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Statistical Methods To Support Induced 
Exposure Analyses of Traffic Accident 
Data 

GARY A. DAVIS ANO YIHONG GAO 

When it is possible to identify the drivers involved in two-vehicle 
accidents as either at fault or innocent, induced exposure methods 
offer a way to assess the relative accident risk of driver subgroups, 
even when group-specific measures of exposure are unavailable. 
A cross tabulation of two-vehicle accidents by group membership 
of the at-fault and victim drivers forms a contingency table, and 
statistical methods derived from contingency table analysis can 
be used to make inferences concerning the variables arising in 
the induced exposure model. It is shown how the standard con­
tingency table test for independence of row and column classi­
fications provides a test of the assumption that the victims are 
sampled randomly and how an odds ratio statistic can be used to 
estimate the ratio of the accident rates between two driver sub­
groups. This estimator is asymptotically normally distributed, and 
a formula is given for estimating its standard error. An Empirical 
Bayes method for identifying sites where one driver subgroup 

. has a significantly higher accident rate than does another is then 
presented. These procedures are illustrated using several actual 
accident data sets. 

Over the past several years, the traffic safety community has 
shown an increased interest in assessing the accident risk of 
particular driver subgroups. The main emphasis has been on 
older drivers (1), but recently attention has also been given 
to younger drivers (2) and to mounting evidence ·for an in­
creasing number of accidents involving women drivers (3). 
Unfortunately, the study of such problems is made difficult 
by the fact that an increase in accidents for some driver sub­
group can be attributed either to an increase in the tendency 
of that group to have accidents (its accident rate), to an in­
crease in that group's opportunity to be involved in accidents 
(its exposure), or to some interaction between these factors. 
Using accident counts to make inferences concerning a sub­
group's accident rate will generally require knowledge of that 
group's exposure, but measures of exposure are difficult to 
define in a completely satisfactory way (2) and are even more 
difficult to obtain in disaggregated forms. For instance, even 
if we can agree that a variable, such as vehicle kilometers of 
travel (VKT), is the appropriate exposure measure for older 
drivers, estimating the VKT for this subgroup usually requires 
asking a sample of drivers to estimate the number of kilo­
meters they have driven during the past year. And even when 
such data are available, they usually tell us little about the 
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exposure of a subgroup on smaller areal units, such as a high­
way corridor or a single intersection. 

Safety researchers have been aware of these difficulties for 
at least 25 years, and in the early 1970s induced exposure 
methods were presented as providing at least a partial solution 
to this problem ( 4). Following some intense initial interest, 
induced exposure methods appear to have suffered a period 
of neglect, but recently several papers have used these ideas 
to investigate accident risk to older drivers (5-8). The induced 
exposure model assumes that in a majority of two-vehicles 
accidents, one driver can be identified as the at-fault driver, 
whereas the other is treated as an innocent victim. Innocent 
victims are assumed to be "selected" by the at-fault driver 
randomly from the pool of available drivers, with the prob­
ability that the innocent victim is the member of a given 
subgroup being directly proportional to that subgroup's ex­
posure at the accident site. Thus the same measure of ex­
posure reflects both a subgroup's opportunity to cause acci­
dents and its opportunity to be involved as victims. From 
comparisons of the proportion of accidents that a subgroup 
causes with the proportion in which it is involved as innocent 
victims, it is possible to identify subgroups that have accident 
rates higher or lower than the average for all groups (9). 

But before the promise of induced exposure methods can 
be fully realized, it is necessary to answer several questions 
related to the statistical properties of induced exposure mea­
sures. First, the assumption of random selection of victims 
appears somewhat controversial (10), although studies inves­
tigating its validity have tended to support it (5,10). Still, it 
would be useful if· a test of the tenability of this assumption 
could be conducted on any given data set. Second, recent 
studies have used the induced exposure method in essentially 
a deterministic manner, treating data-dependent quantiti~s as 
if they were known with certainty, with no attempts made to 
esti~ate likely ranges of error. When one has very large data 
sets, it may be possible to invoke the law of large numbers 
to justify ignoring random effects, but many, if not most, 
applications of induced exposure will likely involve more mod­
est data sets. Here it would be useful to have procedures for 
determining confidence bounds and testing hypotheses for 
induced exposure estimates. Finally, many safety engineers 
are ultimately responsible for deciding on particular safety 
improvements for particular locations. If these improvements 
are targeted at a specific driver subgroup, it may be necessary 
to identify specific locations where that subgroup is at height­
ened risk. Aggregated data will not generally provide this 
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level of detail, necessitating an extension of induced exposure 
ideas to the problem of identifying high-hazard locations. 

