffic volume into binaries is as follows: 

• Compute the ratio of traffic volume to link capacity so 
that all traffic volumes are now represented by a decimal 
number between 0 and 1. 

• Transform the ratios into a 10-element binary vector, for 
example, 0.8 ~ [1, 1, 1, 1, 1, 1, 1, 1, 0, O]. 

After the transformation, traffic volumes are represented 
by 10-element vectors. Each vector will be a line of the input 
pattern. For all seven links, a 10 x 7 array was produced. 

Traffic Pattern Classification Process 

With the traffic volumes represented by binary vectors, the 
data base is now adaptable to ARTl. If ARTl is applied with 

2 

6 7 

FIGURE 5 Hypothetical roadway network. 
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TABLE 1 Results of Time Interval Determination by ARTl 

Time 6:05 6:10 6:15 6:20 6:25 6:30 6:35 6:40 6:45 6:50 6:55 7:00 

Category to which 
current traffic 0 0 1 1 2 4 3 2 4 4 4 5 

pattern belongs 

Time 7:05 7:10 7:15 7:20 7:25 7:30 7:35 7:40 7:45 7:50 7:55 8:00 

Category to which 
current traffic 6 6 6 7 7 7 7 7 7 7 7 7 

pattern belongs 

Time 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 8:50 8:55 9:00 

Category to which 
current traffic 7 7 7 7 

pattern belongs 

Time 9:05 9:10 9:15 9:20 

Category to which 
current traffic 7 7 ·7 

pattern belongs 

a vigilance parameter value of 0.83, the traffic patterns are 
grouped as shown in Table 1. The grouping process is quite 
ideal. The "peak-hour" interval is successfully indicated by 
Category 7. 

Figure 6 shows a three-dimensional plot of the traffic pat
terns. The section between the two boards indicates the "peak
hour" time interval for the entire network. To verify the 
performance.of ARTl in traffic pattern classification, the var
iance of the "peak-hour" interval for a different starting time 
was computed. In Figure 7 the x-axis indicates the shifts of 
the "peak-hour" interval starting time: 0 is the case without 
shifting, the positive numbers indicate forward shifts, and the 
negative numbers indicate backward shifts. The unit for one 
shift is 5 min. If x = -1, the "peak-hour" interval starting 
time is shifted backward 5 min. If x = 2, the "peak-hour" 
interval starting time is shifted forward 10 min, and so on. 

FIGURE 6 Three-dimensional drawing of network-level 
traffic patterns. 

6 

7 7 7 7 7 7 7 7 

9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 

6 6 6 6 6 6 6 6 

DISCUSSION OF NEURAL NETWORK 
APPROACH 

In classifying traffic patterns by their analogic differences rather 
than their numerical differences, the neural network approach 
seems to be more natural and reasonable than the conven
tional method. The neural network is also more effective and 
efficient in determining appropriate number of time intervals 
than the DP method since it performs on-line training. Both 
the number of time intervals and the positions of the intervals 
on the time axis are automatically determined by the neural 
network, whereas determining the appropriate number of time 
intervals is time consuming and inefficient in the DP method. 
The vigilance parameter of ARTl controls the tolerance of 
the classification process. It can adjust the degree of difference 
between traffic patterns belonging to the same category. With 
this property, the user is able to obtain the expected number 
of groups by adjusting the value of the vigilance parameter. 
However, there is no criterion for determining a proper value 
of the vigilance parameter in general. This leads ARTl to be 
problem dependent. Different values of the vigilance param-

Grouping Effects of ART1 

-5 -4 -3 -2 -1 0 2 3 4 5 
Peak-Hour Interval Shifts From 7:15 AM 

FIGURE 7 Verification of the effects of 
determination of "peak-hour" interval. 
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eter may be required for different roadway network and traffic 
patterns. The degree of tolerance must also be determined 
by the user's experience to arrive at an appropriate control 
strategy on a particular roadway network. 

In summary, ARTl brings two remarkable contributions 
to traffic pattern classification problems: (a) a parallel process 
with an on-line training property that enables it to deal with 
large amounts and a dynamic data base, and (b) the ability 
to deal with an analogic input data base. 

CONCLUSION 

In the case study, an optimization procedure for dividing ap
propriate time intervals for traffic signal-timing control is im
plemented. The feasibility of the neural network approach 
has been identified. Furthermore, it was demonstrated that 
ARTl is efficient in classifying traffic patterns in terms of 
computing cost, whereas the conventional approaches have 
serious shortcomings. 

The significance of the neural network approach introduced 
in this study is not only in solving the traffic control problem, 
but also in dealing with general network-level traffic pattern 
classification problems. The capability of the neural network 
to classify network-level traffic patterns provides an effective 
means for transportation engineering to expedite traffic data 
collection and roadway network traffic status identification. 
The methodology discussed in this paper can also be used for 
other transportation problems such as traffic network moni
toring by expressing the status of the entire traffic network 
with a single index and evaluation of traffic signal-timing con
trol strategies. 
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As can be seen in this paper, the neural network accesses 
the traffic pattern classification problem from a totally dif
ferent perspective than the conventional method. Some dif
ficulties that exist in conventional methods were easily solved 
by the neural network approach. The extension of this work 
is planned to explore the applicability of ART2, which is able 
to deal with continuous values within a range from 0 to 1, as 
well as a deeper investigation of determination of the appro
priate vigilance parameter. 
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Representation, Processing, and 
Interpretation of Fuzzy Information in 
Civil Engineering 

C. H. JuANG, J. E. CLARK, AND P. GHOSH 

Some of the fundamental issues in the civil engineering appli
cation of fuzzy set theory are addressed, and an overview of 
various types of solution approaches is presented. Emphasis is 
placed on the Type II approach, in which the solution model is 
deterministic and the input is fuzzy. Issues addressed include 
representation and processing of fuzzy information and interpre
tation of fuzzy output. The new methods developed and presented 
in this paper include the interpretation of fuzzy output by the cx
level distance model and a new approach to performing multiple 
linear regression of fuzzy data. An example dealing with fuzzy 
multiple linear regression is presented to illustrate various aspects 
of the issues addressed. 

There is often a need to elicit numerical input from subjective 
information in the process of solving many transportation 
engineering problems. Eliciting numerical input from subjec
tive information naturally induces uncertainty, which is usu
ally of an ambiguous rather than a random nature. In this 
case, the use of fuzzy set theory rather than probability theory 
for modeling the ambiguous uncertainty is generally recom
mended (1,2). 

Fuzzy set theory was developed in 1965 by Zadeh (3), a 
control engineering professor at the University of California 
at Berkeley. Since then it has been applied to many disci
plines, with the most successful applications in control engi
neering, decision science, and management. In recent years, 
"the growth of roughly a billion dollar per year industry in 
Japanese commercial products (such as air conditioners, washing 
machines, camcorders, and train controllers) based on various 
ideas in fuzzy logic" has been reported ( 4, p.83). 

Civil engineering applications of fuzzy sets were pioneered 
by Blockley (5), Brown (6, 7), and Yao (8), mainly in the area 
of structural safety. Numerous applications can now be found 
in many subdisciplines of civil engineering, including trans
portation engineering (9-16). 

The principle of fuzzy sets may be summed up as the trans
formation of ambiguous and fuzzy information into numerical 
data in a systematic way so that subjective information such 
as expert opinions, rules of thumb, and other "nonquantifi
able'_' but significant information can be directly utilized in 
the solution process. 

In this paper practical issues regarding the representation, 
processing, and interpretation of fuzzy information in depth 
are discussed from a civil engineer's perspective. 

Department of Civil Engineering, Clemson University, Clemson, S.C. 
29634-0911. 

TYPES OF SOLUTION APPROACHES 

There are a number of analytic approaches to solving prob
lems in civil engineering, as shown in Table 1. Of the analytic 
approaches shown, the Type I approach is most commonly 
used by the engineer. If the input data are of a quantitative 
nature (i.e., easy to obtain or measure in crisp, precise nu
merical terms), they are called nonfuzzy data. If the model 
is based on well-established, unarguably precise knowledge 
and the process has no randomness present, the model is 
referred to herein as deterministic. If both conditions are met, 
the Type I approach is the most appropriate choice. 

To use a Type I approach, the engineer must exercise his 
or her best judgment in the selection of input data. If a non
random uncertainty (2) exists in the information from which 
the data are derived, the engineer will be faced with the 
burden of eliciting the numerical input from ambiguous or 
fuzzy information. In this case, considerable engineering judg
ment is needed to use the Type I approach, which significantly 
relies on a professional's judgment and is often variable and 
inconsistent. Hence, the process is subject to scrutiny. A more 
appropriate way to model this problem is by employing the 
Type II approach, in where a deterministic model is retained 
but the fuzzy information is systematically represented by 
fuzzy sets (fuzzy data). 

The Type III approach (the probabilistic approach), in con
trast to the Type II approach, assumes that the process is well 
defined but random. When a random event is considered, the 
framework for incorporating uncertainty can be precisely de
fined. However, if the event is not random, as in many trans
portation problems, the burden of eliciting numerical input 
to the probabilistic model from ambiguous information must 
rest on the engineer. Historically, many nonrandom events 
were modeled with the Type III approach in order to handle 
the uncertainty involved in eliciting the numerical data from 
available information because the probability theory was 
thought to be the only way of handling uncertainty, which is 
not true (17). 

If the process to be modeled is random and the input in
formation is fuzzy, the Type IV approach may be used. In 
this case, a probabilistic treatment of the fuzzy event is deemed 
necessary. If the process or the cause-effect relationship is 
fuzzy, a Type V or VI approach may be used, depending on 
whether the input data are fuzzy. 

Many transportation engineering problems that can be 
modeled by deterministic models often have to deal with fuzzy 
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TABLE 1 Analytic Approaches to Problem Solving in Civil Engineering 

Type of Approach Type of Input Data 

I non-fuzzy number 
II fuzzy number 
III non-fuzzy number 
IV fuzzy number 
v non-fuzzy number 
VI fuzzy number 

input data, and thus are suitable for applying the Type II 
approach. In this paper the focus is on the Type II approach 
with emphasis on the representation and processing of fuzzy 
input data and interpretation of output fuzzy sets. 

REPRESENTATION OF FUZZY INFORMATION 

Ambiguous or fuzzy input is almost always expressed in lin
guistic terms, since it is easier to do so. In order to process 
these linguistic terms, they must be transformed into numer
ical data. Rather than translating a linguistic term into a cer
tain number (and ignoring the associated uncertainty), a fuzzy 
number (18) may be used. 

In a Type II approach, the input data for the engineering 
parameters (or variables) of a deterministic model are fuzzy 
numbers, which may be translations of linguistic terms that 
describe the engineering parameters or direct numerical es
timates of these parameters. In either case, these fuzzy num
bers can be grouped into four classes, as shown in Figure 1. 
The Class I fuzzy number is used to represent a .fuzzy point 
estimate (FPE) or a linguistic term of "about m." There are 
two special cases for the Class I fuzzy number. If the value 
m is an absolute lower bound or upper bound, the fuzzy 
number exhibits only one-half of the Class I fuzzy number. 
In such cases, the fuzzy numbers are labeled Class 1-L and I
R, respectively, as shown in Figure 2. 

The Class II fuzzy number is used to represent a fuzzy 
interval estimate (FIE) or a linguistic term such as "about 
from m - c tom + c." FIE may be considered an extension 
of an FPE. The fuzziness of an FIE, as shown in Figure lb, 
exists around lower and upper bounds of the interval. The 
extent of the fuzziness, represented by the values b and d, 

1 

f (x) 

(a) Class I 

b m d 

(c) Class Ill 

b m u 

x 

x 

( b) Class II 

b m-c m+c d x 

( d) Class IV 

f (x) 

0 ....___,_ ___ _.___....._ __ ~ 

m d x 

FIGURE 1 Four classes of fuzzy numbers. 

