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Estimation of Safety at Two-Way 
Stop-Controlled Intersections on 
Rural Highways 

JAMES A. BoNNESON AND PATRICK T. McCoY 

The application of the generalized linear modeling approach to 
the development of a model relating unsignalized intersection 
traffic demands to accident frequency is described. Several tech­
niques for assessing model fit have been described and any in­
herent limitations noted. The model was based on the product 
of the intersection traffic demands raised to a power. This model 
form was found to explain a large portion of the variability in 
accidents among intersections of similar geometry and traffic con­
trol. The analysis of accident data for 125 two-way stop-controlled 
intersections supports the theory that the distribution of accident 
counts can be described by the negative binomial distribution. 
Also supported is the assertion that the mean accident frequency 
for the group of similar intersections is gamma distributed. 
Knowledge of these distributions and their parametric values can 
be used to identify hazardous locations and the true effect of 
safety treatments on accident frequency. 

The intersection of a minor roadway with a rural highway 
presents several safety problems. Accident rates may be higher 
at intersections on rural highways than at intersections on 
urban highways. This trend may be attributed to the higher 
speeds on the rural highway and a reduced driver expectancy 
for intersecting traffic movements on rural highways. The 
combination of high-speed rural highway traffic with low­
speed intersecting traffic (i.e., crossing or turning vehicles) 
can lead to significant speed differentials and an increased 
potential for accidents. If the highway has a multilane (or 
expressway) cross section with wide median, the intersection 
will have a large conflict area. This characteristic, combined 
with high expressway speeds, can further degrade the safety 
of the crossing or turning maneuver. 

The frequency of access points, the amount of roadway 
lighting, and the magnitude of traffic demands are typically 
lower in rural than in urban areas. These characteristics tend 
to make drivers on rural highways more relaxed and poten­
tially less attentive. As a result, the highway driver's expec­
tancy for turning or crossing vehicles may be relatively low, 
which can also increase accident potential at intersections on 
rural highways. 

Unfortunately', little is known about the safety of unsig:­
nalized intersections on rural highways. As a result, it is dif­
ficult to accurately identify intersections that are truly haz­
ardous. Moreover, it is difficult to fully assess the safety benefits 
of any corrective measures (e.g., advance signing, signaliza­
tion) applied to hazardous intersections. 

Civil Engineering Department, University of Nebraska-Lincoln, Lin­
coln, Nebr. 68588-0531. 

The objective of this research was to develop a methodology 
for assessing the safety and efficiency of both intersections 
and interchanges on rural highways. This paper describes the 
development of a safety-prediction model for rural intersec­
tions. The safety of an intersection is defined as the expected 
number of accidents per year. The research described is part 
of a ~ore comprehensive analysis of the economic benefits 
and costs of interchanges, relative to intersections, on rural 
expressways conducted by the authors for the Nebraska De­
partment of Roads (1). 

MODELING CONSIDERATIONS 

Many factors affect the number of accidents that occur at an 
intersection. The factors can be categorized into those repre­
senting exposure to potential accident events and those af­
fecting the probability that a given potential accident event 
will result in an accident. Factors that represent exposure 
include time period and traffic demand. Factors that affect 
accident probability include urban/rural environment, traffic 
control, frequency of access points, speed limit, shoulder width, 
median type, median width, lighting level, availability of left­
turn bays, number of legs, and number of traffic lanes. 

Several modeling issues were considered in determining the 
form of the safety-prediction model and the types of data 
needed to calibrate it. One of the more critical issues is sample 
size. The high variability of accident data tends to translate 
into the need for large sample sizes to establish sound statis-

- tical relationships. One way to overcome the uncertainties of 
high variability is to increase the size of the data base. An 
increase could be accomplished by including more intersec­
tions in the data base (if available) or by increasing the du­
ration of the time period that brackets the data (provided that 
environmental or driver behavior changes do not become 
significant). 

Similarity among intersections in the data base is another 
issue. The calibrated model must be able to predict accident 
frequency for the "typical" type of intersection being consid­
ered. Thus, a large data base containing many different types 
of intersections should be subset to yield a smaller data base 
having intersections more consistent with the type of inter­
section being considered. For example, in this research, we 
initially subset the statewide data base to remove all urban 
intersections. 

Although subsetting has the beneficial effeet of increasing 
similarity in the resultant data base, it is achieved by elimi-
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nating a portion of the data base. Thus, it has the disadvantage 
of reducing the available sample size. The trade-offs between 
sample size and sample similarity must be carefully considered 
and a proper balance achieved. In general, the amount of 
subsetting is generally limited to that which will allow the 
questions of the research to be answered without compro­
mising the analyst's predetermined sample size requirement. 

