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Optimization of Capital Budgeting for 
Interrelated Capacity Expansion Projects 

Au E. HAGHANI AND CHIEN-HUNG WEI 

A network representation procedure for the optimization of cap
ital budgeting problems is proposed. Interrelated capacity ex
pansion projects and discrete time decisions are considered. An 
alternative-based approach is proposed that yields a very neat 
formulation by identifying the relationships among alternatives 
before solving the problem. The most general pairwise interac
tions are considered, and a 0-1 integer program is formulated 
with nonlinear objective function and linear constraints. Proce
dures are demonstrated that convert the nonlinear program into 
a linear form with an embedded network structure. The out-of
kilter algorithm is applied to solve the resulting network flow 
problem. Because of the inherent nature of the network structure, 
this approach enables efficient calculation of optimal solutions 
for relatively large problems. Computational efficiency is shown 
that requires less than 3 min of central processing unit time for 
a system with 372 alternatives. 

Capital budgeting problems are of interest in many disciplines. 
Each field shows unique perspectives and. priorities and uti
lizes different tools and techniques. Because of the application 
of specific characteristics, the literature on budgeting has tended 
to divert from, rather than converge toward, a unified per
spective. Basically, capital budgeting deals with the evalua
tion, selection, sequencing, and scheduling of investment 
projects. ·consideration of interrelated projects is particularly 
challenging because the input or output factors, or both, of 
one project are significantly affected in magnitude or .timing, 
or both, by the selection or rejection decisions on one or more 
of the others under consideration. In real-world cases, proj
ects tend to affect each other in terms of costs or benefits. 
Therefore, consideration of interrelated projects will provide 
decision makers with more precise information. 

The evaluation of projects is mainly an economic issue that 
heavily depends on the information available about tech
niques, markets, demands, predicted costs, and benefits, 
whereas project selection, sequencing, and scheduling basi
cally make up an optimization process. The evaluation stage 
is often separated from other stages because of different char
acteristics. Therefore, the objective as well as the scope of 
this paper, given the full information on_project evaluation, 
is to develop an efficient procedure for making decisions among 
interrelated projects to meet prespecified goals and objectives 
over a planning horizon. By applying the proposed procedure, 
the three major stages in capital budgeting, that is, project 
selection, sequencing, and scheduling, could be fulfilled in a 
single stage. 

This paper is organized as follows. The problem is described 
in more detail and a brief literature review is presented in the 
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next section. Then the problem is formulated as a mathe
matical optimization problem and the solution approach is 
provided. Numerical results are also presented. Finally, con
clusions and future research are discussed. 

PROBLEM STATEMENT 

There has been much research concerning interrelated project 
scheduling. Various fields have a similar problem, and the 
study methods are diversified [e.g., Erlenkotter (J), Gear and 
Cowie (2), Luss (3), Czajkowski and Jones (4), and Gomes 
(5)]. Most approaches to capital budgeting use integer pro
gramming, dynamic programming, or multicriteria formula
tion to model the interdependencies among projects. To over
come the combinatorial difficulty when more interrelated 
projects are involved, various heuristic methods are devel
oped. However, studies on project relationships have not yet 
exhibited a significant breakthrough. For example, the study 
by Srinivasan and Kim (6}was not quite applicable to practical 
problems. 

The solution space of the capital budgeting problems grows 
exponentially when more projects are considered. However, 
in most real-world cases, not all of the projects are pairwise 
interrelated. Hence, decomposing the project set into smaller 
subsets shows some advantage. Decomposition may be done 
according to specific applications or by following the more 
rigorous rules shown by Steuer and Harris (7) or Morse (8). 
Prescreening projects to reduce the problem size should be 
considered whenever possible. 

Most of the existing techniques use relatively small illus
trative examples. It is thus difficult to assess their capabilities 
in dealing with large problems. Heuristic approaches, for ex
ample, that of Janson et al. (9), are developed to handle such 
large problems. These procedures attempt to reduce the num
ber of projects under consideration systematically or to find 
"good" solutions to the problems, or both. However, in most 
cases, it is not possible to verify the quality of the heuristic 
solutions relative to the optimal solutions. This is because the 
heuristic procedures usually lack a built-in mechanism to eval
uate the quality of each solution obtained. The approach pro
posed in this paper attempts to overcome such limitations. 
The propo~ed model and solution procedure enable the an
alyst to handle relatively large problems easily and to find the 
optimal solutions with relatively minor computational efforts. 