Model Type of Output 

deterministic non-fuzzy number 
deterministic fuzzy number 
probabilistic probability distribution 
probabilistic fuzzy probability 
fuzzy fuzzy number 
fuzzy fuzzy number 

may be interpreted in the same way as in the case of an FPE. 
If the value c approaches 0, an FIE would become an FPE. 

The Class III fuzzy number is used to represent the notion 
of "greater than about m." Since real-world engineering pa
rameters almost always have an absolute upper bound, the 
Class III fuzzy number may be defined as shown in Figure 
le. The fuzziness in this case exists only around -the lower 
bound. The Class IV fuzzy number, on the other hand, is 
used to represent the notion of "less than about m." As shown 
in Figure ld, the fuzziness exists around the upper bound 
only, since an absolute lower bound (usually zero) is implied. 
The Class III and IV fuzzy numbers are needed to comple
ment the Class I fuzzy number. 

In summary, fuzzy information commonly encountered in 
transportation engineering can be represented by one of the 
four classes of fuzzy numbers shown in Figure 1. Although 
the concept and use of fuzzy numbers have been discussed in 
the fuzzy set literature (18), the four classes of fuzzy numbers 
are interpreted and presented in this paper in a way suitable 
for direct use in civil engineering. The use of fuzzy numbers 
to represent fuzzy information allows for uncertainty to be 
systematically evaluated and can aid in making better engi
neering decisions. 

Note that in the four classes of fuzzy numbers defined herein, 
a triangular shape is assumed. Although the triangular shape 
is commonly used and deemed appropriate for the application 
presented in this paper, other shapes may be used. 

PROCESSING OF FUZZY INFORMATION 

As discussed earlier, the Type II approach is deemed suitable 
for many transportation engineering problems with fuzzy in
put data. The solution process of this approach is shown in 
Figure 3. Three methods are available for processing fuzzy 
data in a Type II model. One method involves processing 
fuzzy data by defining new mathematical operations. Since 
fuzzy set theory may be considered an extension of ordinary 
set theory, extending ordinary arithmetic to fuzzy arithmetic 
(18) is a natural evolution. Zadeh's "extension principle" (19) 
provides a basis for extending conventional arithmetic into 
fuzzy arithmetic. It is noted that most implementations of the 

1 

f (x) 

Class I - L 

b m= d 

x 

Class I- R 

f (x) 
0 ....___.__ __ ___,. ____ ~ 

b = m d x 

FIGURE 2 Special cases of Class I fuzzy numbers. 
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FIGURE 3. Euclidean distances between FCD 
and standard fuzzy numbers. 

extension principle do not ensure uniqueness. However, this 
may be undesirable in many engineering applications. 

Processing fuzzy data by fuzzy arithmetic based on the ex
tension principle is often inefficient (20-22). A more efficient, 
nonfuzzy computational method, called the vertex method 
(20), has been developed. 

Although the vertex method has been successfully applied 
in solving many engineering problems (10,21,23 ,24), there are 
cases in which a computationally more efficient method is 
desired. For example, in a recent study on liquefaction sus
ceptibility (2), 22 fuzzy variables were involved in a simple 
deterministic model. Use of the vertex method in this case is 
very time consuming because of the large amount of interval 
computations required. In such cases, a technique called the 
JHE method (22) was used for processing fuzzy data. The 
JHE method is based on the Monte Carlo simulation tech
nique and involves a rigorous treatment of membership func
tions. Some applications of this method have been reported 
(2, 25-28). 

INTERPRETATION OF FUZZY OUTPUT 

The output of a Type II approach is a fuzzy set, the output 
of which presents more information than a single-value out
put. For example, it gives the lower and upper bounds, the 
most appropriate value (the mode), and the possibility ( mem
bership grade) of each value. In many applications, however, 
it may be desired to interpret the fuzzy set output. Two com
mon approaches are used: application of a mapping model 
that measures the fuzzy set (2) and translation of the fuzzy 
set into an appropriate linguistic term. 

The translation of the output fuzzy set into an appropriate 
linguistic term requires three elements: (a) a group of standard 
linguistic terms commonly used to describe the subject matter; 
(b) a group of fuzzy sets, each of which represents one of the 
standard linguistic terms; and (c) a model for determining 
similarity between the output fuzzy set and each of the stan
dard fuzzy sets. The most appropriate translation is the lin
guistic term whose fuzzy set is most similar to the output fuzzy 
set. 

The similarity may be measured by the Euclidean distance 
defined below (18): 

(1) 

where 

TRANSPORTATION RESEARCH RECORD 1399 

distance between the output fuzzy set A and the 
fuzzy set j, 
membership grade of x in the fuzzy set A, and 
membership grade of x in the fuzzy set j. 

Here the Euclidean distance is a measure of similarity be
tween fuzzy sets. Thus, the most appropriate translation is 
the one with the smallest distance. Although this equation 
provides a simple measure of the similarity, there are some 
drawbacks (which will be discussed later). In this paper, a 
new measure, called a-level (a-cut) distance, is developed. 
The a-level distance is defined as follows: 

(2) 

where 

dj = a-level distance between the output fuzzy number 
A and the predefined standard fuzzy number j, 

aa,min lower bound of the a-cut interval of the fuzzy num
ber A, 

aa,max upper bound of the a-cut interval of the fuzzy num
ber A, 

ja,min lower bound of the a-cut interval of the predefined 
standard fuzzy number j, 

ja,max upper bound of the a-cut interval of the predefined 
standard fuzzy number j, and 

N = number of a-cut intervals taken. 

Note that if the a-cuts are made at an equal spacing of ~a, 
then the total number of a-cut intervals will be 

N = (l/~a) + 1 (3) 

The a-level distance defined in Equation 2 is a simple average 
model. Although a weighted average model might be more 
attractive in theory, Equation 2 is found to be adequate for 
translating a fuzzy number into the most appropriate linguistic 
term. Assessment of the above two similarity models is pre
sented in the next section. 

HYPOTHETICAL EXAMPLE 

In many engineering problems, the basis for deriving a so
lution is often some rules of thumb provided by experts. For 
example, the possibility of meeting the Environmental Pro
tection Agency (EPA) requirements for constructing a clay 
liner to contain hazardous wastes is often assessed with a set 
of rules of thumb regarding the hydraulic conductivity of the 
liner. Symbolically, each of these rules of thumb is expressed 
as follows: 

IF 
THEN 

Xi is Aij and X 2 is A 2j and X 3 is A 3j 
Y is Bj. 

Here Xi, X 2 , and X 3 are linguistic variables representing some 
factors that are thought to have an important influence on 
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the possibility of meeting the EPA requirements, such as the 
plasticity index, colloid percentage, and swelling potential of 
the clay used. The values of the linguistic variables A 1j, A 2j, 

A 3j, and Bj are descriptions commonly used in the assessment 
of a clay liner. As a hypothetical example, a rule of thumb 
may state: 

IF 

THEN 

the plasticity index is medium, and the colloidal 
percentage is low, and the swelling potential is high, 
the possibility of meeting the EPA liner require
ments is very low. 

Now, if it is assumed that a group of rules of thumb on this 
subject is available as listed in Table 2, these rules, as a form 
of fuzzy information, may be used to establish a predictive 
equation for assessing the possibility of meeting the EPA liner 
requirements. To begin with, all possible values of the lin
guistic variables used in the model need to be translated into 
fuzzy sets or numbers. Various classes of fuzzy numbers de
fined earlier can be used to represent the linguistic terms 
adopted. In this hypothetical example, the actual definitions 
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of the fuzzy numbers used are based on knowledge extracted 
from the literature. The linguistic terms and the corresponding 
fuzzy numbers selected are given in Tables 3-6. Using these 
tables, the fuzzy information (the rules of thumb collected 
and shown in Table 2) can be translated into some fuzzy 
numbers, and a set of fuzzy data (Y versus X,, X 2 , and X 3) 

is thus obtained. 
One way to extract knowledge from these fuzzy data is to 

establish a trend using a regression analysis. In this case, a 
multiple linear regression can be performed since the de
pendent variable Y is assumed to be a function of the inde-
pendent variables X1 , X 2 , and X 3 • Since all input data are 
fuzzy numbers and the multiple linear regression is a deter
ministic process, a Type II approach is appropriate. The fuzzy 
input data are processed in the framework of a regression 
analysis and the JHE method (22) is readily applicable. 

Note that use of the Type II approach and the JHE method 
for the fuzzy regression analysis is different from reports in 
the literature. One of the first introductions of fuzzy regres
sion was by Tanaka et al. (29). Fuzzy regression analysis, as 
the name implies, uses the tools of fuzzy set theory to analyze 

TABLE 2 Hypothetical Example: Rules of Thumb for Assessing the Possibility of 
Meeting EPA Clay Liner Requirements 

Plasticity index Colloidal Percentage Swelling potential Possibility of Meeting 

CX1) (XJ (X3) EPA Requirements (Y) 

high high high very low 
high high medium low 
high high low medium 
high medium high very low 
high medium medium low 
high medium low medium 
high low high very low 
high low medium low 
high low low low 
medium high high low 
medium high medium medium 
medium high low very high 
medium medium high low 
medium medium medium medium 
medium medium low very high 
medium low high very low 
medium low medium low 
medium low low medium 
low high high low 
low high medium medium 
low high low high 
low medium high low 
low medium medium medium 
low medium low high 
low low high very low 
low low medium low 
low low low medium 

TABLE 3 Linguistic Terms and Their Corresponding Fuzzy Numbers: 
Plasticity Index 

Linguistic Term Fuzzy Number Characteristics (see Figure 1) 
for Describing 
Plasticity Index (X1) b m-c m m+c d u Class 

high 25 ---a 30 50 III 
medium 10 15 25 30 II 
low 10 15 0 IV 

"Not applicable. 
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TABLE 4 Linguistic Terms and Their Corresponding Fuzzy Numbers: 
Colloid Percentage · 

Linguistic Term 
for Describing 

Fuzzy Number Characteristics (see Figure l) 

Colloid Percentage (Xi) 

high 
medium 
low 

•Not applicable. 

b 

20 
5 

m-c 

a 

10 

m m+c 

25 
20 

5 

d u Class 

40 III 
25 II 
10 0 IV 

TABLE 5 Linguistic Terms and Their Corresponding Fuzzy Numbers: 
Swelling Potential 

Linguistic Term Fuzzy Number Characteristics (see Figure l) 
for Describing 
Swelling Potential (X3) b 

high 25 
medium 5 
low 

•Not applicable. 

fuzzy variables. In contrast to the statistical least-squares cri
terion, a fuzzy criterion based on a "vagueness" measure for 
the goodness of the regression was used in the approach of 
Tanaka et al. Although this approach has been applied to the 
solution of many engineering problems, some questions re
main to be answered. Among them are questions regarding 
uniqueness of the fitting, selection of the vagueness criteria, 
and the interpretation of the fuzzy regression. Other fuzzy 
regression models, including one based on neural networks 
(30), have been reported. The JHE-based approach for fuzzy 
regression follows conventional regression techniques closely. 
Comparison of these fuzzy regression methods, however, is 
beyond the scope of this paper. 

Using the data given in Tables 2 through 6, a fuzzy multiple 
linear regression can be performed using the JHE method 
(22,28). The results of this analysis, including the fuzzy coef
ficients of the predictive equation (a0 , a1, a2 , and a3) and the 
fuzzy coefficient of determination (FCD), are given in Table 
7. The fuzzy number output reflects the uncertainty in the 
input in this case. 