LITERATURE REVIEW 

A comprehensive review of the literature regarding accident 
frequency prediction models before 1981 has been provided 
by Satterthwaite (2). A more recent review has been provided 
by Hauer et al. (3). In the latter work, the authors cite con­
siderable evidence supporting the "product-of-flows-to-power" 
model, wherein the expected accident frequency is a function 
of the product of traffic demands entering the junction. In 
most instances, the traffic demands are raised to a power less 
than unity, indicating a nonlinear relationship between de­
mand and accident frequency. Some researchers [e.g., Hauer 
et al. (J)] have considered only the flows for the conflicting 
traffic patterns. Others [e.g., Van Every (4)] relate expected 
accident frequency to the product of the average daily traffic 
demands on the major and minor roadways at the junction. 
The latter approach was particularly appealing because it does 
not require detailed information about travel patterns through 
the intersection. The model used by Van Every (4) is shown 
in Equation 1. 

(1) 

where 

A expected annual accident frequency, 
Tm major road traffic demand (veh/day), and 
Tc = minor (cross) road traffic demand (veh/day). 

On the basis of this review of the literature, it was deter­
mined that both exposure measures (i.e., time period and 
traffic demand) were essential components of the data base. 
It was also determined that environment (urban versus rural), 
traffic control (signal, sign), and geometry (number of legs) 
were among the most important factors to be considered when 
subsetting the accident data base. 

TABLE 1 Accident Data Base Statistics1 

Statistic 
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MODEL DEVELOPMENT 

Data Base 

The da:ta base used for this study was obtained from FHWA 
via the Highway Safety Research Center at the University of 
North Carolina. This data base was a subset of FHWA's High­
way Safety Information System (HSIS) (5). HSIS integrates 
the accident, roadway design, and traffic volume data from 
the highway departments of Utah, Minnesota, Illinois, Maine, 
and Michigan. The inclusion of roadway design and average 
daily traffic volume (ADT) data in the accident data base is 
one of HSIS's key features; it is a feature not found in most 
state accident record systems. This type of comprehensive 
data base was essential to the calibration of a safety-prediction 
model because it allowed the relationship between geometry, 
traffic demand, and accidents to be fully explored. 

The data base includes all accidents during 1985, 1986, and 
1987 for Minnesota. The other states in HSIS were not in­
cluded because they did not recognize junctions as entities or 
explicitly differentiate between intersections and interchanges. 

The data base can be described as a junction-based file 
because all data subsetting is related to the type of junction. 
The subset factors were selected such that the data base in­
cluded intersections that are similar with regard to nonurban 
environment, four legs only, two-way stop-control, and in­
tersection geometry (i.e.' not an interchange ramp-junction). 
Once the appropriate intersections were identified, traffic de­
mand and accident data files were scanned to find the cor­
responding demands and accidents (if any) for these locations. 
Accidents were assumed to be intersection related if they 
occurred within 153 m (500 ft) of the junction. 

The resulting data base contained major and minor road 
ADTs for 125 intersections, which experienced 250 accidents 
in the 3-year period. Further subsetting based on accident 
pattern, number of lanes, median width, and so forth was not 
considered because the sample size was determined to be at 
its smallest acceptable value. A summary of the data base 
used in this study is given in Table 1. 

The data base included two general types of major road 
geometry. Included were 108 intersections with a two-lane 
major road and no median and 17 intersections with a four­
lane major road and a median of 10.4 m (34 ft) or more. The 
two-lane roads generally had major road ADTs under 4,000, 

Variable Minimum Maximum Mean Std. Dev. 

Major Road ADT 430 37,900 4,030 6,140 

Minor Road ADT 45 8,850 680 1,060 

Accidents/year 0 7 0.67 1.20 

1Statistics based on 125 rural highway intersections with two-way stop-control. 

2Average annual accident frequency (based on data for three years). 
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whereas the four-Jane roads had ADTs over 6,000; there was 
some overlap in the ADT range of 4,000 to 6,000. 

This dichotomy in the data base was considered desirable 
because it related to the objectives of the research. In this 
regard, the question posed by the research was, What are the 
expected number of accidents at a given highway junction if 
an unsignalized intersection or an interchange were built there? 
The answer would be used to make "planning-level'' decisions 
regarding the most appropriate junction type. To answer this 
question, safety models were developed for each junction type 
(only the intersection model is described herein) for a com­
mon range of traffic demands. With the dichotomized data 
base, we were able to analyze intersections with ADTs we_ll 
into the range found at interchanges. In application, it is under­
stood that the model's predictions would reflect the likelihood 
that a two-lane major road exists for lower-demand situations 
and a four-Jane road exists for higher-demand situations. 

The relationship between average annual accident fre­
quency and traffic demand is given in Table 2 for the two­
way stop-controlled intersections included in this study. Ex­
amination of the row and column summaries indicates a pos­
itive correlation between traffic demand and average annual 
accident frequency. The traffic demand ranges in Table 2 were 
selected such that approximately one-fifth of the total number 
of accidents are located in each row and column. The intent 
of distributing the accidents in this manner is to obtain an 
equal weight, in terms of observations, underlying the average 
annual accident frequency provided in the row and column 
summaries. 