The capacity expansion problem is similar in many respects 
to the general project sequencing problem that determines 
the sizes and facilities to be added. They both are fairly dif
ficult to solve (10). A special class of capacity expansion deals 
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with a set of expansion projects according to the demand 
pattern over time. Then the problem is to select the sequence 
and appropriate timing of projects to satisfy the time-depen
dent demand while minimizing the total discounted costs. The 
resulting expansion path may be defined as the order and 

·timing of implementing a subset of preferred projects. In the 
work of Martinelli (11), a graphical depiction was proposed 
to sequence inland waterway capacity expansion projects. Each 
project was viewed as a system generating a common time
dependent output, and a two-dimensional representation was 
utilized in which costs are plotted on the vertical axis and 
time is plotted on the horizontal axis. A search algorithm is 
required in selecting the preferred sequence of projects in the 
corresponding two-dimensional space. The expansion path 
could then be identified by the implementation sequence of 
projects and associated times. This method, named contin
uous time expansion for convenience, could be a powerful 
support for decision making because of its visual structure. 
The expansion paths, however, may not be easily and cor
rectly recognized instantly through the graph, especially for 
complex project combinations. Hence, direct application of 
this method may be limited to a small number of projects. 
Consequently, Martinelli developed a heuristic sequencing 
algorithm to obtain an efficient solution. 

To achieve a sequential expansion path using Martinelli's 
search algorithm, the cost functions were hypothesized to 
possess desired properties. Specifically, positive first and sec
ond derivatives were assumed with respect to the system out
puts. Although it holds in waterway systems, such a require
ment might be another limitation of the continuous time 
approach to more general applications. This type of appli
cation-specific restriction is one of the urgent issues to be 
resolved in capital budgeting. 
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A good solution for capital budgeting may be easiJy found 
by slightly twisting the original problem. Wei (12) developed 
an approach based on discrete time decisions. In that work, 
the choice of individual projects was the primary decision 
variable, and a set of supplemental variables was needed to 
identify the combinations of projects. Because the interre
lations among projects are reflected in the cost functions of 
various project combinations, the transitions between projects 
and combinations of projects need to be incorporated explic
itly as constraints. Consequently, the resulting objective func
tion is quite complicated. That formulation was solved exactly 
using LINDO. 

A comparison between the discrete and continuous time 
approaches reveals that these two approaches may eventually 
generate similarly good results for investment purposes. Fig
ure 1 shows a simple example, in which two projects are 
considered. A total number of three alternatives and corre
sponding cost functions are identified in the figure. The op
timal continuous time decision will start Project 1 at the be
ginning, switch to 1 + 2 at Year 2.3, and keep on 1 + 2 until 
the end with a total of 73.48 units. The optimal discrete time 
decision is to implement Project 1 for the first year and add 
Project 2 to the system at Year 2 with a total cost of 74.3 
units. The expansion paths are highlighted in Figure 1 for the 
two different approaches. This example indicates that al
though it might not yield the optimal result, the discrete time 
decision approach can provide a total cost that is very close 
to the optimum and good enough for practical applications. 

Another property of the discrete time approach is that the 
selection and sequencing result will be the same as that ob
tained in the continuous time approach as long as each dis
crete period is not too long, for example, 1 year. As shown 
in the following sections, a network solution procedure can 
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FIGURE 1 Motivating example: comparison of continuous and discrete time project 
selections. 
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be applied to the discrete time approach to generate exact 
solutions. 

Because assessing the exact interdependence terms has not 
been satisfactorily reported in the literature, this paper con
siders the aggregate effects of interdependent project selec
tion. Therefore, identifying and evaluating interrelations among 
projects is exogenous to this study, as mentioned earlier. The 
facility economic service lives are assumed longer than the 
time horizon of interest. The total discounted costs associated 
with all combinations of projects are given explicitly as func
tions of time or demand. These costs include user costs, capital 
costs, and maintenance costs of projects. The cost functions 
are usually nonlinear. However, no assumptions are made 
regarding the functional forms of these costs. It is only as
sumed that the cost functions are continuous and integrable 
over the entire planning horizon. Budget constraints are tem
porarily disregarded. However, they can be incorporated in 
the model with minor modifications. In fact, considering budget 
constraints would make the proposed solution method more 
advantageous, which will be addressed later. 

