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Comparison of Accident Rates Using the 
Likelihood Ratio Testing Technique 

ALI AL-GHAMDI 

Comparing transportation facilities (i.e., intersections and road 
sections) in terms of traffic accident occurrences is among the 
interests of most traffic safety analysts. Traditionally, traffic ac
cidents are represented as occurrences of events per certain unit, 
such as time and vehicle miles; this representation is consistent 
with Poisson nature. The Poisson distribution is used to describe 
the distribution of traffic accident occurrences. The objective is 
to develop a test statistic to enable traffic analysts to compare 
traffic accident rates in various transportation facilities. The ob
tained test statistic is simple and requires minimal data to perform 
the comparison. 

Traffic safety improvements have been the concern of traffic 
engineers lately. The growth in the number of both motorists 
and traffic accidents is behind this concern. As a result, ac
cident data have been used to analyze traffic accidents as well 
as to find appropriate techniques to understand the nature of 
such accidents. This understanding may help traffic accident 
analysts to draw realistic conclusions regarding the causes or 
frequencies of accidents and to make appropriate decisions 
to prevent these causes or reduce the frequencies. This paper 
uses a hypothesis-testing technique, the likelihood ratio test
ing technique, to develop a closed form of test statistic to 
assist traffic analysts in comparing the significance of traffic 
accident occurrences among different transportation facilities 
in a transportation system. The occurrences of traffic acci
dents follow Poisson phenomenon (1-3). Hence, the Poisson 
distribution function is used herein as a basis for deriving the 
test statistic. The test statistic requires minimal data and can 
be easily computerized. 

STATISTICAL BACKGROUND 

Since the approach of this study is based on a statistics tech
nique, the likelihood ratio testing technique, a brief theoret
ical background of this technique will be given. A general 
review of statistical distributions and hypothesis tes!ing is given 
first. 

Distributions and Hypothesis Testing 

Statistical distributions are useful in interpreting a wide 
variety of phenomena where randomness is present. In 
traffic studies the most important distributions are discrete 
distributions-usually known as counting distributions. Such 
distributions are useful in describing the occurrence of events 
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that can be counted, such as the number of accidents and the 
number of arrivals at a certain location. 

Two types of discrete distributions are widely used in traffic. 
They are the binomial and Poisson distributions (1,3,4). These 
distributions have been used in several traffic studies, includ
ing studies of speeds, gap acceptances in traffic flow, and 
accidents. For example, Gerlough and Huber state: 

Counting the number of cars arriving during an interval of time 
is the easiest and oldest measurement of traffic. When counts 
from a series of equal time intervals are compared, they appear 
to form a random series. This led early traffic engineers to in
vestigate distributions as a means of describing the occurrence 
of vehicle arrivals during an interval. (1) 

Binomial Distribution 

The binomial distribution is formed from a sequence of inde
pendent Bernoulli trials, in which the number of successes of 
a certain number of trials is the quantity of interest. The 
expansion of the binomial ( q + p )N forms the basis of the 
binomial distribution function. If N is a positive integer, the 
(k + l)th term in this expansion is 

With parameters N and p, the binomial distribution of a 
random variable X is defined as 

Pr[X = k] = { ( Z)p•qN-k k 

0 otherwise 

0, 1, 2, ... , N 

where 0 < p < 1 and q = 1 - p. The mean and variance of 
X are Np and Npq, respectively. 

This distribution has been used in several traffic applica
tions. In congested traffic (in the case where the ratio of the 
observed variance/mean is substantially less than 1), for in
stance, the binomial distribution can be used to describe the 
distribution of traffic arrivals. When n is very large and p is 
very small the binomial distribution is approximated by the 
Poisson distribution. 

Poisson Distribution 

A random variable X is said to have a Poisson distribution 
with parameter 0 if it has discrete pdf of the form 

e-aek 
Pr[X = k] = ~ k=0,1,2, ... ;0>0 



Al-Ghamdi 

The random variable X has the same mean and varfance. 
Along with exponential distribution, the pdf of which is de
fined below, the Poisson distribution has been applied in traffic 
studies, particularly in studies involving simulation applica
tions. A continuous random variable X has the exponential 
distribution with parameter e > 0 if its pdf has the following 
form: 

{
! e-xta X > 0 

f(x; e) = e 
0 otherwise 

The application of the Poisson distribution to traffic studies 
has been in existence since the 1930s (3). This distribution 
has been used in fitting traffic accidents and vehicle arrivals 
at certain locations. 

Hypothesis Testing 

Hypothesis testing can be defined as the process of making a 
decision about the truth or the falsehood of a particular hy
pothesis on the basis of experimental evidence. Generally, 
experimental outcomes are subject to random error, so any 
decision made is subject to error too. Occasional decision 
errors cannot be avoided; however, it is possible to construct 
tests so that such errors occur infrequently and at some pre
specified rate. 