In what follows, we will first show a natural correspondence 
between statistical inference using induced exposure ideas and 
more standard methods of contingency table analysis. This 
will lead first to a straightforward test as to whether the as­
sumption of random selection of victims is tenable for a given 
data set and then to a method for computing maximum like­
lihood estimates of the ratio of the accident rates for two 
driver subgroups. We point out that the natural logarithm of 
this estimated rate-ratio is approximately normally distributed 
and give a formula for estimating its standard error. These 
methods are then illustrated using two actual traffic data sets. 
We next turn to the problem of identifying high-hazard lo­
cations and derive a Bayes estimator for the log rate-ratio, 
along with its posterior standard error. Given data from a 
number of sites, we then show how an Empirical Bayes ap­
proach can be used to compute point estimates and approx­
imate confidence intervals for the log rate-ratios for each site. 
The paper ends with conclusions and recommendations for 
further research. 

INDUCED EXPOSURE AND CONTINGENCY 
TABLES 

We begin with a more formal statement of the induced ex­
posure model. Suppose the driver population has been divided 
into m subgroups, and let n; denote the number of accidents 
involving Driver Subgroup i in some area (such as a city) over 
some time interval (such as a year). Assume n; to be the 
outcome of a Poisson random variable, with mean A.;E;, where 
A; is the accident rate for Driver Subgroup i and E; is the 
exposure for Driver Subgroup i. If the exposure values E; are 
known exactly, the maximum likelihood estimates of the ac­
cident rates A; are given by 

and assessment of the relative risk to driver subgroups can 
be based on these estimated accident rates. But as noted 
earlier, group-specific measures of exposure are difficult to 
estimate reliably. To implement· an induced exposure ap­
proach, it is first assumed that in a majority of two-vehicle 
accidents, one driver can be considered to have caused the 
accident, whereas the other is assumed to be an innocent 
victim. The at-fault drivers are assumed to cause accidents 
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according to the Poisson accident model, whereas the sub­
group of the victim is assumed to be selected randomly, with 
probability of selection being directly proportional to the group 
exposures. Defining r; = E/"2:-kEk, the probability the victim 
is chosen from Subgroup i, and n;i = number of accidents for 
which the at-fault driver came from Subgroup i while the 
victim came from Subgroup j, it follows that the n;i are the 
outcomes of independent Poisson random variables with mean 
values rAE;. By taking the total number of accidents in the 
sample, n = "2:.;"2:-i n;i' as fixed and definingp; = A;E/"2:-k X.kEk, 
it can be shown that the n;i are -now the outcomes of a mul­
tinomial random vector with m~mber of "trials" equal to n 
and the probability of a given two-vehicle accident having an 
at-fault driver from Subgroup i and a victim from Subgroup 
j being simply p;ri. The nii can be thought of as entries in a 
cross-tabulation table, where two-vehicle accidents are clas­
sified according to the group membership of the at-fault and 
victim drivers. For ex.ample, Table 1 gives the expected cell 
counts (the expected values of the n;) and marginal proba­
bilities for the case where only two subgroups, denoted by 1 
and 2, are of interest. 

In Table 1 the probability that a given two-vehicle accident 
falls in a cell is simply the product of the corresponding row 
and column marginal probabilities, so that the table shows 
statistical independence between its row and column classi­
fications. This structure is a consequence of the assumption 
that the subgroup of the victim is selected randomly, and the 
standard tests of independence provide methods for identi­
fying data sets for which this assumption is not valid. As an 
example, for a 2 x 2 table such as that given in Table 1, it 
is well known (11) that under the hypothesis of independence, 
the log cross-product ratio statistic 

has, for large values of the sample size n, approximately a 
normal distribution with a mean of zero and a variance that 
can be estimated by 

1 1 1 1 
&~=-+-+-+-

nu ni2 n21 n22 

Tests for random selection of victims can then be conducted 
using the standard normal, or z, distribution. 