Results of the above fuzzy regression analysis may be in
terpreted as in conventional multiple linear regression. If the 
range over which the resulting FCD (a fuzzy number) is de
fined is very small, the mode (m) of this fuzzy number may 
be used to represent the FCD. A higher value of the mode, 
say closer to 1, indicates a better fit. If the FCD i.s quite fuzzy, 
an interpreting model is required. One way to interpret the 
goodness of the fit is to translate the FCD fuzzy number into 

TABLE 6 Linguistic Terms and Their Corresponding Fuzzy 
Numbers: Possibility of Meeting EPA Requirements 

Linguistic grade for Fuzzy number characteristics (see Fig. l) 
possibility of meeting 
EPA requirement (Y) b m d class 

very low 0.00 0.00 0.25 1-R 
low 0.00 0.25 0.50 I 
medium 0.25 0.50 0.75 I 
high 0.50 0.75 l.00 I 
very high 0.75 l.00 l.00 1-L 

m-c 

a ---
15 

m m+c d u Class 

30 45 III 
25 30 II 

10 15 0 IV 

a linguistic term. A dictionary of linguistic terms for describing 
the goodness of fit, such as those shown in Table 8, may be 
defined and used. The translation may be made by measuring 
the similarity between the resulting FCD fuzzy number and 
those predefined fuzzy numbers. The concept and formulation 
defined in Equations 1 and 2 are examined here using the 
output of this example application shown in Table 7. 

Figur~ 3 shows the Euclidean distances between the re
sulting FCD fuzzy number (shown in Table 7) and each of 
the predefined fuzzy numbers shown in Table 8. Since the 
term "excellent" has the least Euclidean distance, it is the 
most appropriate translation for the "goodness of fit" rep
resented by the resulting FCD. 

Although the Euclidean distance model, such as that in 
Equation 1, is commonly used in the literature and is able to 

TABLE 7 Results of Fuzzy Regression Analysis 

Fuzzy Number Characteristics 
Regression 
Coefficient b m d 

~ 0.35 0.70 0.91 
a1 -0.0028 -0.0025 -0.0019 

~ 0.01 0.014 0.014 
a3 -0.02 -0.02 -0.016 
FCD 0.60 0.90 0.91 

TABLE 8 Linguistic Terms and Their Corresponding Fuzzy 
Numbers: Goodness of Fit 

Linguistic term for Fuzzy number characteristics (see Fig. I) 
describing 
goodness of fit b m d class 

poor 0.00 0.00 0.25 1-R 
fair 0.00 0.25 0.50 I 
good 0.25 0.50 0.75 I 
very good 0.50 0.75 l.00 I 
excellent 0.75 l.00 l.00 1-L 
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"pick" the most appropriate translation in this case, a closer 
look at Figure 3 reveals some drawbacks. First, it may be 
seen from Figure 3 that the Euclidean distance defined in 
Equation 1 depends on Llx (a step size or width) selected in 
the discretization process. The result shows that a smaller Llx 
yields a larger "calculated distance." Any variation in the 
calculated distances between the same two fuzzy numbers, 
caused by use of different Llx, is obviously undesirable. 

Second, the distances between the resulting FCD and the 
fuzzy numbers that represent the terms "good," "fair," and 
"poor" reveal an inconsistency of the Euclidean distance de
fined in Equation 1. Here, the distance between the FCD and 
the fuzzy number representing the term "good" is equal to 

' that between the FCD and the fuzzy number representing the 
term "fair." In addition, the distance between the FCD and 
the fuzzy number representing the term "poor" is smaller 
than that between the FCD and the fuzzy number representing 
the term "good." Thus, translation models commonly seen 
in the literature, such as Equation 1, may yield incorrect 
conclusions. 

An improved model for translation of a fuzzy number to a 
proper linguistic term is presented in this paper (Equation 2). 
Figure 4 shows the a-level distances between the resulting 
FCD (Table 7) and each of the predefined fuzzy numbers 
(Table 8) obtained from this new model (Equation 2). The 
same conclusion about the most appropriate term for trans
lation is reached from Figure 4. However, it eliminates the 
two undesirable characteristics observed in Figure 3. As shown 
in Figure 4, the a-level distance is more or less constant re
gardless of the Lla (step size) used in the discretization. In 
addition, the distances calculated are consistent with the com
mon intuition. 

CONCLUDING REMARKS 

An overview of various types of solution approaches for ap
plications of fuzzy set theory in civil engineering is presented. 
The Type II approach is considered appropriate for solving 
many transportation engineering problems in which the pro
cess (model) is deterministic and the input is fuzzy. Some 
practical issues in applying the Type II approach, including 
representation, processing, and interpretation of fuzzy infor
mation, have been addressed in depth. The new a-level dis-
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25 

tance model developed and presented in this paper is shown 
to be superior to the commonly used Euclidean distance model 
for interpretation of fuzzy output. 

An example dealing with multiple linear regression of fuzzy 
data is presented to illustrate the concept and method of the 
Type II approach. This hypothetical example, although ab
stract in content, has demonstrated the use of the Type II 
approach. 
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Modeling of Driver Anxiety During Signal 
Change Intervals 

SHINYA KIKUCHI, VIJAYKUMAR PERINCHERRY, PARTHA CHAKROBORTY, AND 

HIROSHI TAKAHASHI 

The anxiety that a driver experiences at the onset of the yellow 
signal during the driver's approach to a signalized intersection is 
analyzed. The driver's decision is modeled as a reasoning process 
that consists of a set of fuzzy inference rules for stopping or 
continuing through the intersection. The input to the rules is the 
information on the current condition that the driver perceives. 
Because neither the rules nor the perceived information is clear, 
the driver's decision is associated with uncertainty. This uncer
tainty is quantified by possibility and necessity measures. Yager's 
anxiety measure is used to quantify the driver's anxiety associated 
with making decisions under uncertainty as a function of possi
bility and necessity measures for the conflicting actions. Anxiety 
is computed for both aggressive and conservative drivers. The 
measures for these two extreme types of driving behavior form 
the range; most drivers' behavior is believed to fall between the 
two. The model is used to estimate the degree of anxiety and its 
location on an actual intersection approach on the basis of the 
field data. The proposed method should be useful to evaluate the 
accuracy and the type of information to be provided to drivers 
and also to analyze the decision process of elderly drivers and 
drivers under the influence of alcohol and drugs. 

Safety and efficiency of traffic flow depends largely on the 
perception and reaction of individual drivers. Most of the 
time, each driver determines the appropriate action by ex
ercising a set of vague driving rules. One example of this is 
the case of driver's action when the signal changes to yellow 
as he is approaching the intersection. He experiences a state 
of indecision and anxiety because he must evaluate many 
parameters and decide either to continue through the inter
section or to stop in a short time period. 

This study proposes a decision model that evaluates the 
degree of anxiety that a driver experiences when he has to 
choose one of the conflicting actions at the onset of the yellow 
signal. The method also identifies the zone in the approach 
where the driver experiences anxiety. Later a study of anxiety 
based on field data is presented. The study is part of an effort 
to understand driver decision processes when the perceived 
information and decision rules are not clear and also to under
stand how improved information helps the driver's decision 
and reduces anxiety. 

The present practice of determining the signal change in
terval is based on the premise that each driver has complete 
knowledge of the information needed for the decision. In 

S. Kikuchi, V. Perincherry, and P. Chakroborty, Civil Engineering 
Department, University of Delaware, Newark, Del. 19716. H. Tak
ahashi, Nissan Research Center, Nissan Motor Company, Yokosuka, 
Japan. 

reality, the driver has neither the complete information nor 
the rigid rules needed to make the correct decision. As a 
result, regardless of how correct the setting of the interval of 
signal change is (the basis of the existing standards), most 
drivers face a period of indecision and anxiety at the onset of 
the yellow signal. 

Indecision and anxiety are caused by the lack of clear in
formation and well-defined criteria to make the decision. Un
clear information allows different interpretations of the decision 
parameters by the decision maker; at the two extremes are 
optimistic and pessimistic interpretations. The decision mech
anism under uncertainty is usually based on fuzzy inference 
rules, which are developed through the individual's attitude 
and experience. Thus, drivers make different decisions, some 
aggressive and some conservative. 

Recently developed uncertainty theory allows the mea
surement of anxiety as a function of optimistic and pessimistic 
interpretations of the perceived information and inference 
rules. In this paper, the anxiety measure developed by Yager 
(1) is used to compute the degree of anxiety that a driver 
experiences at different locations along the approach to an 
intersection at the onset of the yellow signal. Further, the 
model is intended to help evaluate the features of a driver 
decision support system by examining how improved infor
mation and decision rules affect drivers' behavior and anxiety. 
This is a relevant issue for implementation of intelligent vehicle
highway systems (IVHS). 

The existing approaches to model the driver's decision pro
cess during the signal change interval are discussed first. Then 
the basic measures of uncertainty-the possibility measure 
and the necessity measure-are explained. By a combination 
of these two measures, the degree of anxiety associated with 
choosing one of the decision options is computed. Finally, the 
measurement of the anxiety that aggressive and conservative 
drivers experience is presented using a set of data obtained 
at an intersection. 

DRIVER ANXIETY AND THE PROBLEM 

The study of driver anxiety requires understanding of the 
decision process, which is based on a collection of imprecise 
rules and vaguely perceived information. Anxiety during a 
decision process is discussed and the need to develop a model 
that expresses anxiety in the mind of a driver is defined. 
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Driver Anxiety 

A driver has two alternatives when the signal turns yellow 
while he is approaching an intersection. One is to continue 
through before the signal turns red; the other is to stop at the 
intersection. In order to make the decision, the driver requires 
a set of decision rules and information on the current condition. 

Vagueness is embedded in the two factors in this decision 
process. One type of vagueness lies in the information avail
able to the driver, who does not know, for example, how long 
the yellow will last nor his exact current location. Thus, the 
driver interprets the available information in the form of per
ception, which may take the form of linguistic rather than 
numerical expressions. 

Another type of vagueness is embedded in the decision 
rules. The rules are not based on rigid mathematical functions; 
rather, they constitute a fuzzy inference system consisting of 
a set of "If ... Then" rules; for example, if the vehicle is 
traveling at high speed and is very close to the intersection 
when the light turns yellow, then clear the intersection or if 
the vehicle is far from the intersection and traveling at a low 
speed when the light turns yellow, then stop. Given the in
put, the match between the input and the premise of a rule 
("If ... ") determines the degree of truth of the application 
of the rule. The input is the perceived information discussed 
above. 

Anxiety occurs when the perceived information and the 
decision rules are fuzzy and yet one must take one of the crisp 
actions, in this case either stop or continue driving. The dif
ferences among drivers' behaviors emerge from the percep
tion of information and application of the rules. Precise nu
merical information about distance, for example, may not be 
helpful to the driver unless he has the decision rules that use 
it. How one interprets and perceives the given state is critical 
in this process. If the range of possible interpretation in
creases, one's anxiety should increase. If, on the othe~ hand, 
rules are rigid and the information is precise, an external 
command can substitute for the driver's decision and no anx
iety will be present. 

The Problem 

The problem of this study is to develop a model that represents 
the anxiety that a driver feels at the onset of the yellow signal. 
The model should be capable of measuring the degree of 
anxiety along the approach to the intersection. It should also 
be capable of evaluating the effect of improving the quality 
of information and rules in the driver decision support system. 
Further, it should be capable of explaining the differences 
among the driver behaviors (for example, conservative versus 
aggressive driving) on the basis of the difference in the inter
pretation and application of the rules. 

The model will be helpful in addressing several important 
issues related to driver decision and its implication for traffic 
engineering: (a) the driving attitude of the elderly; (b) the 
perception and decision patterns of impaired drivers, such as 
drivers under the influence of alcohol or drugs; and (c) the 
effect of in-vehicle information systems. In IVHS, it is con
ceivable that the yellow signal may be transmitted to the 
vehicle and with the information on the vehicle's speed and 
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location, the on-board computer may advise the driver about 
the appropriate action. 