PROBLEM FORMULATION 

The problem of choosing projects among candidates for a 
limited number of periods readily reveals the nature of integer 
programming. The objective is to minimize total costs while 
satisfying a certain level of demand. In fact, the example in 
Figure 1 clearly possesses such a characteristic. For each in
dividual project or combination of projects, it is assumed that 
implementation may be made either at the beginning of the 
planning horizon or at the beginning of a later period, de
pending on the resulting costs. Before formally presenting the 
formulation, several terms need to be defined. A project com.:. 
bination is referred to as an "alternative." Alternative j is art 
"increment" of alternative i if every project in alternative i 
is also in alternative j. Alternatives are mutually exclusive if 
incremental relationships do not hold. For instance, if three 
projects are considered, alternative 1 + 2 + 3 is an increment 
of alternatives 1+2,1+3,2 + 3, 1, 2, and 3, and alter
natives 1 + 2 and 2 + 3 are mutually exclusive. 

To consider full interdependence among projects, pairwise 
interactions are assumed among all individual projects. Con
sequently, a small number of projects will reflect a relatively 
large set of alternatives; for example, five projects represent 
the consideration of 31 alternatives. This is the most general 
case possible. However, in reality the pairwise interrelation 
usually does not exist between every pair of projects; there
fore, the number of alternatives would be much·fewer. 

The primary constraint considered in this paper is the con
tinuity of projects. For research and development industries, 
projects may be terminated and entirely removed when the· 
outcome is unsatisfactory [Shafer and Mantel (13) or Bard et 
al. (14)]. However, in many circumstances no project can be 
removed once it is implemented or if the cost associated with 
termination is extremely high. Specifically, decisions at any 
time should not cause the abandonment of projects that have 
been implemented in earlier periods through selection of other 
al terna ti ves. 

Because of the complexity of identifying projects and al
ternatives, the proposed formulation is entirely alternative 

29 

based. That is, the pairwise interactions among projects are 
specified explicitly and are not included in the integer pro
gram. Consequently, the model presented below has a very 
neat form and, as shown in the next section, leads to the 
efficiency of the exact solution procedure. 

Assuming that all projects have positive effects on the sys
tem under consideration, the underlying idea of the proposed 
integer programming is to decide which alternative to imple
ment at each period subject to relevant constraints. This means 
that for the planning horizon_only one alternative is selected 
in each period. As mentioned earlier, interdependencies among 
projects and corresponding cost functions are specified ex
ogenously. The alternatives may be arranged, for calculation 
convenience, by the costs at base time such that the lower
cost alternatives will be assigned smaller indexes. The follow
ing definitions are used: 

I = set of all alternatives; 
H = set of periods in the planning horizon; 

wit = 1 if alternative i is implemented in period t, 0 other
wise; and 

f;(t) = cost of alternative i as a function of time. 

To minimize the total cost associated with all possible al
ternatives for the entire horizon, the corresponding values of 
costs for each alternative and time period need to be com
puted. These values are equivalent to the shaded area under 
each curve segment shown in Figure 2. Because the cost func
tions are usually nonlinear, simple algebra is not applicable. 
Rather, integrating the cost functions for each period is de
sired. The binary decision variable W;r is required to ensure 
the best choice among alternatives-one that minimizes the 
associated costs and fulfills relevant restrictions. Using the 
notations defined above, the objective function is 

f
t+l 

Minimize 2: L W;r f;( u )du 
iE/ tEH 

(1) 

Here the flexibility of various types of cost functions with 
respect to time or demand level is allowed. 

Because projects always generate benefits to the system of 
concern, it is needed to ensure one alternative selected for 
each period. That is, at least one project should be in service 
at any time. We then have the following constraint: 
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FIGURE 2 Example of optimal expansion path. 

