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Accident Prediction Models for Freeways 

BHAGWANT PERSAUD AND LESZEK DZBIK 

The modeling of freeway accidents continues to be of interest 
because of the frequency and severity of these accidents and the 
congestion associated with them. Some difficulties with conven
tional modeling techniques are identified. A distinctive approach 
is presented, whereby generalized linear modeling is used with 
both macroscopic and microscopic data to develop regression 
model estimates of a freeway section's accident potential and an 
empirical Bayesian procedure is used for refining these estimates.· 

Freeway accidents are a source of concern not only because 
of their frequency and severity but also because of the re
sulting traffic congestion. It is, therefore, not surprising that 
attention continues to be focused on the modeling of these 
accidents to identify associated factors and to enable analysts 
to predict their frequency. Recent papers (1-3) are evidence 
of this ongoing interest. This paper is based on recent research 
( 4,5) that applied an accident modeling approach that is some
what distinct from those used by others. 

FREEWAY ACCIDENT MODELING ISSUES 

In this section, a number of difficulties with previous models 
are reviewed. The approach adopted for this paper is then 
introduced. 

The first difficulty with existing models is that they tend to 
be macroscopic in nature since they relate accident occurrence 
to average daily traffic (ADT) rather than to the specific flow 
at the time of accidents. The difficulty with the macroscopic 
approach is that a freeway with intense flow during rush pe
riods would clearly have a different accident potential than a 
freeway with the same ADT but with flow evenly spread out 
during the day, but an ADT-based model would indicate that 
the two freeways have identical accident potentials. 

Second, some modelers assume, a priori, that accidents are 
proportional to traffic volume and go on to use accident rate 
(accidents per unit of traffic) as the dependent variable. There 
is much research to suggest that this assumption is not only 
incorrect but can also lead to paradoxical conclusions (6). 
Similarly, though accidents should increase with traffic inten
sity, the model form should not, a priori, assume that acci
dents are a linear function of traffic volume (7). 

Third, conventional regression modeling assumes that the 
dependent variable has a normal error structure. For accident 
counts, which are discrete and nonnegative, this is clearly not 
the case; in fact, a negative binomial error structure has been 
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shown to be more appropriate (8). Most regression packages 
in use cannot accommodate such a structure. 

Finally, it is impossible for regression models to account 
for all of the factors that affect accident occurrence. This 
difficulty can lead to paradoxical conclusions when, as is often 
done, such models are used to imply cause and effect. Also, 
when these models are used for accident prediction, the es
timates tend to be unreliable if the unexplained variation is 
relatively large. 

The need to overcome these difficulties was fundamental 
to the modeling approach adopted in the work described in 
this paper. To this end, use was made of a generalized linear 
modeling package that allows the flexibility of a nonlinear 
accident-traffic relationship and a user-specified error struc
ture for the dependent variable and of a complementary em
pirical Bayesian procedure for improving the accuracy of 
regression model accident predictions. The approach was ap
plied to both microscopic data (hourly accidents and hourly 
traffic) and macroscopic data (yearly accident data and av
erage daily traffic). 

THEORETICAL ASPECTS OF REGRESSION 
MODELING 

Generalized linear modeling using the GLIM computer pack
age (9) was used to obtain a regression model for estimating 
P, the accident potential per kilometer per unit of time, given 
a freeway section's physical characteristics, the volume (1) 
per unit of time, and a set of variables that describe operating 
conditions during the time period. The model form used was 

E(P) = aP (1) 

where a and b are model parameters estimated by GLIM. 
Models were so constructed that the parameters a and b could 
depend on the values of the factorial variables. This model 
form ensures that predicted accidents would be zero if there 
is no traffic, but does not, a priori, assume a linear relationship 
between accidents and traffic volume. Scatter plots of raw 
data confirmed that this model form is reasonable for both 
macroscopic and microscopic models. 