EXISTING APPROACHES DEALING WITH 
DRIVER'S DILEMMA 

Driver decision and behavior during the signal change interval 
is a classic topic in the traffic engineering literature. Various 
approaches and models have been proposed to analyze the 
appropriate signal change intervals and the driver's decision 
process. They are grouped into two approaches here: the 
deterministic and the statistical. 

Deterministic Approach 

The signal change interval is provided to warn drivers of the 
impending red signal. When a driver approaches an intersec
tion, there exists a point (Point A) on the approach roadway 
before which it is impossible for him to clear the intersection 
during the signal change interval. Similarly there exists a point 
(Point B) beyond which it is not possible for the driver to 
stop. If Point B is farther from the intersection than Point A 
and if he is in the region between these two points, he ca~ 
neither clear nor stop during the signal change interval. This 
zone is called the dilemma zone. Conversely, if Point A is 
farther from the intersection than Point B, an area called the 
option zone in which both the clearing and stopping maneu
vers are possible exists between Points B and A. The sizes of 
the dilemma zone and the option zone can be controlled by 
the signal change interval. 

Gazis et al. (2) developed equations for calculating the 
clearing distance (D8 ), the stopping distance (Ds), and the 
signal change interval that prevents the creation of the di
lemma zone. D8 is the distance measured from the intersection 
within which one can safely clear the intersection and D is 
the distance measured from the intersection bey~nd which 
one can safely stop before the intersection: 

D8 = Vd - (w + I) + a(t - d) 2/2 + V(t - d) 

Ds = V 2/2b + Vd 

where 

V = speed of the vehicle (ft/sec), 
d = driver perception-reaction time (sec), 

· t = signal change interval (sec), 
b = deceleration rate (ft/sec2), 

I = vehicle length (ft), 
a = acceleration rate (ft/sec2 ), and 
w = intersection width (ft). 

(1) 

(2) 

When D8 2: Ds, the dilemma zone is eliminated; thus the 
value of t should be 

w +I V 
t2=d+--+v 2b 

where acceleration during clearing is assumed to be zero. 

(3) 
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In this approach, it is assumed that all drivers have accurate 
information to make the decision and that all the drivers 
behave in the same manner by evaluating the current location 
with respect to Dg and Ds. Normally, this is not the case. The 
information available to the drivers is neither precise nor 
complete, and not all drivers travel at the same values of V, 
w, l, b, and a. As a result, regardless of how correct the signal 
change interval is for the design ·vehicle and driver, drivers 
experience anxiety and their decisions are different. 

Statistical Approach 

Many researchers have examined driver anxiety on the basis 
of field observations of the frequency with which drivers stop 
at different distances on the approach upon seeing the yellow 
light. The zone in the road where the "stopping probability" 
is between 10 and 90 percent has been assumed as the dilemma 
zone by many researchers. The percentage of drivers who 
stopped was interpreted as the probability that an individual 
driver would stop. Plots of the cumulative probability function 
were developed by many, among them Zegeer and Deen (3), 
Olson and Rothery (4), May (5), Williams (6), and Chang 
et al. (7). 

The above approach has been expanded to model the re
lationship between the actions of stopping (or continuing) and 
the distance. The dependent variable is a binary probability 
value (1 if the vehicle stops and 0 if the vehicle goes) and the 
independent variable is the distance from the intersection. 
There are two types of assumption as to the assumed cu
mulative probability functions: a linear function and a cu
mulative normal function. 

Linear Probability Model 

The linear probability model assumes the probability of stop
ping as a linear function of the distance from the intersection. 
The probability is 1 for all the distances greater than a certain 
large distance and 0 for all the distances less than a certain 
small distance. However, the linear model may estimate a 
probability value greater than 1 and less than 0 for the region 
where the probability values are near 0 or near 1. 

In order to rectify this shortcoming, a nonlinear expression 
has been proposed. Two of the most popular ones are the 
logistic function and the cumulative normal function. The 
estimation model that uses the logistic function is called the 
logit model and the one that uses the cumulative normal func
tion is called the probit model. The probit model application 
is reviewed and its merits and limitations are discussed using 
the presentation of Sheffi and Mahmassani (8). 

Probit Model 

The probit model expresses the probability of stopping as a 
function of drivers' perceived time to reach the stop line (T). 
Considering variation among the drivers in perception and 
reaction time, Tis assumed to be a random variable of the 
following form: 

T = t + ljJ (4) 
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where t is the time taken for a car to reach the stop line at a 
constant speed, and ljJ is a random variable reflecting the 
differences in perception and reaction among the drivers. It 
is assumed that ljJ is normally distributed, ljJ: N(O,crt). 

It is hypothesized that if Tis less than a critical value Ten 
the driver would choose to proceed through the intersection. 
The value of Tc, is also assumed to vary with the driver because 
of many factors, such as driving experience. Thus, the value 
of Tc, can also be assumed to follow the normal distribution: 

(5) 

where tcr is the mean critical time and E is the disturbance 
term, which is normally distributed E: N(O,cr;). The proba
bility that a driver would stop is then given by 

Pr( Stop) = Pr[ Tcr < T] (6) 

The fundamental assumption in this model is that values of 
both Tc, and T follow a normal distribution. The probability 
of stopping is expressed by the probability that the driver 
perceives the value of T to be greater than the value of Tcr· 
This is perhaps a valid assumption if the model is to represent 
the variation in the behavior of the population. In other words, 
it is valid under the following conditions: although each in
dividual knows the values of Tc, and T clearly and decides 
either to continue or to stop with no hesitation, different 
persons assume different values of Tc, and T, and their values 
are distributed normally among the population. Thus, the 
model is useful to explain the variation of decisions for the 
population as a whole. 

If this model is used to infer the state of mind of an indi
vidual, however, it implies that each driver's decision process 
is random, and on encountering the same situation he may 
react differ.ently in a random manner. 

Discussion of Existing Approaches 

Both approaches discussed above attempt to capture the pro
cess in which the driver compares the current status (in terms 
of either the distance from the intersection or the time before 
the signal turns red) with his threshold values of decision. 
The deterministic approach considers that the driver knows 
both the current condition and the threshold values clearly 
and that the knowledge of all drivers is the same. The statis
tical approach, on the other hand, considers that each driver 
has a different understanding of the current values and the 
threshold values. In this respect, the latter approach is more 
realistic and attempts to account ·for the variation in driver 
behavior. 

When an individual interprets a value that is vague, his 
perception can be represented as possibility instead of prob
ability. The possibility distribution, in short, represents the 
distribution of values based on the notion of "can be," whereas 
the probability distribution represents the value based on the 
frequency of random outcomes. 

Many have proposed that possibility, instead of probability, 
is a more appropriate form to represent the individual's choice 
under uncertainty. Among them are Shackle (9), Cohen (10), 
and Klir (11). If the possibility distribution is used to represent 
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the uncertainty in the assumed values of Tcr and T, the choice 
of continuing should be based on the possibility that T is 
greater than Ten and the outcome is expressed by possibility. 

The possibilistic approach is suited for analyzing the process 
of subjective inference and reasoning. It is also suited to ex
press the degree of anxiety during the decision. Anxiety is 
caused by the vagueness of information provided to the de
cision maker. Thus, the possibilistic approach allows the as
sessment of the effectiveness of specific engineering measures 
in mitigating driver anxiety. 

BASIC MEASURES OF UNCERTAINTY 

Possibility and Necessity Measures 

Traditionally, probability has been the approach used to deal 
with uncertainty. Probability represents the degree of truth 
in terms of the frequency of occurrences based on the evidence 
presented. Recently, new measures that represent uncertainty 
have been proposed. Among them, possibility is perhaps the 
most often used in dealing with uncertainty involving percep
tion and subjective judgment. 

Given imprecise and uncertain information, one's percep
tion can vary depending on the attitude in interpretation. The 
extreme cases are possibility-based and necessity-based inter
pretations. Possibility-based interpretation accounts for all 
nonnegative evidence and draws a conclusion, whereas 
necessity-based interpretation accounts for only positive evi
dence that supports the truth. It can be said that these 
two represent optimistic and pessimistic interpretations, 
respectively. 

Given evidence E, which is fuzzy and is represented by a 
membership function hE(x), the possibility that a particular 
event A is supported is given by the following: 

Poss(A) = max hE(x) (7) 
xEA 

Equation 7 indicates that the largest membership grade of the 
elements included in A represents the possibility that "the 
unknown is A." 

Necessity measure, on the other hand, considers only the 
positive evidence that supports the conclusion. It is related 
to possibility by the following: 

Nec(A) = 1 - Poss(not A) 

Poss(A) = 1 - Nec(not A) (8) 

In other words, the necessity of A is equal to the impossibility 
of "not A." 

In this problem, given the current condition (which is char
acterized by vague information), the driver's judgment that 
the current condition indicates stopping or clearing action can 
be represented by these two measures. Each parameter that 
determines the stopping or clearing distance in Equations 1 
and 2 is perceived as fuzzy by the driver; in other words, the 
values of both Ds and D

8 
are perceived as fuzzy numbers and 

are represented by membership functions. The driver com
pares the current location with the fuzzy values of Ds and D

8
• 

The comparison can be performed in either a possibilistic or 
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a necessity-based manner; the former represents the opti
mistic and the latter the pessimistic manner. 

The difference between these two measures for an action 
signifies the degree of uncertainty of the driver for executing 
the action successfully. These two measures are related to the 
attitude of the driver (aggressive or conservative). For most 
persons, however, the degree of uncertainty of taking an ac
tion A is a value between Nec(A) and Poss(A). Explanation 
and discussion of the "Poss" and "Nee" measures are found 
in many books on fuzzy sets. They include Dubois and Prade 
(12), Klir and Folger (11), Kosko (13), and Zimmermann 
(14). 

Uncertainties associated with the decision process that are 
relevant to this analysis are caused by nonspecificity, fuzzi
ness, and confusion. 

1. Nonspecificity is related to and caused by imprecise per
ception. The nonspecificity measure represents the level of 
uncertainty by a range of values for a perceived parameter. 

2. Fuzziness is a type of uncertainty that is caused by vague
ness in the definition of the sets, such as "high speed," "small 
distance," etc. This uncertainty is referred to as the fuzziness. 
Fuzziness of a fuzzy set is due to the presence of the elements 
with partial membership, which will be members of the com
plement of the set as well. The fuzziness is a measure of the 
overlap of the set with its complement. 

3. Confusion is a type of uncertainty that is caused by the 
evidence that supports conflicting actions. It is represented 
by the measure of confusion proposed by Hohle (11). 

These three types of uncertainty are characteristics of in
formation. They cause different interpretations of the same 
evidence, which, in turn, result in possibility- and necessity
based conclusions by the decision maker. 

Measure of Anxiety 

The uncertainties explained above cause anxiety in the mind 
of the decision maker. Yager (1) has proposed an equation 
that expresses the degree of anxiety when a choice is made 
from a set of conflicting actions: 

r1 i 
Ax = 1 - Jo JAc.I dcx (9) 

where 

Ax degree of anxiety given information x, 
A set of alternative decisions, 

IAal number of alternatives whose possibility or neces
sity measures are greater than ex, and 

(1 1 
Jo JAaJ dcx 

is called the tranquility measure. (Ax is 1 minus the tranquility 
measure.) 

Ax is used to represent the degree of anxiety that a driver 
experiences. In the case of a two-choice situation, to stop or 
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to continue, Yager's model reduces to 

(10) 

where mG and ms correspond to the possibility and (or) ne
cessity measures of "continue" and "stop," as will be ex
plained later. 