(2) 
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Note that Equation 2 also implicitly prevents the conflict of 
alternatives because one and only one alternative is allowed 
for each period. 

Ensuring the continuity of projects is very important, es
pecially when system capacities are expanded. This condition 
should hold throughout the entire horizon such that, if alter
native i is implemented in period t0 , alternative j must be an 
increment of alternative i to be implemented .in period t1 > 
t0 • The incremental relationship is easily specified before 
the formulation. Let Ji be the set of increment alternatives 
of alternative i. The following constraint satisfies this 
requirement: 

W;t ::; L Mj,t+ I \;/ i E /, t EH (3) 
jEJi 

Constraint 3 states that if a project is implemented in a certain 
period, it should be included in the alternatives chosen in 
later periods. This ensures the· continuity of all projects in 
any period and is actually a very large set of inequalities. 

The alternative-based integer programming for project 
scheduling is summarized below: 

J
t+I 

Minimize L L W;t f;( u )du 
iE/ tEH t . 

Subject to 

\;/ t EH 

W;t ::; L Mj,t+ I \;/ i E /, t EH 
jEJi 

W;t = 0 or 1 (4) 

The above formulation is a 0-1 integer programming prob
lem with a nonlinear objective function and linear constraints. 
Note that no specific assumption is made regarding the func
tional forms of the costs (i.e., f;(u)]. In fact, as one will see 
shortly, if these functions are continuous and Rieman inte
grable, no further assumption is necessary. 

As stated before, in previous work the relationship between 
projects and alternatives was incorporated and resulted in a 
complicated linear formulation requiring much computation 
time. Consequently, heuristic and approximation methods were 
employed to save computational effort. In contrast, the above 
formulation can be modified into a linear program with a 
network structure that can be solved exactly by several well
known procedures. This advantage is discussed below. 

SOLUTION PROCEDURES 

In this section, a procedure is outlined for converting the 
nonlinear program into a linear program. Then it is shown 
how the linear program can be reformulated as an out-of
kilter network flow problem and the characteristics of the out
of-kilter algorithm (OKA) are briefly described. Finally some 
moderate-size numerical examples are presented to test the 
computational efficiency. The LINDO program is also used 
to solve these examples. 
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Linear Programming 

Instead of solving the nonlinear program ( 4) directly, a much 
more efficient solution procedure is achievable through minor 
transformation of the objective function. This step is desirable 
to take advantage of the inherent network structure. 

Since the known cost functions are continuous and inte
grable, one could compute the integration portion of the ob
jective function before any other manipulations. Let Cit be 
the cost associated with the decision variable W;t. Then the 
cost of implementing alternative i in period t is 

J
t+l 

cit = f;(u)du (5) 

Note that Equation 5 is applicable to any type of cost function. 
The resulting values of Cit may be treated as scalar coefficients 
associated with W;t. Therefore, the objective function is now 
transformed into a linear form: 

Minimize L L cit W;t (6) 
iE/ tEH 

Given that the magnitudes.of Cit could always be calculated 
outside the program, the linear program considered here is 

Minimize L L cit W;t 
iE/ tEH 

Subject to 

L W;t = 1 \;/ t EH 
iE/ 

W;t ::; L Mj,t +I \;/ i E I' t E H 
jEJi 

(7) 

Program 7 is found to possess a special structure that could 
be solved more efficiently by network-flow techniques than 
the conventional linear programming simplex method. The 
well-known OKA is demonstrated for this application. 

Out-of-Kilter Algorithm 

The OKA is developed using the ·concepts of linear program
ming duality theory and complementary slackness conditions. 
The algorithm is especially designed to deal with capacitated 
network-flow problems. Hence, it is more suitable than the 
simplex method for linear program problems with network 
structure. 

To apply OKA, a closed network representation is desired 
that exhibits flow circulation. A circulation is an assignment 
of flow to arcs such that flow is conserved at each node. The 
OKA deals with circulations; thus it is often necessary to 
modify the original networks. A regular network and the 
corresponding closed network are shown in Figure 3. A return 
arc is needed from Node 7 to Node 1, as shown in Figure 3b. 
The details of the return arc depend on the problem described 
by the network. 