For example, suppose our past experience with the traffic 
accident rate at a specific location indicates that the mean of 
this rate ~s 4 if a certain type of traffic control is present, and 
the mean of such rate may be greater than 4 if that type of 

· control is not present. On the basis of a random sample of 
size n vehicle accidents in our experiment, we would try to 
decide which case is true. That is, our test would be the null 
hypothesis µ = 4 versus the alternative hypothesis µ > 4. 

To test a specific hypothesis, a certain critical region is 
required. The critical region is the subset of the sample space 
that corresponds to rejecting the null hypothesis. In our ex
ample, the sufficient statistic for µ is X; therefore, we can 
represent our critical region in terms of the univariate 
variable-the test statistic. According to the alternative hy
pothesis, we write our critical region in the following form: 

for some appropriate constant c (this constant can be obtained 
on the basis of the distribution of the random variable in the 
left-hand side of the in~quality). In other words, we wi!!_reject 
the null hypothesis if X ~ c, and we will accept it if X < c. 

Two possible errors can be made under this testing pro
cedure. The first one is called the Type I Error-rejecting a 
true H 0 • Failing to reject H 0 when H 0 is false is known as the 
Type II Error. The objective is to keep both types of error 
as small as possible. That is, we hope that the selected test 
statistic and its critical region will yield a small probability of 
making these two errors. The common notations for these 
error probabilities are as follows: 

P[Type I Error] = a 

P[Type II Error] = J3 
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An increase in the sample size will reduce a and J3 simulta
neously. In practice, by selecting a small a we ensure that J3 
will be small too, especially when the sample size is large 
enough and thus there is no need to specify a value for J3. 
The traditional levels of significance are .01, .05, and .1. 

Generalized Likelihood Ratio Test 

Suppose X 1 , ••• , Xn have joint pdf f(x, 0) for 0 E 0, and 
we test the hypothesis H 0 :0 E 0 0 versus H 0 :0 E 0 - 0

0
• The 

generalized likelihood ratio (GLR) is defined by 

A(x) 
maxf(x; 0) A 

0E0o f(x; eo) 

max f(x; 0) = f(x; 0) 
0EO 

where 0 is the maximum likelihood estimate (MLE) of 0 and 
80 is the MLE under a true H 0 • That is, 0 and 8

0 
are determined 

by maximizing f(x; 0) over the general parameter space n 
and the restricted parameter space f!0 • The numerator repre
sents the likelihood function under the null hypothesis (i.e., 
a subspace of the general parameter space), and the denom
inator represents the same function but over the general pa
rameter space. The generalized likelihood ratio test is to reject 
H 0 if A(x) ::; k, where k is based on the size of significance. 
In other words, the value of k can be determined to satisfy 

P[A(x) ::; kjunder H0 ] = a 

It is obvious that if A(x) is a valid statistic (i.e., free of pa
rameters), it will be possible to obtain the exact critical value 
k. Yet, in many cases the distribution of A(x) is a function of 
unknown parameters, and thus the critical region cannot be 
defined. To solve this dilemma, an approximation can take 
place. That is, MLEs are asymptotically normally distributed. 
(A distribution dependent on a parameter n, usually a sample 
number, is said to be asympotatically normal if, as n tends to 
infinity, the distribution tends to the normal form.) Then it 
can be proven that the asymptotic distribution of A(x) is free 
of parameters, and an approximate test will be available to 
determine the critical region (5). In particular, if x - f(X; 01 , 

... , ek), then under H 0 : (01 , ••• , er) = (010 , ••• , er
0
), 

r < k, for large n, the following approximation holds: 

-2 log A(x) - x; 

Thus, H 0 is rejected if 

-2 log A(x) ~ Xi-o:,r 

ANALYSIS 

The analysis in this study consists of two stages. First, real 
accident data were used for four types of highways in Ohio 
(Table 1) to develop a test statistic for comparing their ac
cident rates. This test statistic was generalized to be applicable 
for different types of data. 



52 

TABLE 1 Accident Rate Data for Ohio (6) 

Highway Characteristics Accident 
Type Rate 

All Accidents AMVM 
Scenic 3,621 1,021 3.55 

Other 2-lane 36,752 11,452 3.21 
Multi-lane 20,348 6,290 3.23 
Interstate 10,460 9,412 1.11 

Total 71,181 28,177 2.53 

Derivation of the Test Statistic Based on Real Data 

Accident data from the Ohio Department of Transportation 
are shown in Table 1 ( 6). The table presents 1-year accidents 
for different highway types, including scenic, other 2-lane, 
multilane, and Interstate. The last column of the table pre
sents the accident rate for each type. This rate is the total 
number of accidents divided by the annual million vehicle 
miles (AMVM). 