Assuming now that the data in an induced-exposure table 
satisfy the assumption of random selection of victims, we turn 
to the problem of making inferences concerning the accident 

TABLE 1 Example 2 x 2 Induced Exposure Table 

Innocent Victim 

1 2 

1 E[n1i]=np1r 1 E[nii.J=np1(1-r1) P1 

At Fault 

Driver 2 E[n2i] =n(l-p1)r1 E[n2i] = n(l-p1)(1-r 1) 1-pl 

r1 1-r1 
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rates A;. To simplify some of the following notation, we define 
the marginal totals 

A straightforward application of maximum likelihood meth­
ods yields the ML estimators of p; and ri, 

f. = ~ 
' n 

Unfortunately, since 'Lp; = Lh = 1, the induced exposure 
table is completely characterized by 2(m - 1) + 1 parame­
ters, making it impossible to uniquely identify the 2m param­
eters A; and Ei. It is possible, however, to estimate and com­
pare relative quantities, p; for example being the ratio of the 
expected number of accidents caused by Subgroup i to the 
total expected number of accidents, whereas ri is the ra~io of 
-the exposure for Subgroup j to the total exposure. The mea­
sure that has appeared most often in the literature is the 
involvement ratio (5-10) 

IR;= p/r; 

with IR; = 1.0 being taken as evidence that the accident rate 
for Group i is typical of the whole population. This interpre­
tation follows by noting that the accident rates should be 
independent of the exposures, so that IR; = 1.0 and E. = E 
for each j implies ' 

A; = (llm) ~ Ai 
i 

When only two subgroups are available (i.e., m = 2), IR1 

1.0 is equivalent to A1 = A2 • Alternatively, as elsewhere (12), 
one could consider the difference p; - r;, with p; - r; = · O 
having the same interpretation as IR; = 1.0. 

The involvement ratio allows the analyst to identify which 
subgroups have accident rates that exceed the populationwide 
average but does not provide readily interpretable informa­
tion concerning the magnitude of this discrepancy, nor does 
it provide a means for comparing the relative accident risks 
of two different subgroups .. However, the ratio of two in­
volvement ratios has the form of an odds ratio statistic and 
is equal to the ratio of the respective accident rates: 

If we define the log rate-ratio statistic as 

Ll .. = log(~) 
•J e Ai 

it is straightforward to verify that the ML estimate of Ll .. can 
1) 
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be computed via 

and an application of the delta method yields that, for large 
n, the dis!ribution of Ll;i is approximately normal, with mean 
equal to Ll;i and variance that can be estimated via 

1 1 1 1 
+-+-+-

X; Yi xi Y; 

This last result is a consequence of the fact that, given row 
and column independence, the likelihood function of the in­
duced exposure table factors into two components, one being 
proportional to the marginal likelihood of the row totals and 
the other being proportional to the marginal likelihood of the 
column totals. This provides a method for testing hypotheses 
concerning Ll;i and for constructing approximate confidence 
intervals for the rate-ratio A/Ai. 

As an illustration of the utility of these methods, first con­
sider the data given in Table 2, originally presented by Lyles 
et al. (10). Here we have two 2 x 2 induced-exposure tables, 
with the driver subgroups being male and female. The upper 
table gives the cross tabulation for non-rush hour daytime 
interstate accidents in Michigan for 1988, and the lower table 
is a similar cross tabulation of nighttime interstate accidents. 
Testing first whether the assumption of random victim selec­
tion is tenable. for ~hese tables (i.e., that the estimated log 
cross product ratio, 0, is not sig~ificantly different from zero), 
.we obtain for the upper table 0 = -0.039, z = -0.502, p 
> .6, whereas for the lower table we obtain e = 0.055, z = 
0.65, p > .5. In both cases, independence of row and column 
classifications appears tenable. Next, we consider whether the 
accident rate for males is greater than that for females by 
testing the null hypothesis Am = Ar against the one-sided al-

TABLE 2 Example Induced Exposure Tables from Lyles et al. (10) 