The anxiety measure is the highest when both measures, 
mG and ms, are equal to O; it is equal to 0 when one of the 
two measures equals 1 and the other 0. This shows that anxiety 
is the highest when the possibility (or necessity) measures of 
the two conflicting actions are both 0, indicating that neither 
action is possible (yet one has to be chosen). It is the lowest 
when only one action is supported fully. 

MODELING DRIVER CHARACTERISTICS AND 
BEHAVIOR 

The decision patterns of aggressive and conservative drivers 
are defined and the possibility and necessity measures for 
stopping and continuing actions of these drivers are com
puted. These two types of drivers are assumed to define the 
range of behaviors of most drivers. These values are used to 
compute anxiety in the next section. 

Definition of Aggressive and Conservative Drivers 

An aggressive driver's primary desire is to reduce the travel 
time. Thus, his first choice is to go. He examines the possibility 
of going first at the onset of the yellow signal. He stops only 
if it is impossible to clear. The decision rule of the aggressive 
driver is 

Go if possible; stop if necessary. 

A conservative driver is safety conscious and resorts to a 
safe action. He goes only if it is impossible to stop. In other 
words, his first choice is to stop and he will go only if it is 
necessary. The decision rule of the conservative driver is 

Stop if possible; go if necessary. 

Between these two extreme types of drivers are some driv
ers who may act on the basis of "go if possible and stop if 
possible." 

Measures of Going and Stopping 

Normally a driver perceives information of the current speed, 
current location, and the current driving conditions as fuzzy 
quantities as he approaches an intersection. These values are 
compared with the general values of stopping and going, and 
if the perceived current states match the premise of the rules 
completely, the corresponding action is undertaken. If the 
perceived states match the premise of the rules of both actions 
partially, anxiety is assumed to occur. How the perceived 
states match the rules (for stopping and going) is evaluated 
by the possibility and the necessity measures. 

The following notation is used to represent the possibility 
distribution of the perceptions of the current states: speed, 
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7r(s); distance, 7r(d); driving conditions, 7r(z), wheres is speed, 
dis distance, and z is an index of goodness of road or traffic 
conditions. 

Possibility of Going 

The decision to go is based on the combination of the follow
ing criteria: 

Criterion 1: The current speed is high, 
Criterion 2: The current location is near the intersection, 
Criterion 3: The current road or traffic condition index is 

high. 

Given 7r(s), 7r(d), and 7r(z), the validity of each statement is 
evaluated by possibility measures. 

For Criterion 1, the possibility that the current speed is high 
is computed by 

Poss(Vh) = Max Min[7r(s),µVh(s)] (11) 

where vh denotes the notion "high speed,, and µ vh ( s) denotes 
the membership grade of s in the fuzzy set of "high speed." 

For Criterion 2, the possibility that the current distance is 
short is computed by 

(12) 

where Ds denotes the notion "short distance" and µDs(d) 
denotes the membership grade of d in the fuzzy set of "short 
distance." 

For Criterion 3, the possibility that the road or traffic con
- dition index is high is computed by 

(13) 

where Ih denotes the notion "high index" and µ/h(z) denotes 
the membership grade of z in the fuzzy set of "high index." 
A road or traffic condition index is introduced to account for 
all other environmental effects on driver decisions, such as 
road surface condition, traffic condition after the intersection, 
geometric design. 

Going is possible only when all three criteria are satisfied, 
in other words, the possibilities that the current speed is high, 
the current distance is small, and the current road or traffic 
condition index is high. Hence, the possibility of going under 
the current condition x can be computed as the minimum of 
the possibility measures of the three criteria: 

Possx(Go) = Min[Poss(Vh),Poss(Ds),Poss(Ih)] (14) 

Possibility of Stopping 

The decision to stop is based on the following criteria: 

Criterion 1: The current speed is low, 
Criterion 2: The current distance is long, 
Criterion 3: The current road or traffic condition index is 

low. 
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Given 1T(s), 1T(d), and 1T(z), the validity of each statement is 
evaluated by possibility measures, as with the case explained 
above. 

The possibility that the current speed is low is given by 

Poss(V1 ) = Max Min[1T(s),µV1(s)] - (15) 

where V1 denotes the notion "low speed" and µV 1(s) denotes 
the membership grade of s in the fuzzy set of "low speed." 

The possibility that the current distance is long is given by 

(16) 

where D 1 denotes the notion "long distance" and µD 1 (d) 
denotes the membership grade of din the fuzzy set of "long 
distance." 

The possibility that the current road or traffic condition 
index is low is given by 

(17) 

where / 1 denotes the notion "low index" and µ/1(z) denotes 
the membership grade of z in the fuzzy set of "low index." 

Stopping is possible only when all three criteria are satisfied, 
in other words, the possibilities that the current speed is low, 
the current distance is long, and the road or traffic condition 
index is low (not suitable for going). Hence the possibility of 
stopping under the current condition x can be computed as a 
minimum of the possibility measure of the three criteria: 

Possx(Stop) = Min[Poss(V1),Poss(D1),Poss(/1)] (18) 

Necessity of Going 

The necessity of going is derived from the basic relationship 
between the possibility and necessity measures, according to 
Equation 8. 

Nec(Go) = 1 - Poss(Stop) (19) 

Using Equation 18, it can be shown that this is equivalent to 

(20) 

This expression means that going is necessary under the 
current condition x if the current speed is high, the current 
distance is short, or the road or .traffic condition index is high. 
The necessity to go is the maximum of all these necessity 
measures. In other words, if any one of these conditions is 
necessarily satisfied, the driver will decide to go. 

Necessity of Stopping 

Similarly, the necessity of stopping is derived from the basic 
relationship between possibility and necessity measures: 

Nec(Stop) = 1 - Poss(Go) (21) 

It can be shown that this is equivalent to 

TRANSPORTATION RESEARCH RECORD 1399 

This shows that going is necessary under the current con
dition x only if any one of the three criteria is necessarily 
satisfied. 

ANXIETY AND INFLUENCING FACTORS 

In this.section, anxiety for aggressive and conservative drivers 
on the basis of Yager's measure and the factors that influence 
anxiety are discussed. 

Anxiety for Aggressive and Conservative Drivers 

The degree of anxiety is computed by introducing the pos
sibility and necessity measures developed in the previous sec
tion into Equation 10, which can be derived separately for 
aggressive and conservative drivers. 

Because aggressive drivers utilize the rule "go if possible; 
stop if necessary," me and ms in Equation 10 correspond to 
Possx(Go) and Necx(Stop), respectively. Thus, the anxiety 
under the current condition x is calculated as 

Ax = 1 - Max[Possx(Go),Necx(Stop)] 

+ 1/zMin[Possx(Go),Necx(Stop)] (23) 

Because conservative drivers utilize the rule "stop if pos
sible; go if necessary," me and ms in Equation 10 correspond 
to Possx(Stop) and Necx(Go), respectively. Thus, anxiety under 
the current condition x is calculated as 

Ax = 1 - Max[Possx(Stop),Necx(Go)] 

+ 1/zMin[Possx(Stop ),Necx(Go)] (24) 

These two types of drivers constitute the range in the driving 
population. For most drivers, anxiety should be computed for 
values of Necx(Go)::; me::; Possx(Go) and Necx(Stop)::; ms 

::; Possx(Stop) in Equation 10. 

Effect of Perception on Anxiety 

Vagueness in the perception of the parameters of the current 
condition x is represented by the shapes of the possibility 
distributions of the parameters 1T(s), 1T(d), and 1T(z). Their 
shapes influence the values of Possx(Go), Possx(Stop), 
Necx(Go), and Necx(Stop). 

The weakening of perception would result in possibility 
distributions with a larger spread and the sharpening of per
ception, in possibility distributions with a smaller spread. For 
an aggressive driver, an increase in Possx( Go) and at the same 
time a decrease in Necx(Stop) in Equation 23 results in a lower 
degree of anxiety. Similarly, for a conservative driver, an 
increase in Possx(Stop) and at the same time a decrease in 
Necx(Go) results in a lower degree of anxiety. Consequently, 
under the weak perception an aggressive driver may attempt 
to go at a distance too far from the intersection or a con
servative driver may attempt to stop at a point too close to 
the intersection, both with little feeling of anxiety. This may 
help to explain the effects of impaired recognition on driving 
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behavior, for example, driving under the influence of alcohol 
and drugs. 

Effect of Driving Experience on Anxiety 

When a driver travels on the same road and through the same 
intersection regularly, he tends to get an increasingly clear 
picture of which location is "too far" and which location is 
"too close" or what speed is "too high" and what speed is 
"too low" for the intersection. Hence, experience sharpens 
his perception. This explains why drivers with high familiarity 
of the road and the intersection experience less anxiety than 
unfamiliar drivers. Reduction in anxiety brings about more 
uniformity among the behavior of drivers. The Highway Ca
pacity Manual (15), for example, makes an observation to 
this effect and introduces an adjustment factor to account for 
driver experience (commuter versus noncommuter). 

ANALYSIS BASED ON FIELD DATA 

In order to understand how much anxiety a driver experiences 
at the onset of the yellow signal, a series of field surveys was 
conducted at an intersection in New Castle County, Delaware. 
The purpose of this survey was to measure the driver's anxiety 
only through the observation of the final action (stopping or 
going). On the basis of the data, necessity measures of stop
ping and going were derived and the corresponding possibility 
measures were calculated. These observed values were used 
to identify anxiety and the zone of anxiety along the approach. 

Survey Procedure 

The selected intersection is on level terrain and has good 
visibility and sufficient shoulder width. The speed limit on the 
approach roadway is 50 mph (80 km/hr). The duration of the 
yellow signal is 4 sec. A video camera was placed on a pe
destrian overpass at the intersection to record the following 
data at each instant of the yellow signal: (a) the location of 
the last vehicle that cleared the intersection and ( b) the lo
cation of the first vehicle that stopped at the intersection. 

The survey was conducted for 22 hr, and 1,120 valid data 
points were collected. Most vehicles approached near the 50-
mph limit before the signal changed. Each data point rep
resents evidence to be used as the basis for developing ne
cessity measures. 

Analysis 

The data were used to derive necessity measures and possi
bility measures for stopping and going, to compute the degree 
of anxiety, and to identify the zone of anxiety. 

It was assumed that the sampled drivers behaved rationally 
and consistently. In other words, if a driver decided to stop 
at the point where he saw the signal change, he would stop 
at any point farther away than that point. Similarly, if he 
decided to go at the point where he saw the yellow signal, he 
would go at any point nearer than that point. Thus, the pos
sibility and necessity measures increase or decrease monot
onically along the approach. 

Computation of Necessity Measures of Stopping and 
Going 
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Necessity measures of stopping and going for the population 
were obtained from the proportion of data that supported the 
action necessarily. Thus, the necessity measure of stopping 
under a given condition xis an increasing function with respect 
to the distance from the intersection. Nec300.(Stop), for ex
ample, is the proportion of drivers that stopped at 300 ft 
(91 m) or closer. Similarly, the necessity to go at 300 ft, 
Nec300.(Go), is given by the proportion of drivers that went 
at 300 ft or farther. The necessity measures for stopping and 
going are plotted along the approach in Figures 1 and 2. 
Nec(Stop) is 1 at a location far away from the intersection, 
and it gradually decreases as the location becomes closer to 
the intersection. Conversely, the Nec(Go) is 1 near the in
tersection and decreases with increasing distance from the 
intersection. 

Derivation of Possibility Measures of Stopping and 
Going 

Given the necessity measures, the possibility measures for 
going and stopping were computed on the basis of the rela
tionship between possibility and necessity measures (Equation 
8): Possx(Go) = 1 - Necx(Stop); Possx(Stop) = 1 - Necx(Go); 
for example, the possibilities of going and stopping from 300 
ft are Poss300.(Go) = 1 - Nec300.(Stop) and Poss300.(Stop) = 
1 - Nec300.(Go). The possibility measures computed on the 
basis of these relationships are also shown in Figure 1. 