The accident count on a section was used as an estimate of 
the dependent variable. GLIM allows the specification of a 
negative binomial error structure for a dependent variable, 
which, as noted earlier, is more appropriate for accident counts 
than the traditional normal distribution. Although the error 
structure pertains to the accident counts, a log link function 
could be specified to allow GLIM to estimate models of the 
form 

ln[E(P)] ln(a) + bln(T) (2) 
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With a negative binomial error specification, it can be shown 
that the variance of the regression estimates can be estimated 
from 

Var(P} = E(P)2/k (3) 

where the parameter k was estimated using a maximum like
lihood procedure that assumes that each squared residual of 
the regression model is an estimate of Var(P) and that each 
count comes from a negative binomial distribution with mean 
E(P) and variance given by Equation 3. This equation indi
cates that, in comparing two models with the same dependent 
variable, the one with the larger value of k would give more 
accurate predictions. 

Because ordinary least squares regression was not used, 
goodness-of-fit of a model could not be assessed in the con
ventional way, using the coefficient of determination. Instead, 
goodness-of-fit was assessed by using a generalized Pearson 
chi-squared statistic (8,9) to estimate the amount of variation 
explained by the systematic component of a model. 

MACROSCOPIC MODELS 

Data 

The data originated in computer files obtained from the 
Ontario Ministry of Transportation and consists of accident, 
inventory, and traffic data for approximately 500 freeway sec
tions in Ontario. Some characteristics of the macroscopic data 
set are summarized in Table 1. 

Model Calibration and Results 

For each section, the accident count for the each of the years 
1988 and 1989 (in effect, the log of this value) was used as 
an estimate of the dependent variable. To account for varying 
section lengths, the term log (section length) was specified as 
an "offset" that GLIM subtracts from each point estimate of 
ln(E(P)]. Thus, in effect, models were estimated for predic
tion of the number of accidents per kilometer per year. 

Tables 2 and 3 give the estimated regression model coef
ficients for total accidents and severe (injury and fatal) 
accidents. 

MICROSCOPIC MODELS 

Data 

The data pertain to a 25-km segment of Highway 401 in To
ronto, Canada, part of which has a Freeway Traffic Manage-

TABLE 1 Data Summary for Macroscopic Models 

Total km 

1988-89 total accidents 

1988-89 severe accidents 

ADT (Weighted by length) 

4-lane > 4 lanes 

1594 

13725 

4999 

19621 

397 

24464 

7519 

87896 
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TABLE 2 Macroscopic Model for TOT AL Accidents per 
Kilometer per Year 

Model Parameter Estimated Standard Adjusted 
Parameter Error 

. 
Parameter 

Adjustment Estimate 

ln(a) for ADT/1000: 

4 lanes 0 (Base) 0.087 -1.920 

> 4 lanes 0.271 0.062 -1.649 

b for: 

all lanes 0 (Base) O.Q28 1.135 

k = 3.52; Variation Explained = 98%; Observations = 1012 

• Applies to coefficient estimate for the base case; otherwise, applies to the 
adjustments. 

ment System (FTMS). The sections, which range in length 
from 0.7 to 3 km, are separated by interchanges, and all have 
express and collector roadways typically with three lanes each 
per direction. 

For the microscopic modeling, it was necessary that con
ditions pertaining to each data record used in the regression 
analysis be fairly homogeneous. Thus, it was decided to dis
aggregate each day into 24 periods of 1 hr each and to derive 
data for each hour, for express and collector lanes separately, 
and for day and night. For the accident data this task was 
straightforward. For the traffic data, it was necessary to derive 
hourly and seasonal variation factors and collector/express 
lane distribution factors and apply these factors to the average 
daily traffic. To maintain a reasonable level of homogeneity, 
only data pertaining to weekdays were used for the models 
presented in this paper. 

After preliminary data analysis that indicated different ac
cident patterns for congested and uncongested periods, it was 
decided to build the regression models using, for each section, 
only data for off-peak hours for which that section tended to 
be uncongested. To make this determination, we used 5 days 
of traffic data for sections in the FTMS and used a procedure 
described elsewhere (JO). Congested and uncongested hours 
for a section were identified as hours for which the applicable 
condition existed on all 5 days. It was assumed that any errors 
in this process would have a negligible effect since the amount 
of incorrectly classified data was likely to be relatively small. 