Our interest is to find out whether accident rates among 
these types are different. In other words, the numbers suggest 
some differences among accident rates, but the question can 
be. asked whether such differences are true differences or the 
result of randomness. 

Since we are dealing with the occurrence of number of 
accidents (events) per AMVM (unit of exposure), it is worth
while to assume that the number of accidents (X) is Poisson 
distributed. Thus X; is Pois(µ;), i = 1, 2, 3, 4 (i represents a 
highway type), and 

where X; = 0, 1, 2, ... ; i 
addition, 

1, 2, 3, 4; and µ; > 0. In 

where 'A; is the accident rate for highway type i and t; is the 
annual vehicle miles for highway type i. 

To test whether such rates are unequal, we need to develop 
our hypotheses. The null and alternative hypotheses are H 0 : 

'A1 = 'A2 = X.2 = 'A.3 = 'A.4 = 'A and H 0 :'A; -:/=. 'Ak for some i, k 
(i and k are two different types of highways). 

The likelihood ratio technique is used to test the above 
hypothesis. The joint pdf of X 1 , X 2, X 3 , and X 4 , also called 
the likelihood function, is 

4 (X..f.)Xi 
L = IT-'-'- e->..;1; 

i=l X;! 

By taking the log of Equation 1, it can be simplified to 

4 

log L = 2: [x; log('A;t;) - log(x;!) - 'A;t;] 
i=l 

4 

= 2: [x; log 'A; + X; log t; - log(x;l) - 'A;t;] 
i=1 

(1) 

(2) 

Under H
0 

the derivative of Equation 2 is obtained, set to 
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equal 0, and solved for, the parameter 'A: 

4 

""" X,· 4 a log L = ~ _ set 2: t; = o ax. 

where 

and 

4 

2: t; 
t = i=l 

4 

i=l 

4 

2: t; 
i=1 

4 

LX; 
i=l = -4-

2: t; 
i=l 

x 
t (3) 

This is the MLE (this solution maximizes the likelihood func
tion under the null hypothesis). Thus, under H 0 the maximum 
of likelihood function equals 

4 (X.t.)Xi . 
L = IT-'- e->..1; 

0 
i=1 X;! 

(-)Xi Xt; 

4 t fl __ e-<x1;1i) 

i=1 X;! 

( 
xi~ t;) ' (ff 

= exp - -_- IT -,-
t 1=1 X;. 

(
X!;)x; 

. 4 t 
= e-4x IT-

. i=l X;! 
(4) 

Equation 4 will be used, shortly, as the numerator in the 
likelihood ratio function. Over the general parameter space 
where H0 :'A; -:/=. 'Ak for some i and k, by taking the derivative 
of Equation 2 with respect to each 'A; we obtain 

a log L set A X2 
--=O~'A2=-

iJ'A2 t2 

(5) 
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which is the MLE under the alternative hypothesis. Under 
the alternative hypothesis, where A./s are not the same, the 
maximum of likelihood function becomes 

( )

Xi 

~t 
4 t; l 

L = n --- e-<x;1c;) t. 
a . I , 

•=1 X;. 

4 (x.)x; 
= e-4x n -'

i=l X;! 
(6) 

The ratio of L 0 to La is called the likelihood ratio and is 
denoted by 

4 (>..t)x; ~ 

= Lo 
n--'- e->..c; 

\fl 
i=l X;! 

La 4 (xY 
e-4x n-·-

i=l X;! 

n e!J' i= 1 t 
4 n (x;)x; 

i=l 

er ,D, ~~ 
= n xt~ ·er i=l X;t 

(7) 

Hence, the test statistic, approximately, for large n is -2 In 
\fl, which has chi-square distribution. Specifically, 

4 

-2 In \fl = -2 2: x;[ln(xt;) - ln(lx;)] 
i=l 

[ 

4 . 4 J 
- 2 ;~ x; In(xt;) - ;~ x; ln(tx;) (8) 

is chi-square with three degrees of freedom, and the approx
imate size test is to reject H

0 
if 

-2 In \fl~ XI-a(4 - 1) 

Thus, the critical region for the above test can be defined 
through the following form: 

P[ -2 In \fl~ xL.(4 - 1)] = a 

Generalization of the Test Statistic 

The test statistic reached in the solution of the data given in 
the previous section can be generalized to cover more appli
cations as long as the setup for Table 1 is unchanged. The 
general setup for this table is presented in Table 2. 