Day Time Non-rush Hour 

Innocent Victim 

1810 941 

At Fault 

Driver 678 339 

Night Time 

Innocent Victim 

2232 894 

At Fault 

Driver 605 256 
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ternative Am > At· The log rate-ratio provides an appropriate 
test statistic, and for the upper table we obtain !mf = 0.33, 
z = 6.57, p < .001, and for the lower table we obtain !mf = 

0.386, z = 7.43, p < .001, indicating that, in both cases, the 
accident rate for males is significantly higher than that for 
females. For the upper table, an approximate 90 percent con­
fidence interval for the rate-ratio Am/Ar would be (1.28, 1.51), 
whereas a similar confidence interval for the lower table would 
be (1.35, 1.60). For both tables, it appears that the accident 
rate for male drivers is around 40 percent higher than that 
for female drivers. 

As a second example, consider the data presented in Table 
3. Here, drivers are divided into two subgroups according to 
age, with Gn;mp 1 being middle-aged drivers (ages 25 to 55) 
and Group 2 being "older" drivers (ages 56 and over). The 
upper table presents a cross tabulation of two-vehicle acci­
dents occurring at the signalized intersections along a section 
of Minnesota Trunk Highway (MNTH) 47during1988-1989. 
The lower table presents a similar cross tabulation for MNTH 
65, which runs about 1.5 km east and parallel to MNTH 47. 
Checking first to see whether the assumption of random victim 
selection is tenable for these two tables, we obtain for MNTH 
47 0 = -0.419, z = -0.93, p > .34. For MNTH 65 we 
obtain 0 = - 0.378, z = -1.08, p > .28. Again, the random 
selection assumption appears acceptable. Testing next for 
whether older drivers have higher accident rates than do middle-

. aged drivers, we obtain for MNTH 47 ! = 0.2, z = .84, 
p > .20, and for MNTH 65 we obtain ! = 0.28, z = 1.50, 
p < .07. Thus the data from MNTH 47 show no evidence for 
increased accident risk to older drivers, but the data from 
MNTH 65 give a somewhat tentative suggestion that older 
drivers have higher accident rates. This sort of information 
could be useful to a safety engineer responsible for program­
ming safety improvements. 

TABLE 3 Induced Exposure Tables from Two M.innesota 
Highways 

MNTH 47 

Innocent Victim 

Miggl~-Ai~ ~ 

Miggl~-Ai~ 131 34 

At Fault 

Driver ~ 41 7 

MNTH6S 

Innocent Victim 

Miggl~-Ai~ ~ 

Miggl~-A&ed 202 52 

At Fault 

Driver Qkkr 68 12 

TRANSPORTATION RESEARCH RECORD 1401 

EMPIRICAL BAYES IDENTIFICATION OF HIGH­
HAZARD LOCATIONS 

The second example presented above suggested that the MNTH 
65 corridor might be a candidate for safety improvements 
targeted at older drivers. But since there are 29 signalized 
intersections providing data for that example, it could very 
well be that these sites differ in the risk they pose to older 
drivers. Because the numbers of accidents occurring at par­
ticular sites over a 2- or 3-year period typically tend to be in 
the range 0 to 50, the uncertainty attached to site-specific ML 
estimates tends to be high, and application of the asymptotic 
statistical methods described earlier to individual sites is ques­
tionable. Alternatively, identifying high-hazard locations can 
be viewed as an example of a multiparameter estimation prob­
lem, so that Empirical Bayesian (EB) statistical methods might 
profitably be employed (13,14); in fact Davis and Koutsoukos 
(12) have described an EB approach for estimating the dif­
ference Pi - ri. Here, we describe how EB estimates and 
confidence intervals can be computed for the log rate-ratio 
statistic defined above. To simplify the presentation of some 
of the following equations, we will restrict our attention to 
the case in which only two driver subgroups are of interest. 

Let the two driver subgroups of interest be denoted by 1 
and 2 and assume that there is available a 2 x 2 induced­
exposure table for each of a set of N sites making up our 
sample. Let the individual sites be indexed by k = 1, ... , 
N, and define the variables 

Pk = probability that an accident at Site k had a driver 
from Subgroup 1 as the at-fault driver, 

rk = probability that an accident at Site k had a driver 
from Subgroup 1 as the innocent victim, 

nk = total two-vehicle accidents available for Site k, 
xk = number of accidents from Site k where the at-fault 

driver was from Subgroup 1, and 
yk = number of accidents from Site k where the innocent 

victim was from Subgroup 1. 