Degree of Anxiety 

With the possibility and necessity measures obtained above, 
the degree of anxiety that aggressive and conservative drivers 
would experience according to Equations 23 and 24, respec
tively, is computed. The degree of anxiety for these two types 
of drivers is shown in Figures 3 and 4. It is seen that in both 
cases the highest degree of anxiety occurs at the location 
where the measures of the two conflicting choices are equal; 
in other words, the intersection of Poss(Go) and Nec(Stop) 
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for aggressive drivers and the intersection of Poss(Stop) and 
Nec(Go) for conservative drivers. This confirms the notion 
that when two conflicting choices are equally supported by 
the perception, the maximum anxiety is felt. 

Aggressive and conservative drivers are two extreme types. 
Most drivers' behavior falls between these types, and their 
values of ma and ms in Equation 10 are perhaps between the 
possibility and necessity measures, that is, Nec(Go) <ma< 
Poss(Go), and Nec(Stop) < ms < Poss(Stop). To test the 
anxiety measures of this type of a driver, the values of ma 
and ms are taken as the middle values of their respective 
ranges; in other words, the assumed values are 

m(Go) = 0.5 x [Nec(Go) + Poss(Go)] 

m(Stop) = 0.5 x [Nec(Stop) + Poss(Stop)] 

The distributions of m(Go) and m(Stop) for this driver are 
derived using the.values obtained in Figures 1and2, and they 
are shown in Figure 5. The corresponding anxiety measure is 
calculated by the following equation and shown in Figure 6: 

Ax = 1 - Max[m(Go),m(Stop)] 

+ 1/zMin[m(Go),m(Stop)] 
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When this anxiety measure is compared with those in Figures 
3 and 4, the anxiety measure of Figure 6 is located between 
those of the aggressive and the conservative drivers. This 
indicates that the two extreme types of drivers help define 
the range of drivers' decision patterns. 

Zone of Anxiety 

The zones of anxiety for aggressive and conservative drivers 
can now be identified in Figures 3 and 4. It is seen that the 
width of the anxiety zone for the two types of drivers is ap
proximately same. Yet the location of the anxiety zone for 
conservative drivers is closer to the intersection than is that 
for aggressive drivers. 

It is also seen that the locations of the maximum anxiety 
are different for the two types of drivers; that of the con
servative driver is closer to the intersection than is that of the 
aggressive driver. This can be explained by the following. The 
conservative driver's first choice is to stop. Therefore, he 
decides to stop at a location farther from the intersection with 
no hesitation, and he decides to go only when he is very close 
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FIGURE 5 Distributions m(Go) and m(Stop) along 
approach to intersection. 
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to the intersection. Thus, his anxiety intensifies closer to the 
intersection than that of the aggressive driver. 

The previous research has identified the zone of driver 
indecision or dilemma only on the basis of the observed data 
on the frequency of stopping, ·for example, the area where 
the probability of stopping is between 0.1 and 0.9. This study 
suggests that not only the frequency of stopping but also the 
frequency of going must be counted to determine the area of 
dilemma. 

The zone between A and B of Figure 1 corresponds to the 
area of indecision or dilemma according to the dilemma zone 
by the previous studies. On the basis of this analysis, however, 
this area corresponds to the anxiety zone of aggressive drivers. 
The anxiety of conservative drivers occurs in the area where 
both the Poss(Stop) and Nec(Go) are greater than 0 (the area 
between C and D of Figure 1). Hence, the zone of anxiety is 
actually C to B, which is greater than that previously consid
ered because the anxiety of the drivers who decided to go 
was not counted in defining the dilemma in previous studies. 

CONCLUSIONS 

In this paper the driver's decision process during the signal 
change interval is modeled. The study treats the driver's de
cision mechanism as a fuzzy inference process, an interaction 
of imprecise information and vague inference rules. Uncer
tainty associated with the interpretation of information and 
feasibility of alternative actions are measured by possibility 
and necessity. The decision process is analyzed for two ex
treme types of drivers, conservative and aggressive. Yager's 
measure of anxiety is proposed to measure driver anxiety. 

A series of field surveys was conducted to collect data on 
driver decision patterns for the two types of drivers. The data 
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were applied to the model to identify the degrees of anxiety 
and the zones of anxiety for the two types of drivers. Con
servative drivers were found to experience anxiety closer to 
the intersection than aggressive drivers. The zone of anxiety 
was found to be greater than that previously considered when 
the anxiety experienced by drivers who went as well as those 
who stopped was taken into account. 

This study is essentially theoretical in nature. The models 
developed, however, can be useful in understanding the effect 
of information on the decision process and behavior, and also 
in evaluating the effectiveness of improving information and 
communication in reducing driver (or traveler) anxiety. The 
study underscores the notion that regardless of how correct 
the timing of the yellow phase from the established standard, 
drivers still experience anxiety during signal change intervals. 
The only way to alleviate the anxiety is by providing com
mands to the driver externally; furthermore, the commands 
could be adjusted to the individual driver's decision tendency. 
Implementation of such a scheme is plausible under IVHS. 
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Freeway Incident Management 
Expert System Design 

EDMOND CHIN-PING CHANG AND KUNHUANG HUARNG 

Nonrecurring incidents may cause unexpected congestion on free
ways, even when surveillance, communication, and control (SC&C) 
systems are in operation. A knowledge-based expert system has 
been developed for microcomputers to assist in urban freeway 
corridor incident management. Overall study activities include 
literature review, conceptual design, prototype system develop
ment, program documentation, and user interface design of the 
expert system. This paper documents the expert system being 
developed, which includes a graphics user interface, decision
making rules, and a knowledge inference mechanism to automate 
freeway incident management applications. The benefits of using 
this expert system are also summarized. 

Freeway and arterial incidents often occur unexpectedly and 
cause undesirable traffic congestion and regional mobility loss, 
even when computerized freeway surveillance, communica
tions, and control (SC&C) systems are in operation. Auto
matic incident detection should apply information observed 
from freeway detector stations. The most commonly used 
method is the comparative method (California-type algo
rithm) in which traffic operational characteristics between 
consecutive detector stations are continuously monitored and 
closely evaluated. 

A microcomputer-based, knowledge-based expert system, 
Incident Management Expert System (IMES), has been de
veloped to assist with control operations by improving urban 
freeway corridor incident management. An effort was made 
to summarize, extract, and select the information needed dur
ing the decision-making process to implement urban freeway 
incident management strategies. This paper documents the 
development of a microcomputer-based expert system design 
for assisting in freeway incident management. In the following 
sections the incident management process, microcomputer 
system design, Microsoft Windows software interface fea
tures, and user-definable elements are described that allow 
for flexibility in future system expansions. 

IMES has been developed in the Microsoft Windows en
vironment, which provides a user-friendly interface that makes 
IMES easy to learn and use. IMES uses the unique features 
of Windows to provide a graphics user interface and visual 
programming through a rule editor. The rule editor allows 
users to maintain a flexible rule base in the expert system 
without requiring extensive programming knowledge and pre
vious experience. The IMES system separates inputs and out
puts into data files. Whenever inputs and outputs are changed, 
IMES is modified to reflect the changes. The inference engine, 
developed in C-Language Integration Production System 

Texas Transportation Institute, Texas A&M University System, Col
lege Station, Tex. 77843-3135. 
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(CLIPS) 5.1, provides object-oriented features to facilitate 
software reuse, encapsulation, and data abstraction. These 
advantages make IMES a reusable and easily maintained sys
tem. IMES is a stand-alone program, running on an MS DOS
based IBM/XT/AT/386 or compatible microcomputers, with 
or without a math coprocessor. 

INCIDENT MANAGEMENT PROCESS 

In this section the basic information requirements and control 
responses needed to make proper decisions during urban cor
ridor freeway incident management are discussed. The fol
lowing conceptual design describes the freeway incident man
agement process. The information analysis covers information 
type, quantity, and quality of data, or overall information 
needed in highway system analysis. The decision-making pro
cess was· identified though a step-by-step analysis after an 
alarm sounds indicating the potential occurrence of an inci
dent. The analysis focused on the different types of control 
decisions and responses available to control operators and 
field personnel. The entire process emphasized identification 
of data requirements and information flow to make timely 
decisions, such as selection of the proper incident response 
(1). 

Decision-Making Process 

Figure 1 is a step-by-step flowchart representing the typical 
decision-making process normally followed by control center 
operators when they respond to an identified freeway incident 
(2). As indicated, the decision-making process should include 
five steps, including incident detection, confirmation, predic
tion, management, and response (3,4). This expert system 
was designed to provide assistance to speed response. 

Incident Detection 

There may actually be different levels of information require
ments or alarm status, through combinations of video images 
or audio signals, that can notify control center operators that 
an "abnormal" operating condition has occurred in the free
way surveillance environment. This incident condition may 
include field equipment failure, a drastic change in traffic 
conditions, or a remark about scheduled special operations. 
Depending on the nature of the freeway incidents and needed 
management responses, the status of a potential freeway in-
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FIGURE 1 Incident management decision making. 

cident can be properly determined. On the basis of traffic 
control requirements of the freeway surveillance and control 
system, a freeway incident alarm may sound in response to 
four possible operating conditions: 

1. An automatic incident detection algorithm; 
2. A call from the field by a service patrol, police, and so 

forth; 
3. The observation of traffic flows; or 
4. A combination of visual and automatic techniques. 

Incident detection by electronic surveillance serves to mon
itor real-time traffic data through vehicular detectors installed 
at critical locations along the freeway. When a delay-related 
incident occurs, freeway capacity is reduced at the point of 
incident occurrence. If capacity is reduced to an amount less 
than the existing demand and traffic occupancy is greater than 
a predetermined value, an incident has likely occurred. Sim
ilarly, incidents can be detected through logic by evaluating 
variations in traffic flow characteristics. Some controlled ex
periments have been conducted using operating speed as the 
determining variable. However, most electronic surveillance 
systems can also use occupancy data for incident detection. 

For example, in Los Angeles, changes in either the lane 
occupancy or the percentage of time that vehicles spend over 
a particular detector location will provide an indication of 
congestion when an incident has occurred. Normally, com-
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puter software can calculate the difference in the measure
ments between adjacent detector stations. In some cases, 
mainlane vehicle detectors may be spaced at half-mile inter
vals. The incident alert condition can be signaled automati
cally by the computer through algorithmic analysis when a 
relative percent change between the present occupancy and 
that of the preceding samples for the downstream detectors 
exceeds a certain threshold value. 

As additional traffic information immediately upstream of 
the incident is obtained, control operators can make decisions 
to activate appropriate responses. The advantage of det~ctor
based surveillance is that it can continuously monitor the net
work at a relatively low operating cost with minimal human 
supervision. The information can be used for other traffic 
control tasks, such as establishing metering rates for traffic
responsive ramp metering systems. The main disadvantage of 
the system is that the nature of the incident cannot be readily 
identified, and some other type of surveillance is often re
quired to determine what type of response is needed. 

Incident Confirmation 

When an incident alarm goes off, it is necessary to identify 
all the possible triggering factors of the incident and confirm 
its occurrence through other means. In particular, the freeway 
traffic management system should act automatically to 

1. Determine whether an operational failure in the sur
veillance, communication, and control system has led to the 
alarm; 

2. Identify the reasonableness of the incident alarm and 
point out the locations of the incident; and 

3. Establish a level of confidence in the alarm by confirming 
the incident through other field identification techniques. 

Incident Identification 

Given that a freeway incident has already occurred and has 
been confirmed in the field, it is necessary to determine the 
nature of the incident before any further control action can 
be taken. 