In this table the unit of exposure could be any type of units 
used when accidents were observed, such as vehicle miles, 
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TABLE 2 Accident Rate Data, General Setup 

Highway Characteristics Accident 
Facility Rate 

Type All Accidents Unit of Exposure 
1 X1 t1 .\1 
2 X2 t2 .\2 

j Xj tj .\i 
Total l:f-1 Xi l:f-1 t; 

hours, or days. The facility type refers to the place where the 
accidents take place. In the field of transportation people are 
served by a variety of facilities, including highways, intersec
tions, local streets, and parking lots. The variables listed in 
this table are as follows: 

X; = the total number of accidents that occur in Facility i, 
t; = the unit during which accidents occur in Facility i (ex

posure), and 
A; = the accident rate at Facility i = x/t;. 

Notice that the analyst could use any unit of exposure on the 
basis of the available data. 

The variable of interest X; is assumed to have Poisson distri
bution with parameter A;. Thus, the test statistic derived in 
the previous section can be slightly modified to take the fol
lowing general form: 

-2 ln iii ~ -2[,t, x, ln(Xt,) - ,t, x, ln(fr,) J (9) 

where 

x = mean of x;'s, i l, 2, ... , j; 
t = mean of t/s; 
i = Facility i; and 
j = number of facilities under consideration. 

This test statistic can be used to detect the difference among 
accident rates for any type of facilities provided that the above 
table setup is satisfied. This test statistic is chi-square distrib
uted with j - 1 degrees of freedom. Notice that this test 
statistic requires only the number of accidents occurring at 
Facility i and the desired unit of exposure during which these 
accidents occur. This general form is applicable for any num
ber of transportation facilities (j). 

Recall A.j = x/tj. Accident rates, in literature, are usually 
eompared in terms of their quantities. In other words, of two 
locations, the one with the higher accident rate is considered 
to be more severe. Unfortunately, this is misleading. That is, 
it may be inconclusive statistically since the difference may 
be due to chance. The test statistic developed in this paper, 
however, can detect whether such a difference is significant 
or due to chance. 

APPLICATION 

In the previous sections we went step by step through the 
likelihood ratio technique to test the hypothesis of equal ac-
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TABLE 3 Pairwise 
Comparisons for the Four 
Highway Types Presented in 
Table 1 

The Highway Significance 
Pair* at 5% level 
1&2 significant 
1&3 significant 
1&4 significant 
2&3 insignificant 
2&4 significant 
3&4 significant 

• The numerical codes: 

1 for Scenic, 2 for Other 

2-lane, 3 for Multi-lane, 

4 for Interstate. 

cident rates given in Table 1, and we ended with the general 
form of a test statistic defined in Equation 9 to perform the 
hypothesis testing. In this section we apply this test statistic 
to the data given in that table. Moreover, a computer program 
was written to perform the computations of the test statistic. 

In Table 1, four types of highways are presented. Therefore, 
j is 4 in our general form and we have the following hypothesis 
test: H0 : A. 1 = A.2 = A.3 = A4 = A and Ha: A; -4= A.k for some 
i, k. The test statistic in Equation 9 is 

- 2 In 1)1 ~ - 2 L~ x, ln(:Xt,) - ~ x, ln(lx,)] 

A comparison of the four groups indicated that the value 
of the test statistic is greater than 7.81 (the critical value at 
0. 05 level of significance), indicating that the null hypothesis 
is rejected and the difference among the accident rates for 
these four highway types is significant. In fact, this result was 
expected, since Table 1 indicates such differences, particularly 
between scenic highway and Interstate highway types. 

If we decide to make pairwise comparisons, different results 
are obtained. For example, when we compare other two-lane 
with multilane (} = 2 in this case), the value of the test statistic 
is very small, namely 0.9375, which in turn means that the 
difference between accident rates for these two types is not 
significant. Table 3 presents the pairwise comparisons of the 

Type 1 Type 2 

2 

Type3 

3 

Type4 

4 

FIGURE 1 Graphical representation of pairwise comparisons 
presented in Table 3. 
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highway types given in Table 1. Figure 1 shows the pairwise 
comparisons. The insignificant pair is underlined in Figure 1. 

CONCLUSION 

The finding of this paper was a test statistic for the comparison 
of accident rates in several transportation facilities. This find
ing was based on the assumption that such accidents were 
Poisson distributed. The likelihood ratio statistical technique 
was used to develop the test statistic. With minimal data this 
statistic can be adopted by traffic analysts to detect whether 
accident rates at several locations in a transportation system 
are significantly different. To show the applicability of the 
derived test statistic, traffic accident data from Ohio were 
used to compare accident rates for four highway types, in
cluding scenic, other two-lane, multilane, and Interstate. These 
rates were found to be significantly different. Pairwise com
parisons for these types indicated that there is no significant 
difference between the accident rates for the other two-lane 
type and the multilane type. The results of this study have 
shown the applicability of the developed test statistic. 
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