Haghani and Wei 

(a) Original Network (b) Closed Network 

FIGURE 3 Network representation. 

Associated with each arc in a capacitated network are lower 
and upper bounds and costs of flow. These may, in fact, be 
0 or infinity, as long as constraints are fulfilled. The following 
notation is defined for OKA: 

S = set of arcs, 
N = set of nodes, 
f;j flow-through arc (i, j), 

L;j lower bound of flow on arc (i, j), 
Uij upper bound of flow on arc (i, j), and 
C;j cost associated with shipping one unit flow on arc 

(i, j). 

The network-flow problem (or minimum cost circulation 
problem) is a special linear programming problem that min
imizes the total cost subject to four sets of constraints. The 
general model is 

Minimize 2: cJ;j 
(i,j)ES 

subject to 

\;/ i,j EN, i-:/:= j 

\;/ (i, j) E S 

\;/ (i, j) ES 

\;/ (i, j) ES (8) 

These constraints represent the requirements on flow con
servation, upper bound, lower bound, and nonnegativity, re
spectively. 

The OKA is an iterative procedure to find the optimal 
circulation in a capacitated network characterized by Program 
8. The detailed steps have been described by Phillips and 
Garcia-Diaz (15). Although the OKA procedure seems te
dious, it is well defined and can be easily computerized. In 
addition, because the OKA has very wide application, the 
procedure and the criterion for optimality will not be altered 
for various problems. The only changes necessary are the 
associated network configurations. 

A residual benefit to the OKA is that the problem can be 
easily visualized, a property not present in linear program
ming formulations in more than two dimensions. Hence, prop-
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erly presenting the problem as a closed-loop capacitated net
work-flow problem is essentially the key step. To efficiently 
solve the discrete time expansion problem, Program 7 may 
be translated into some equivalent problem that certainly could 
be solved by the OKA. The typical shortest-path problem is 
suitable for this purpose. 

Each node may be treated as a decision variable (i.e., W;,) 
and each arc as a transition from the current decision variable 
to the next. In the network, the arc costs correspond to im
plementing alternatives in a given period (i.e., C;c). Because 
the continuity of projects must hold, nodes may be connected 
with appropriately selected arcs that satisfy this concern. The 
resulting network is directed because of the incremental re
lations between alternatives. The restrictions of implementing 
only one alternative for each period and nonnegative decision 
variables imply that flow assigned to each art will be either 
unity or 0. In other words, the lower bound of flow is 0 and 
the upper bound of flow is 1 for arcs connecting with decision 
variables. To accomplish a closed network, a supersource 
node and a supersink node are desired to represent the be
ginning and the end of the time horizon. The supersource and 
supersink nodes are connected to the first and the last period, 
respectively, and the return arc from supersink to supersource 
is created accordingly. The return arc has lower and upper 
bounds of flow both equal to 1, and the cost is 0 to ensure 
the flow circulation. 

The closed-loop network for Program 7 is shown in Figure 
4 in which the triplet on each arc is represented by ( U;j, L;j, 

c;j) for convenience. The visibility property of the network 
representation is clearly reflected in this diagram. At the ter
mination of the OKA, the shortest path is found by tracing 
from supersource to supersink nodes over all arcs whose flow 
is equal to 1. Obviously, the decision variables on such a path 
are the optimal solution to the capacity expansion problem. 

Numerical Examples 

To demonstrate various solution procedures for the discrete 
time formulation, a small, yet representative, numerical ex-

k--- Planning Hmimn --~ 

Wil Wit 

(1,1,0) 

FIGURE 4 Out-of-kilter diagram for discrete time expansion 
problem. 
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ample is used. A system with three projects and five periods 
is considered. There are seven possible combinations of proj
ects (i.e., seven alternatives) under the pairwise interactions 
assumption, and the increment set is identified in Table 1 for 
each alternative. It is assumed that the associated cost func
tions are available and monotonically increasing with respect 
to time. Quadratic polynomial functions seem appropriate for 
illustration. For computational convenience, the cost func
tions are sorted in ascending order of the constant terms and 
an index from 1 to 7 is assigned to each of them as given in 
Table 1. These cost functions represent some realistic con
siderations; for example, the costs of implementing several 
projects simultaneously are usually lower than implementing 
them individually, and single projects may be more costly 
than combinations. These cost functions are plotted in Figure 5. 