With a number of unknown factors, the overall incident 
identification process should take into account 

1. Location of the incident: freeway mainlane, shoulder, 
median, on-ramp, off-ramp, or interconnecting service road; 

2. Type of incident: accident, stalled vehicle, cargo spill, 
or environmental condition; and 

3. Severity of the incident: number and size of vehicles 
involved; number of lanes blocked; property damage only, 
injury, or fatality; type of cargo involved; and exploration 
potential. 

Incident Assessment 

Next the control center operator must assess the overall op
erating condition of the freeway corridor and the nature of 
the incident. It is important to identify the available design 
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elements involved for timely decision making. Comprehensive 
incident assessment must consider the following information: 

1. The capabilities of the organization in terms of equip
ment availability, status, and location; personnel availability; 
and operating procedures (who has agreed to do what); 

2. The likely duration of the incident acquired from his
torical experience, computed from an incident prediction al
gorithm, or assessed from similar incidents; 

3. The potential impact on traffic flow and route, time of 
day, and traffic volumes; and 

4. The . status of the primary and diversion routes for 
a potential freeway diversion and for releasing traffic 
information. 

Incident Response 

It is noted that the control response to be taken depends highly 
on locally established practices and operating procedures. If 
the control response is multijurisdictional, there is the poten
tial for conflict among different operating agencies. Histori
cally, operators contacted the police or highway patrol, who 
determined the need for a response. To establish a proper 
incident management system, it is important to develop a 
relationship of mutual trust among all responsible participat
ing agencies. Incident assessment can lead to the determi
nation ·of the type of control responses required for different 
incident conditions. 

The incident response involves immediate decisions relating 
to 

1. Personnel and equipment: who is at the scene, who else 
should be sent to the scene, and who to inform; 

2. Real-time motorist information: signs, Highway Advi
sory Radio (HAR), radio, TV broadcasts; 

3. Off-site traffic control for diversion; and 
4. Available traffic control strategy. 

In the United States, freeway management agencies have 
used various coordination schemes among the different levels 
of freeway agencies, highway patrols, and local police to man
age freeway corridor traffic. For example, in Chicago, service 
patrols take care of disabled vehicles without calling the police 
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except in the event of an accident. In Los Angeles and Long 
Island, the police must be present to remove a disabled ve
hicle. Either way, a response should be implemented, and 
conditions monitored and assessed. Incident response is ad
justed as needed on the basis of feedback from freeway mon
itoring systems. 

Condition Analysis 

Condition analysis addresses the control decisions needed and 
determines the types of responses available to control oper
ators and field personnel. Condition analyses should allow 
the operators to assess continuously the basic data elements 
that describe the nature and extent of the freeway incident. 

The condition analysis focuses on identifying the overall 
system data requirements that can feed the information flow
chart developed during the freeway incident management pro
cess. The data elements mainly include type of data, amount 
of data, form of the data base input, source of data, and how 
the data are acquired. 

The realistic availability and suitability of basic data ele
ments depend on the freeway management system design. It 
is important to investigate basic data needs, the system in
formation process, and communication requirements while 
planning traffic control strategies. Design considerations must 
be taken into account during the planning, design, and de
velopment stages of the computerized freeway corridor traffic 
management system. 

MICROCOMPUTER SYSTEM 

IMES is a microcomputer-based expert system environment 
developed by the Texas Transportation Institute at Texas A&M 
University. The IMES system provides an intelligent, user
friendly expert system framework by applying several state
of-the-art computer programming techniques. The system 
components include a graphics user interface, a mouse
supporting function, a rule base, a menu selection file, a re
sponse file, and the CLIPS expert system building tool. 

As shown in Figure 2, there are three display components 
in the graphics user interface. The upper portion displays 

FREEMAY IHCJDEHT HAHAGEHENT E><PERT SYSTEM 

DEUELDPED BY 
TEXAS TRANSPORTATION INSTITUTE 

TEXAS Allt UHI~ITV SVSTEH 

························•········•····•·•·••···•···••····••·························•··· 
••••••••••••••••••••••••••••••••••.s;J.-afftc Lan .. ~•••••••••••••••••••••••••••••••••• 

Can Ra'i;./ 

DATE: 81'221'1991 
T'dPt!! ,.--Acc_,i-den-t--..1 

Location I TrafftcJ.ane 
i t-1 I t ten1 I 

SEUERITV 

IttCIDEHT MNAGeEHT E>CPERT SVSTEH 

Wllather Raining 

Ti,. "arni"'l!I 

lt..Z ~ 

Exalasian 

Tenaerature 

lten3 

FIGURE 2 System initial screen. 

ihaulde~ 



Chang and Huarng 

default and help information. The middle portion displays 
and marks various portions of a freeway from which users can 
easily identify the locations of incidents. When users click on 
any marked area, the corresponding help information is dis
played on the upper portion of the screen to provide expla
nations about this area of the freeway. The lower portion 
displays the menu selections for describing the incidents. When 
users select any menu item, IMES asserts the item as a fact 
in the fact base. 

The mouse allows users to point at any place on the screen 
directly and select menu items. Conventional keyboard inputs 
require typing, which may involve several problems: typing 
is boring and tedious, typographical errors are inevitable, and 
users cannot feel control. Unlike keyboard input, control with 
the mouse creates a convenient user input medium. 

The expert system is the heart of IMES. It serves as a 
consultant that helps users make appropriate decisions ac
cording to type of incident. The rule base of the expert system 
automates the process of incident management: it fires the 
corresponding rules and generates responses appropriate to 
manage certain incidents without the user having to go through 
the process of obtaining them. CLIPS, an expert system build
ing tool, contains the reasoning mechanism or inference en
gine that performs forward-chaining to formulate responses 
as advice to users. 

Built-in flexibility has been implemented through maximum 
system expansion capability. Users can change menu items 
using a text editor, the details of which are described later in 
this paper. Similarly, users can change the responses by mod
ifying a text file edited by a common word processor. All 
these modifications do not affect the contents of IMES. 
IMES reads these files as inputs and displays items corre
spondingly, so that system expansion can be performed with
out recompilation. 

Users can easily maintain the rule base in IMES. By ap
plying Windows features, IMES provides a rule editor, al
lowing users to modify rules without having knowledge of 
CLIPS and programming. This process is described in the 
section headed "Windows Environment." 

System Architecture 

The basic system architecture is shown in Figure 3. Users can 
access a text editor, the IMES main screen, and a rule editor 
via Windows. COND.TXT and RESPONSE.DAT are text 
files. The text editor is used to maintain or expand these files 
for menu selections and responses. The rule editor, supporting 
visual programming, provides a convenient way to maintain 
and expand the rule base. The IMES main screen is a graphics 
user interface, displaying menu selections, responses, and help 
information. Users interact with IMES through the IMES 
main screen. 

Since flexibility is one of the IMES design concerns, menu 
selections, responses, and the rule base are separated from 
IMES. These components are stored in COND.TXT, 
RESPONSE.DAT, and IMES.CLP, respectively. When 
IMES is invoked, it reads these files and displays menu se
lections according to the items read from COND.TXT. The 
response items that IMES can provide are read from 
RESPONSE.DAT. The rule base in IMES is read from 
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IMES.CLP, which is the expert system built in CLIPS. IMES 
invokes CLIPS to read the rule base. IMES is then ready to 
take users' selections and generate appropriate responses for 
managing certain incidents. 

Since these components are separated, they can be main
tained individually and easily. COND. TXT and 
RESPONSE.DAT can be maintained via a text editor. 
IMES.CLP can be maintained via the rule editor provided by 
IMES. As stated earlier, any change to these components 
requires no recompilation of IMES. As a result, no program
ming experience or knowledge is required to maintain these 
components. 

System Configuration 

IMES runs on an IBM PC or IBM-PC-compatible machine with 
an EGA, VGA, or Hercules graphics adapter. IMES runs well 
with or without a mouse. When IMES runs without a mouse, 
keyboard input is effective. To run IMES properly, all the pro
grams or files such as COND.TXT, RESPONSE.DAT, 
IMES.EXE, and IMES.CLP should be included. 

CLIPS 

CLIPS is an expert system building tool developed and main
tained by the National Aeronautics and Space Administration 
(5 ,6). CLIPS was developed in the C programming language 
and can be integrated or embedded within conventional C 
programs. 
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Rule-Based Expert System Building Tool 

CLIPS is a rule-based expert system building tool with a forward
chaining inference engine. Facts and rules are the underlying 
knowledge representation scheme. A fact is an essential data 
element. Each fact represents interface information consti
tuted by one or more items. The whole set of facts is called 
the fact base. 

A rule, the major way of representing knowledge, consists 
of a collection of preconditions and postconditions. The pre
conditions of a rule list the conditions to be matched with 
facts, whereas the postconditions are actions. Once the pre
conditions of a rule have been matched with the facts, the 
postconditions of the rule are executed. The whole set of rules 

·in an expert system is called the rule base. CLIPS provides 
an inference mechanism called an inference engine to match 
the preconditions of rules and to execute the corresponding 
postconditions. 

Once rules have been created and facts have been prepared, 
CLIPS is ready to run. Unlike conventional programming, 
CLIPS need not specify the sequence of operations explicitly. 
The execution cycle in CLIPS is described as follows: 

1. CLIPS examines rules to see if the preconditions of the 
rules are matched with the facts. 

2. All rules whose preconditions are met are activated and 
put into the agenda. The top rule in the agenda is selected 
and fired. When the rule is fired, the postconditions of the 
rule are executed. 

3. After the execution, if the fact base has been changed, 
the cycle returns to Step 1; otherwise, it returns to Step 2 
until the agenda is empty. 

CLIPS 5.1 is highly portable; it can be used in various ma
chines and software environments, such as IBM PC MS-DOS, 
Macintosh, and VAX VMS. 

Object-Oriented Programming 

The latest version of CLIPS, version 5.1, supports object
oriented programming development, which provides several 
features to enhance software quality (7): use of the common 
domain problem, software stability, and software reuse. In 
object-oriented programming, the major concepts are class 
and object. A class is defined as a group of similar instances, 
and an object is defined as an instance of a class. The concept 
of class expresses the commonalty of the domain problem. 
Each class or object consists of several attributes called slots 
to store values. Each slot comprises several attributes called 
properties to describe the slot. 

Each subclass or object can inherit from one or more than 
one parent class. The useful features of the parent classes are 
broadcast automatically to the subclass or object. In other 
words, the features of the parent classes can be reused without 
redefinition. 

Communication among objects is accomplished via message 
passing schemes. The message is sent to the designated object 
to modify slots of the object. If the data of the object are 
encapsulated, the contents of the object cannot be changed 
without message sending. Unintended modification is impos-
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sible. Since the modification of contents of the object must 
be specified, encapsulation facilitates program debugging. 

On the basis of encapsulation, object-oriented program
ming supports data abstraction, the purpose of which is to 
define a data type by the methods that can be applied to the 
object of the data type (8). The state of the object can be 
accessed by its methods. Communication among objects or 
classes can be done only through message sending, and a 
message usually contains the information to be changed. When 
an object or class receives a message, the state of the object 
or class is changed correspondingly. Communication with 
messages is considered a mechanism for handling software 
complexity (7). 

IMES uses CLIPS Object-Oriented Language (COOL) to 
model incidents. Whenever an incident occurs, it can be de
clared as an instance, that is, an object, of the incident class. 
The object inherits all the attributes (slots), such as incident 
type, location, time, and so forth, and properties, such as 
allowed words, of the incident class without redefinition. The 
object is encapsulated because contents of the object cannot 
be accessed without message sending. Therefore, when IMES 
uses COOL, it can easily manage multiple incidents at the 
same time. 

For the same reason, the responses can also be declared as 
a response class. When IMES provides suggestions for man
aging each incident, those suggestions can be an instance, or 
object, of the response class. 