The EB model assumes that the actual accident counts for 
a site are generated by a two-stage random process. First, the 
probabilities Pk are randomly assigned to sites as the outcomes 
of independent, identically distributed (iid) Beta: random var­
iables, with means and variances given by 

and 

Var[pk] = p(l - p)/('!11 + 1) 

The rk are assigned as iid Beta random variables with means 
and variances 

and 

Var[rk] = r(l - r)/(m2 + 1). 

Given pk, rk, .and nk, the accidents are then assigned to cells. 
in the induced exposure table according to the multinomial 
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model described earlier. The log rate-ratio statistic for Site k 
becomes 

In a manner similar to that used by Maritz (15), it can be 
shown that if the underlying prior parameters p, m1 , r, and 
m2 are known in advance, the posterior means and variances 
of the Ak are given by 

E[Aklnk,xk,Yk, m1,p, m 2 , r] = 'l'(miP + xk) 

+ 'l'[ni2(1 - r) + nk - Yk] - 'l'[m1(l - p) + nk - xk] 

- 'l'(m2r + Yk) 

Var[Aklnk,xk,yk, m1,p, m2, r] = 'l''(miJJ + xk) 

+ 'l''[m1(l - p) + nk - xk] 

+ 'l''(m2r + yk) + 'l''[m2(l - r) + nk - yk] (1) 

where 'l'(x) denotes the digamma function and 'l''(x) denotes 
the trigamma function: 

'l'(x) = dloge[f(x)] 
dx 

'l''(x) = d'l'(x) 
dx 

(2) 

The expression for the posterior variance of Ak follows from 
the fact that the joint posterior distribution of pk and rk factors 
into two components, one containing m 1 , p, and xk and the 
other containing m2 , r, and Yk· When numerical software for 
evaluating these functions is not available, they can be ap­
proximated using the first-order terms of their asymptotic 
expansions (16) 

'l'(x) = loge(x) 

1 
'l''(x) = -

x 

1 

2x 

(3) 

Furthermore, the posterior distribution of the Ak is well ap­
proximated by a normal distribution with means and variances 
given in Equation 1, so that if the prior parameters m 1 , p, 
m2 , and r are known, point and interval estimates of the Ak 
can be computed using either Equation 1 or Equation 3. 

In practice, though, the prior parameters p, m1 , r, and m 2 

will not be known and must also be estimated from data. The 
EB approach proceeds by simply replacing the prior param­
eters in Equation 1 with these esti~ates, so that the EB es­
timate of Ak is 

Ak = 'l'(mift + xk) + 'l'[m2(l - f) + nk - Yk] 

- 'l'[m1(1 - p) + nk - xk] - 'l'(m2f + Yk) (4) 

and the EB estimate of the variance of Ak is 

<T~ = 'l''(mift + xk) + 'l''[m1(l - p) + nk - xk] 

+ 'l''(m2f + yk) + 'l''[m2(l - f) + nk - Yk] 

47 

(5) 

An EB confidence interval with approximate coverage· prob­
ability 1 - a would then be (Ak - Za12 <Tk, Ak + Za12 <Tk). 

Maximum likelihood estimates of the parameters p, m1 , r, 
and m2 can be found as values maximizing the marginal distri­
bution 

x B[m2r +Yb mi(l - r) + nk - yk)} 
B[m2r,m2(1 - r)] 

(6) 

Here B(a, b) denotes the Beta integral evaluated at a and b. 
Computation of the estimates is simplified by the fact that 
Equation 6 factors into two components, one containing p 
and m1 and the other containing r and m 2 , so that the max­
imization problem decomposes into two bivariate problems. 