TABLE 3 Macroscopic Model for SEVERE Accidents per . 
Kilometer per Year 

Model Parameter Estimated Standard Adjusted 
Parameter Error Parameter 

Adjustment Estimate 

ln(a) for ADT/1000: 

4 lanes 0 (Base) 0.126 -2.776 

> 4 lanes -0.417 0.254 -3.193 

b for: 

4 lanes 0 (Base) 0.040 1.082 

> 4 lanes 0.124 0.068 1.206 

k = 4.55; Variation Explained = 93%; Observations = 1012 
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The regression data set contained, for each section and each 
uncongested hour, the hourly average traffic volume, the 
number of applicable hours in the 2-year period 1988-1989, 
a tally for each accident type of interest for those hours, and 
a code to indicate the light condition (day/night). For some 
hours (e.g., 6:00 to 7:00 p.m.), it was necessary to have sep
arate sets of data for day and night conditions. A summary 
of information in the regression data set is given in. Table 4. 

Model Calibration and Results 

For each section, the accident count for the 2-year period 
1988-1989 for each uncongested hour (in effect, the log of 
this value) was used as an estimate of the dependent variable .. 
To account for varying section lengths and number of hours 
of data, the term ln(section length * number of hours) was 
specified as an "offset" that GLIM subtracts from each point 
estimate of ln[E(P)]. Thus, in effect, models were estimated 

TABLE 4 Data Summary for Microscopic Models 
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for prediction of the number of accidents per kilometer 
per hour. 

Tables 5 and 6 give the estimated regression model coef
ficients for total accidents and severe (injury and fatal) ac
cidents. In the calibration process it was found that there was 
no significant difference between day and night accident 
frequencies. 

As indicated, the estimated coefficients are for a 1-km sec
tion for 1 hr. Thus, the regression estimate of total accident 
potential for a 2-km collector section during an hour with a 
volume of, say; 8,000 vehicles, is given by E(P) = 2*e- 6·276*8°·717 

= 0.01671 accidents/hour and Var(P) = 0.0167l2/2.59 = 
0.000108. 

DISCUSSION OF REGRESSION MODEL RESULTS 

Figure 1 shows plots of regression predictions per kilometer 
per year for the macroscopic models. These plots indicate 

Collector Accidents Express Accidents 

Hourly Volume Day Night Severe Total Severe Total 

Hr Collector Express Hrs Hrs Day Night Day Night Day Night Day Night 

()() 1542 2167 - 521 17 46 14 31 

01 802 1239 - 521 6 - 29 - 9 - 20 

02 465 848 - 521 6 - 23 5 - 19 

03 351 646 - 521 1 - 11 0 - 11 

04 446 815 - 521 - 2 - 6 3 - 15 

05 1382 2128 - 325 1 - 3 4 11 

06 6642 9196 44 127 2 2 9 21 2 5 6 16 

07 10477 12825 264 - 32 - 101 - 24 78 -
08 10316 12015 521 - 73 - 218 46 177 

09 7946 9860 521 - 34 127 - 31 - 108 -
10 6708 9042 521 32 - 111 - 24 - 83 -
11 7012 9023 521 - 33 - 108 - 30 - 84 -
12 6944 8858 521 - 27 - 84 - 20 71 -
13 7357 9330 521 28 89 - 52 - 110 -
14 8153 10062 521 - 45 - 119 - 27 - 106 -
15 9826 11543 521 - 54 - 185 60 180 -
16 10538 11950 391 78 231 68 - 212 -
17 10047 11042 307 43 65 6 192 28 58 8 161 29 