According to Program 7 the costs of each alternative need 
to be calculated as the coefficients in the objective function. 
These values are computed from the area under each curve 
segment of the functions in Figure 5 and are listed in Table 1. 

The OKA can now be applied to this illustrative case. Ac
cording to the aforementioned procedures, an out-of-kilter 
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TABLE 1 Cost Functions for the Three-Project, 
Five-Period Example 

Project to be Increment Parameters 
Alt i implemented Alternatives a b c 

1 A only 1,3,5,7 2.5 4 4 
2 B only 2,3,6,7 2.0 1 8 
3 A & B only 3,7 0.45 5 10 
4 Conly 4,5,6,7 0.7 5 16 
5 A & Conly 5,7 1.0 0 18 
6 B & Conly 6,7 0.35 2 20 
7 A&B&C 7 0.2 1.5 25 

Cost for Alt i in period t (C;J 
Alt i 1 2 3 4 5 Total 

1 6.83 15.8 29.8 48.8 72.8 174.03 
2 9.17 14.2 23.2 36.2 53.2 135.97 
3 12.7 18.6 25.3 33.l 41.7 131.4 
4 18.7 25.1 32.9 42.l 52.7 171.5 
5 18.3 20.3 24.3 30.3 38.3 131.5 
6 21.1 23.8 27.2 31.3 36.l 139.5 
7 25.8 27.7 30.0 32.7 35.8 152.0 

*The cost function is assumed to be f;(t) = at2+bt+c 

3 4 5 

TIME 

x ALTS v ALT& I ALT7 
(OR DEMAND) 

FIGURE S Cost functions for three-project, five-period illustrative case. 
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diagram is drawn in Figure 6. Table 1 provides information 
enough for this task, that is, nodes and arcs in the network 
and appropriate connections. The minimum cost path is needed 
from Node S to Node Tin the out-of-kilter diagram, which 
is equivalent to directly solving Program 7 optimally. Four 
types of arcs are included in Figure 6, each associated with a 
vector representing the underlying integer program. The vec
tors for each arc indicate the allowable upper and lower bounds 
of flow and corresponding co_sts for every unit flow. The upper 
bound of flow is unity for all arcs, and the lower bound is 0 
everywhere except for the arc between T and S to induce the 
flow through the network. Costs of flow on each arc depend 
on the origin and destination nodes, which correspond to the 
cost values in Table 1. The four types of arcs and associated 
vectors are listed in Table 2. 

For an intermediate period t, arcs coming from alternative 
i (i.e., W;,) may go into alternative j for_ the next period (i.e., 
"'f.r+ 1) as long as alternative j is an element of increment set 
l;. Because there should be one alternative for the first and 
last periods, Node S is linked to all variables for the first 
period and Node Tis connected with all last-period variables. 
As a result, all variables in this diagram are directed to the 
next feasible decisions throughout the entire horizon. For 
instance, because 12 = {2, 3, 6, 7}, W21 can be linked only 
with W22 , W32 , W62 , and W 12 in the second period. Note that 
the structures between columns of W;,'s are identical, which 
is indeed one advantage of such representation, namely, the 
connections between W;2 and W;3 are the same as those be
tween W;1 and W;2 , and so on. This particular structure ensures 
the project continuity constraint at any period and implicitly 
incorporates all feasible solutions and corresponding costs. 
Because of its simplicity, this diagram and associated infor
mation can be easily translated into a computer program and 
then the OKA can be used. 

When budget constraints are included, a number of links 
and nodes in the diagram may be eliminated, most likely the 

@ W5 

FIGURE 6 Out-of-kilter diagram for the three-project, 
five-period case. 

TABLE 2 Arc Characteristics in Out
of-Kilter Diagram 

Arc type Vector (U, L, c)' 

s --> wi1 (I, 0, Ci1) 

Wis --> T (I, 0, 0) 
T --> s (I, 1, 0) 

wi.• --> wj,t+I (1, o, cj.1+1) 

*U, L, and c are upper and lower bounds 
of flow, and cost of unit flow 
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multiproject alternatives that require higher costs. The re
sulting diagram ·could be reduced, thus increasing the effi
ciency of the OKA. 