One problem that can arise in practice is that the likelihood 
function (Equation 6) may be unbounded with respect to 
either m1 or m2 (i.e., no finite MLE may exist for these pa­
rameters). This was in fact the case for the parameter m1 for 
both the MNTH 65 and the MNTH 47 data sets. The simplest 
solution to this problem is to constrain the parameters m1 and 
m 2 to be less than some appropriately large value and use this 
bound as the MLE in those situations where the MLE is 
unbounded. To arrive at a plausible upper bound, recall that 
the objective of this method is to identify locations where the 
accident rates for Groups 1 and 2 satisfy A. 1 > A.2 • Using the 
formulas in Equation 1 coupled with the normal approxi­
mation of the posterior distribution of Ak, it is possible to 
express the posterior probability that A. 1 > A.2 as a function of 
m1 and m2 • By inserting the MLE for m2 into this function 
and then plotting this probability as a function of m1 , it is 
possible to gain an idea of the sensitivity of the final decision 
to the choice of an upper bound; Figure 1 shows such plots 
for four typical intersections selected from MNTH 65. In each 
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FIGURE 1 Approximate posterior probability that~. > 
~2 as a function of m1, for four intersections on MNTH 
65. 
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FIGURE 2 EB point estimates of log rate-ratios for 29 
intersections on MNTH 65, along with approximate 90 
percent EB confidence intervals. Upper bound for m1 set 
at 100. 

of these cases, when m1 > 200 the posterior probability tends 
to stabilize into a slowly monotonic function of m 1 • This pat­
tern was present in each of the sites included in this study, 
with most of the change in posterior probability tending to 
occur for m1 less than 500 and values of m1 beyond 500 tending · 
to produce fairly small changes in posterior probability. 

To illustrate this EB approach, we return to the MNTH 65 
example presented earlier. There were a total of 29 signalized 
intersections along this section of MNTH 65, and the induced 
exposure data presented in Table 3 were disaggregated ac­
cording to the intersection where the accidents took place. 
Two MATHCAD 3.0 computational documents were devel­
oped. The first computed bounded ML estimates of p, m1 , r, 
and m2 via Equation 6, with upper bounds being user-specified 
inputs, and then wrote these estimates to a file. The second 
document read these estimates, computed the EB estimates 
for tl.k, O"k> and approximate 90 percent confidence intervals 
for tl.k, for each of the 29 intersections, and then created the 
graphs shown in Figures 2 through 4. The upper bound for 
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FIGURE 3 EB point estimates of log rate-ratios for 29 
intersections on MNTH 65, along with approximate 90 
percent EB confidence intervals. Upper bound for m1 set 
at 200. 
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FIGURE 4 EB point estimates of log rate-ratios for 29 
intersections on MNTH 65, along with approximate 90 
percent EB confidence intervals. Upper bound for m1 set 
at 500. 

m1 was set at 100 in Figure 2, at 200 in Figure 3, and at 500 
in Figure 4. Since an estimated Lik that is not significantly 
different from zero indicates a site where the accident rate 
for older drivers is not significantly different from that of 
middle-aged drivers, inspection of Figures 2 through 4 indi­
cates that the risk to older drivers is not evenly distributed 
along the roadway. If present at all, it appears concentrated 
on two segments, one containing Intersections 5, 6, and 7 and 
the other containing Intersections 23, 24, and 25. This qual­
itative. identification appears to be robust with respect to the 
upper bounds placed on m1 . These results are similar to those 
presented for the same data set, but a somewhat different 
computational method, elsewhere (12). 

CONCLUSION 

In this paper we have formalized some of the relationships 
between induced exposure and contingency table analyses, 
used these results to identify a test for the random selection 
of accident victims, and then developed an estimator for the 
ratio between the accident rates for two different driver sub­
groups. An Empirical Bayes approach was then presented for· 
estimating these rate-ratios for each of a number of accident 
sites and using approximate confidence intervals around these 
estimates to identify locations where a given driver subgroup 
might be at increased risk. The utility of these procedures 
was illustrated using actual traffic accident data. 

Although certainly not a panacea, the induced exposure 
model offers a promising approach for estimating the differ­
ential in accident risk experienced by subgroups of drivers, 
and it is hoped that the statistical methods described here will 
facilitate a wider use of and research into induced exposure 
methods. Of particular interest would be an extension of this 
approach to multiway cross-tabulation tables, permitting the 
analyst to assess the effect of possible causal factors on ac­
cident rate differentials. A special case would be the problem 
of assessing the impact of safety countermeasures, using be­
fore and after data. Finally, user-friendly implementations of 
these methods are probably needed to facilitate their wide­
spread adoption. 
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