18 8686 10334 220 171 25 24 84 81 23 16 64 65 

19 6425 8103 198 260 13 21 34 66 9 20 20 75 

20 4683 6126 - 151 - 12 32 - 14 56 

21 4463 5545 - 521 - 26 68 - 21 - 74 

22 3793 4821 - 521 - 21 - 74 27 - 104 

23 3057 3845 521 - 25 - 55 - 35 - 89 

TOTALS 541 170 1692 543 474 181 1460 615 
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TABLE 5 Microscopic (Off-Peak) Model for TOTAL Accidents per Hour per 
Kilometer 

Model Parameter Estimated Parameter Standard Adjusted Parameter 
Adjustment Error 

. 
Estimate 

ln(a) for Vol/Hr/1000: 

Collector 0 (Base) 0.081 -6.276 

Express -0.258 0.077 -6.534 

b for: 

Collector/Express 0 (Base) 0.045 0.717 

k = 2.59; Variation Explained = 87%; Observations = 684 

• Applies to coefficient estimate for the base case; otheJWise, applies to the adjustments. 

TABLE 6 Microscopic (Off-Peak) Model for SEVERE Accidents per Hour per 
Kilometer 

Model Parameter Estimated Parameter Standard Adjusted Parameter 
Adjustment Error Estimate 

ln(a) for Vol/Hr/1000: 

Collector 0 (Base) 0.116 -7.608 

Express -0.276 0.098 -7.883 

b for: 

Collector/Express 0 (Base) 0.063 0.777 

k = 2.30; Variation Explained = 87%; Observations = 684 

that, for the same total ·traffic volume, four-lane freeways 
have a lower accident risk than those with more lanes. This 
result is possibly explained by the tendency for freeways with 
more than four lanes to be found in urban areas that are 
generally associated with rush hour congestion and an accom
panying greater collision risk. 

Figure 2 shows plots of microscopic model regression pre
dictions per kilometer per hour for the two accident types 
and for express and collector roadways. It is evident that, for 
a given traffic volume level, collector roadways have a higher 
accident potential than the express roadways. It is important 
to note that, for these regression lines, the slope is decreasing 
as hourly volume increases, perhaps capturing the influence 
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FIGURE 1 Macroscopic regression model 
predictions. 

of decreasing speed. This is in contrast to the macroscopic 
plots in Figure 1, which all show increasing slopes. It is pos
sible that the macroscopic plots are reflecting the increasing 
probability of risky maneuvers, such as passing and lane 
changing, with higher ADT levels. 

The issue of how accident risk is related to the quality of 
traffic operation was examined separately. Recall that the 
microscopic regression models were based on data for hours 
without congestion. For congested hours, the average hourly 
traffic volume was calculated along with the average number 
of accidents per hour per. kilometer. Separate values were 
calculated for the collector and express systems, and in the 
case of total accidents it was possible to calculate separate 
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FIGURE 2 Microscopic regression model 
predictions. 
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values for morning and evening congested periods. This sup
plementary work was exploratory in nature, and the results 
are to be interpreted with caution since they are based on 
untested assumptions, in particular about the time and 
location of congestion and about the propriety of using an 
average traffic volume for congested periods. The results of 
the analysis of the effect of traffic operation are shown in 
Figures 3 and 4. Subject to the cautions mentioned, the fol
lowing conclusions are indicated: 

• Congestion is associated with a higher risk of accidents 
than high-volume uncongested operation. 

• The afternoon congested period has a higher accident risk 
than the morning rush period, but the difference is only sig
nificant for the express system. 

• Collector system congestion is associated with a higher 
accident risk than express system congestion. 

ACCIDENT PREDICTION-REFINEMENT OF 
REGRESSION MODEL ESTIMATES 

It is now accepted among safety analysts that the underlying 
long-term accident potential, rather than the commonly used 
short-term count, is more proper for identifying unsafe sec
tions and for evaluating safety effectiveness of improvements. 
Regression model predictions have been used as an estimate 
of this value, but the difficulty with this is that, in general, 
two road sections that are similar in all of the independent 
variables used in a regression model will still be different in 
true accident potential even though they will have the same 
model predictions. This, in turn, is because it is not possible 
to account in the regression model for all the factors that 
cause differences in accident potential (e.g., weather, 
geometrics). 