The optimal solution is W1 1 = W12 = Ws3 = Ws4 = W1s 
= 1, other W;,'s equal 0, and a total cost of 113.03 units. 
According to Table 1, the optimal investment program is 
to start Project A immediately, add Project C at the begin:. 
ning of the third period, and finally add Project B for the 
last period. The solution for project selection, sequencing, 
and scheduling may be represented simply by the following 
expression: 

To demonstrate the relative advantage of combining the 
integer program with the OKA for the project scheduling 
problem, two much larger examples are generated arbitrarily. 
The information on these examples is summarized in Table 
3, and some representative cost functions are plotted in Figure 
7. The curves in Figure 7 represent various subsets of alter
natives, each with a different number of projects to be im
plemented simultaneously. It is clear that these two examples 
are quite practical. Besides, although the costs all increase 
over time, the functions in Figure 7a have increasing first 
derivatives, whereas those in Figure 7b yield decreasing first 
derivatives. This may reflect the flexibility of the proposed 
approach. 

The LINDO program is also used to solve the above cases. 
For the three-project, five-period case, only eight iterations 
are required to reach the optimal solution. The computational 
efficiency has been greatly improved, compared with 3,632 
iterations for the previous work (12). For the two larger ex
amples, the computation times were found to be comparable 
with those using the OKA. Although such a situation implies 
that LINDO performs as well as the OKA, it also confirms 
the effectiveness of the alternative-based formulation. One 
should note, however, that LINDO is a commercial software 
and is possibly an order of magnitude more efficient than the 
OKA code. Therefore, although LINDO can readily be used 
to solve the resulting linear programs from converting the 
original nonlinear programs, it may still run into long com
putation time when problems become larger. On the other 
hand, an efficient code for the OKA seems especially suitable 
for the discrete expansion problem and is conceivably more 
efficient than LINDO for relatively large problems. 

CONCLUSIONS 

The capital budgeting problem for interrelated capacity ex
pansion projects is discussed in this paper. An integer program 



34 TRANSPORTATION RESEARCH RECORD 1400 

TABLE 3 Information on Two Larger Problems 

#Decision Cost CPU' 
Example # Projects #Alts #Periods Variables Function (seconds) 

4 15 12 180 at2 + c 29 
2 5 31 12 372 at113 + c 172 

'Data obtained in IBM PS/2 Model 70 with 20 MHz speed 

is proposed and two distinct procedures are used to solve the 
problem optimally. The interactions among projects are spec
ified before programming to enhance the model efficiency. 
The alternative-based approach treats alternatives as mutually 
exclusive decision variables. The project continuity constraint 
is ensured by defining the incremental relationships among 
alternatives, which is found to be an underlying advantage of 
the proposed model. 

A network representation procedure is the primary solution 
method presented. The model is illustrated to be easily trans-
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lated into a directed network with nice properties. The out
of-kilter algorithm is applied to this network problem, and 
the results of several examples reveal the computational ef
ficiency of such an approach. Although LINDO yields similar 
performance for these illustrative cases, relatively large prob
lems could be formulated and solved more efficiently with 
this network optimization method. Besides, the proposed pro
cedure generates exactly optimal solutions instead of heuristic 
solutions. 

The proposed discrete time alternative-based formulation 
is likely to result in large integer programming problems as 
the number of projects increases. However, because the pro
posed solution procedure is very efficient, it is capable of 
handling problems with thousands of decision variables. Fur
thermore, because in the real world it is likely that there exists 
a limited number of distinct projects with pairwise interac
tions, the number of alternatives would be manageable. 
Nevertheless, decomposing the system of interest by any rea
sonable criteria should be considered whenever possible to 
reduce the complexity and computational efforts. With small 
modifications, such as given benefit rather than cost functions, 
the proposed model could ·be used when total benefit is the 
primary concern. Further work may be done that incorporates 
more precise project interactions with the corresponding cost/ 
benefit functions, and other solution procedures. 
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FIGURE 7 Representative cost functions for larger problems. 
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