Operating Procedure 

The basic procedure of interacting with IMES is described as 
follows. Users can select menu items from the initial screen. 
There are different kinds of menu selections. Help informa
tion is invoked by clicking items such as On Ramp, Traffic 
Lanes, Auxiliary Lanes, Frontage Roads, Off Ramp, and 
Shoulders. Help information is displayed on the top half of 
the screen. The graphics user interface provides another kind 
of menu. When users select any item such as Type, Location, 
Weather, Time, Explosion, or Temperature, some related 
information will pop up for selection. For example, when 
users select the item Location, the pop-up menu will display 
Traffic_Lane, On_Ramp, OfLRamp, Shoulder, Aux_Lane, 
and Unknown from which the users may select. When clicked, 
the selected information is asserted to the fact base of the 
expert system in IMES for later inference. The initial display 
then returns. 

Similarly, the menus Severity and Duration are for users 
to input the degree of incident severity and duration. The 
graphics display changes according to users' input. After the 
inquiry has been made, the display will then return to the 
initial screen. 

The procedure for manipulating IMES is described further 
in Figure 4. When users invoke IMES, the IMES main screen 
shows up. From the main screen, users can choose the data 
selections from the graphics user interface, system help in
formation, or d~fault system information. After users choose 
the data selections, they can select Consult to request sug
gestions or provide necessary responses from the expert sys
tem based on the data selections. After users select Consult, 
suggestions from IMES are given as shown in Figure 5. The 
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FIGURE 4 Procedure for manipulating IMES. 
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upper part of the main screen displays the prototype sugges
tions such as remove, act, call police, and so on. 

WINDOWS ENVIRONMENT 

Graphics User Interface 

The graphics user interface· available in Windows software 
provides an enhanced environment for conveying messages 
and displaying formatted text. Graphics makes the interaction 
between a computer and a user closer by manipulating all the 
objects on the screen. Windows attracts users to its graphical 
display and improves usability by providing a user-friendly 
interface. Each window contains a title bar describing the 
window; a control menu box consisting of a list of commands 
such as Resize, Move, Maximize, Minimize, and Close; a 
Maximize button and Minimize button to alter the size of the 
window; a menu bar listing the menus available; a vertical 
and a horizontal scrolling bar to move documents; and the 
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window itself. Windows employs a mouse that allows the user 
to point to any portion of the screen directly. Each Windows 
application presents the same user interface described above, 
which enables users to learn other Windows applications eas
ily. The learning time and cost for Windows are much less 
than they are for many other software applications. 

Windows also provides multitasking. When applications are 
running,· users can invoke other applications. For example, 
users can invoke an editor to edit a document, a graphics tool 
to draw charts, and IMES to manage incidents, all at the same 
time. Multitasking allows real-time monitoring, in which users 
can monitor several applications at a time. When the user 
needs to switch from one application to another, there is no 
need to quit the application being worked on. When it is 
clicked on, the intended application becomes active. IMES is 
built into the Windows environment and benefits from Win
dows' advantages. Multitasking in Windows allows multi
inquiry. Users can invoke IMES more than once, each time 
as a independent task. According to the inputs for various 
incidents, each IMES task generates different suggestions. 
Users can compare and analyze the differences among the 
suggestions based on the inputs for incidents. 

Visual Programming 

The programming population is growing rapidly, whereas the 
structure of programming languages remains, by and large, 
textual. Computer engineers are striving for solutions to make 
programming more accessible to this large population. Since 
the cost of graphics-related hardware and ·software is decreas
ing, graphics is becoming more popular. In addition, graphics 
is considered more powerful than text in many ways (9): 

1. Graphics is more powerful than text as a medium of 
communication, 

2. Graphics has no language barrier, and 
3. Graphics assists understanding. 

Visual programming takes advantages of sophisticated graph
ics and becomes a solution for making programming more 
accessible. 

Visual programming applies meaningful graphics displays 
to aid users in understanding, creating, and maintaining soft
ware (10). Visual programming has been widely applied to 
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several areas. Visual user interfaces, such as Smalltalk and 
Cedar, use graphical displays to assist the interaction between 
user and application (11,12). Languages for visual interac
tions, such as ICDL and HI-VISUAL, support various utilities 
for graphical displays (13,14). Visualization of software de
sign, such as Program Visualization and PegaSys, supports all 
kinds of graphical tools to assist software development 
throughout the software life cycle (15 ,16). Algorithm ani-. 
mation, such as Balsa, assists the visualization of algorithms 
(10,17). Visual editing, such as Cornell and Garden, provides 
syntax-directed editors to assist programmers in preparing and 
maintaining programs (18-20). 

Following the philosophy of visual programming to provide 
a more user-friendly software support environment, IMES 
provides a graphical rule editor (Figure 6) to assist users in 
maintaining a rule base (21). A graphical rule editor provides 
both conditions and actions. A condition contains menu se
lections, which are type and value options to construct t~e 
condition of a rule. An action contains the responses for con
structing the action of a rule. The corresponding rule gen
erated by the graphical rule editor is shown in Figure 6. When 
the graphical rule editor is invoked, it reads COND.TXT as 
the possible conditions and RESPONSE.DAT as the actions. 

Operating Procedure 

To create a new rule, users select conditions from the con
dition menu list and actions from the action menu list. Ac
cording to the conditions and actions selected, the rule editor 
can automatically generate a corresponding rule. To delete 

Rule Editor 

RULE NAME: 1...IA_c_c1_D_E_NT.....::J;__D ____ ____. 

CONDITION UST: 

TYPE VALUE ACTION 

Type accident call-poll a: 

Location traffl~ane remove-incident 

TI me morning investigate-off-the-site 

Duration > 10 

Duration <= 20 

Severity <= 4 

Type Options Value Options Action Options 

I l±I l±I Investigate-off-the-site 

Erev 

Next 

remove-incident 
~reate call-poller: 

ad-ASAP 
.Qelete call-citizen-groups 

(defrule ACCIDENT 10 "accident" 

!
Type acc:i dent) 
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6~~=t~~~n~~yi 
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!
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FIGURE 6 Rule editor and rule generated. 
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an existing rule, the user selects a rule and then chooses Delete 
to remove the rule from the rule base. To modify an existing 
rule, the user can first delete the rule .and create a new rule 
following the procedure above. 

Benefits 

The benefits of using the graphical rule editor include the 
following: 

1. Rather than memorize the condition and action items 
of the rules, users can easily select items from the menu 
lists. The use of the rule editor reduces the complexity of 
maintaining IMES. In other words, user productivity can be 
improved. 

2. Users can select items rather than typing them, thus 
avoiding clerical errors. 

3. It is unnecessary that the user be a CLIPS expert to 
maintain the rule base. After the user selects the items, the 
system automatically generates the corresponding rules. The 
generated rules are syntactically correct. 

4. The production rule editor is easy to use and learn; the 
usability of IMES is thus increased. 

Future Expansion 

Windows provides Dynamic Data Exchange (DDE) to share 
data among Windows applications. When an alarm occurs, 
the message can be sent to the computer in the control center. 
Through DDE, IMES can be automatically invoked and be
come active. IMES is then ready to take the inputs and gen
erate suggestions. IMES can be expanded with DDE to assist 
real-time incident management. The user can also use a cut
and-paste function with a communications software .to trans
mit computer suggestions to remote computers. 

Windows provides functions to process multimedia data 
elements, such as voice, sound, and animation elements. IMES 
can be expanded to accommodate multimedia features to as
sist in incident management activities, such as voice sugges
tions. In addition, the pen-computing extension of Windows 
can help users deal with incidents on the scene without using 
a keyboard. 

USER-DEFINABLE OPERATIONS 

IMES can be used intuitively via the graphics-based user in
terface. The design rationales are intended to allow a user to 
enhance the expert system, which represents the necessary 
operational considerations. The system has been designed 
with three unique user-definable program features: 

1. The decision-making production rules are defined in an 
external text file so the user can easily make modifications 
through the rule editor. 

2. The control responses are also specified in an external 
text file so that the user can provide specific responses. 

3. The user can also create additional study variables for 
the site-specific requirements. All of these study variables are 
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stored in an external text file. By defining all operating con
ditions and allowing the revision of response messages exter
nal to the program, the user can reflect the operational re
quirements without modifying internal program codes. 

User-Defined Conditions 

IMES allows the user to define new conditions. The user is 
ab_le to categorize conditions into three groups each with five 
conditions, for a total of 15 additional conditions available in 
addition to those built into IMES. To specify new conditions, 
the user need only change the text file COND.TXT using any 
word processor that can edit text files. 

In user-defined conditions, there are labels and conditions. 
The label is displayed as the title of the conditions, and the 
conditions are displayed as the contents of pop-up menus. 
When a user modifies the labels and the conditions, IMES 
reads COND.TXT as an input file. Since the modifications 
do not affect the internal contents of IMES, no recompilation 
of IMES is needed. When a user runs IMES after modifica
tion, the new display will reflect the modifications made. 

User-Defined Responses 

IMES is a generalized expert system for assisting incident 
management. Since there are no specific response plans avail
able, generic responses are provided. A user can design his 
own response messages as needed. IMES will display the 
messages according to the user-defined responses. IMES pro
vides seven types of response messages: call-point-authority, 
call-police, act-ASAP, remove-incident, investigate-off
the-site, call-citizen-groups, and call- Texas-SDHPT. Each 
type of response message is a title for the same type of re
sponse messages. Users are free to define response messages 
by type. For example, users can define call-police, phone-
911, and wait-until-police-come under the type of response 
message (call-police). In RESPONSE.DAT, each type of re
sponse message is preceded by a macro followed by user
defined response messages. A macro is added at the end of 
RESPONSE.DAT. 

CONCLUSIONS AND RECOMMENDATIONS 

Incidents may_ cause unexpected congestion on freeways, even 
when surveillance, communication, and control (SC&C) sys
tems are in operation. Any accident, truck spill, or stalled 
vehicle on or near mainlanes can significantly affect system 
performance and create hazardous situations for involved mo
torists, approaching commuters, and passing traffic. Freeway 
control and operating strategies are essential for successful 
system operations. Being an integral component of the free
way control system, incident management is especially im
portant while freeways are operating near, at, or beyond their 
physical capacities. Engineers must make decisions concern
ing operational effectiveness and trade-offs, and control de
cisions may be bound by physical constraints, traffic charac
teristics, or traffic control practices. Off-line computer software 
has been developed to assist traffic control operators in iden-
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tifying unique traffic operating conditions and suitable control 
strategies necessary for determining when and how comput
erized traffic control systems should respond. 

In thi's paper a microcomputer-based expert system is de
scribed developed in the Windows environment with the im
plementation of a user-friendly interface, a rule editor, decision
making rules, and a knowledge inference mechanism to au
tomate freeway incident management applications. IMES has 
been developed as a decision-making assistant for potential 
users in determining the different actions needed to handle 
specific freeway incident management problems. The benefits 
of applying IMES in freeway incident management can be 
summarized. The rule editor provides visual programming to 
facilitate the maintenance of the rule base. IMES allows nor
mal users to adjust and customize conditions and responses. 
Since the conditions and responses are separated from the 
executable program, any further modification to the condi
tions and responses requires no recompilation of the execut
able program. TJie Windows environment provides a user
friendly environment to enhance usability. The rule base pro
vides quick suggestions to assist incident management. As a 
result, IMES can facilitate freeway incident management. 

The IMES system is presently designed for off-line control 
strategy evaluation. However, because the system has been 
designed with external dynamic data linkage, the IMES sys
tem can be implemented along with on-line urban highway 
traffic control systems to automatically identify proper control . 
strategies as soon as nonrecurring arterial and freeway con
ditions have been identjfied. With further system validation 
and verification with realistic incidents, the system can be 
expandeq further to include new generations of the arterial 
street network and freeway corridor system control concepts 
to automate on-line, real-time traffic responses and manage
ment strategies. 
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