To mitigate this problem, use can be made of an empirical 
Bayesian technique that combines the regression prediction 
with the observed short-term accident count for a section of 
interest. This method has previously been used in estimating 
the long-term accident potential of rail-highway grade cross
ings (11), Toronto intersections (12), and Ontario drivers (13) 
and road sections ( 4). 
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Using the empirical Bayesian procedure, E(P) from Equation 
1 can be refined for an individual road section using the ac
cident count, x, in n units of time (years in the case of mac
roscopic models and hours for the microscopic case) on that 
section to give E(mlP, x, n), a revised estimate of accident 
potential. It can be shown (11) that, under reasonable as
sumptions, the revised estimate of accident potential (per unit 
of time) is 

E(mlP, x, n) q[wE(P) + (1 - w)x] 

where 

E(P) = regression estimate for one unit of time, 
w = [1/(1 + Var(P)/E(P))] = [1/(1 + E(P)lk)], and 
q = [(1 + E(P)lk)l(l + nE(P)lk)]. 

(4) 

It can also be shown that the variation in (mlP, x, n) can be 
estimated by 

Var(mlP, x, n) = {E(mlP, x, n)l[n + k/E(P)]} (5) 

Equation 4 indicates that the estimated accident potential of 
a section is a combination of what is observed, x, and of 
E(P)-what is predicted on the basis of its characteristics 
(traffic volume, etc.). 

Illustration 

Suppose the collector section in the earlier example recorded 
six accidents in 80 hr with an average hourly traffic volume 
of 8,000. Thus, in Equation 4, x = 6 and n = 80. Recall from 
the earlier example that E(P) = 0.01671, Var(P) = 0.000108, 
and k = 2.59. Thus, for Equations 4 and 5, q = 0.6638 and 
w = 0.9936. 

These values give the Bayesian estimate of accident poten
tial as E(mlP, 6, 80) = 0.03651 accidents per hour and Var(mlP, 
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TABLE 7 Macroscopic Model Validation Results-Mean Squared Difference 
Between Predicted and Observed Accidents per Kilometer per Year 

Estimation method Total accidents Severe accidents 

Accident count 32.2 5.94 

Regression model 31.9 5.84 

Empirical Bayesian 23.0 3.78 

TABLE 8 Microscopic Model Validation Results-Mean Squared Difference 
Between Predicted and Observed Accidents per Hour-Kilometer 

Estimation method Total accidents (*10-6) Severe accidents (* 10-6) 

Accident count 

Regression model 

Empirical Bayesian 

6, 80) = 0.03651/(80 + 2.59/0.01671) = 0.000155. Note that 
the accident potential estimate is between the regression es
timate (0.01671) and the observed accidents per hour (6/80 
= 0.075). 

Validation 

The validation of the overall approach involved a comparison 
of the prediction accuracy resulting from the use of 1988 ac
cident counts or regression predictions as estimates of the 
1987 counts, as opposed to using the empirical Bayesian pro
cedure based on 1988 data. 

For the macroscopic case, this required the calculation of 
the mean squared difference between estimated and observed 
1987 total and severe accidents for each of approximately 1500 
km of freeways for each of the three estimation methods. It 
is assumed that the better estimate is the one with the smallest 
mean squared difference. The results of the validation exer
cise for the macroscopic models are given in Table 7. 

For the microscopic case, validation required the calcula
tion of the squared difference between estimated and ob
served 1987 counts_ per squared hour-kilometer for each cell 
(see Table 4) for each section, and, in essence, averaging this 
value over all sections and cells. The results of the validation 
exercise for the microscopic models are given in Table 8. 

The results in both cases show that the empirical Bayesian 
method appears to be best followed, as expected, by the 
regression model prediction method. 
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0.928 3.573 

0.771 2.682 

0.743 2.469 
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