Modeling Techniques 

Model Structure 

The nonlinear relationship between accident frequency and 
traffic demand evidenced in Table 2 is consistent with the 
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nonlinear product-of-flows-to-power formulation, as advo­
cated by others (2-4). As a result, the following model form 
was considered: 

E(m) = b0 Tt;,.1 Tg2 

where 

expected accident frequency, 
regression constants, 
major road traffic demand (veh/day), and 
minor (cross) road traffic demand (veh/day). 

(2) 

The approach taken in calibrating the accident prediction 
model was based on procedures described by Hauer et al. 
(3), who have argued against using traditional least-squares 
regression of accident data because of violations in two as­
sumptions (i.e., normally distributed error structure and con­
stant variance) on which this type of analysis is based. Instead, 
Hauer et al. (3) advocate the use of a generalized linear model 
[e.g., GLIM (6)] wherein these assumptions are avoided, 
thereby yielding a better predictor of accident frequency as 
influenced by other factors. 

Before proceeding it is important to define the safety m of 
an intersection as its mean accident frequency. This quantity 
can be estimated by taking the average of the m's [E(m)] for 
a large number of similar intersections, each having identical 
traffic demands. In this context, similar intersections have one 
or more geometric or traffic control characteristics in com­
mon. The estimate becomes more stable as the intersections 
become more similar (i.e., as the number of characteristics 
that they have in common increases). 

In the last few years, Hauer et al. (3) and others have 
convincingly argued that the distribution of accident counts 
for a group of similar sites (e.g., intersections, road sections) 
can be described by the family of compound Poisson distribu­
tions. In this context, there are two sources of variability 
underlying the count distribution. One source stems from the 

TABLE 2 Cross-Tabulation of Accidents by Daily Traffic Demand for Two-Way Stop-Controlled 
Intersections 

Major Minor Road (veh/day) Row 
Road Summary 
(veh/day) 45-517 518-1070 1071-1682 1683-3137 3138-8850 

430-2037 0.11• 0.81 1.00 0 0 0.25 
9.67 /57b 5.67 /7 1/1 0/0 0/0 16.33/65 

2038-3887 0.17 0.61 1.13 1.67 2.67 0.56 
2.66/16 3.67 /6 5.67 /5 1.67 /1 2.67 /1 16.33/29 

3888-7675 0.46 1.50 1.84 1.17 5.00 1.18 
3.67 /8 3/2 3.67 /2 2.33/2 5/1 17.67/15 

7676-17150 0 1.00 3.34 0 4.00 2.19 
0/0 5/5 6.67 /2 0/0 8/2 19.67/9 

17151-37900 0 1.33 0.67 2.67 0 1.90 
0/0 1.33/1 1.33/2 10.67/4 0/0 13.33/7 

Column 0.20 0.89 1.53 2.10 3.92 0.67 
Summary 16.0/81 18.67 /21 18.33/12 14.67 /7 15.67 /4 83.33/125 

•Tue top number in each cell represents the average annual accident frequency for the corresponding range of 
major and minor daily traffic demands (based on data for three years). 

bThe bottom numbers in each cell represent the average annual number of accidents and number of junctions 
(annual accidents / total junctions) for the range of daily traffic demands. 
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differences ill the m's among the similar sites. The other stems 
from the randomness in accident frequency at any given site, 
which is traditionally described as Poisson. 

In spite of being similar, each site has its own regional 
character and driver population, giving it a unique mean ac­
cident frequency, m. Thus, the distribution of m's within the 
group of similar sites can be described by a probability density 
function with mean E(m) and variance V(m). Hauer et al. (3) 
have shown this distribution to be adequately described by 
the gamma density function. 

Abbess et al. (7) have shown that if accident occurrence 
at a particular site is Poisson distributed, the distribution of 
accidents around the E(m) of a group of sites can be described 
by the negative binomial distribution. The variance of this 
distribution is 

E(m) 2 

V(x) = E(m) + -k- (3) 

where x is the observed accident count. Since the variance of 
the Poisson distribution is E(m), it is apparent that the var­
iance of the negative binomial distribution exceeds that of the 
Poisson by [E(m)2]/k. Hauer et al. (3) have shown that this 
latter quantity is equivalent to the variance of the mean ac­
cident frequency for the group of similar sites, V(m). Hauer 
et al. (3) have also shown that the parameter k can be esti­
mated by fitting Equation 3 to V(x) and E(m) estimates for 
the group of similar sites. The V(x) is estimated as the squared 
difference between the accident count and the corresponding 
E(m) for each site in the group. 

Generalized Linear Model 

The analysis tool used to estimate the model coefficients was 
the nonlinear regression procedure (NLIN) in the SAS sta­
tistical software package (8). This procedure is sufficiently 
general that it can be modified to accommodate error struc­
tures that are not normally distributed. It can also be easily 
modified to yield maximum-likelihood model coefficients. With 
these modifications, the NLIN procedure can be used as a 
generalized linear model similar to the GLIM package (6). 
An example application of NLIN to generalized linear mod­
eling is described in the SAS documentation (8, Example 6). 
The SAS code described in this documentation was modified 
(due to some errors in printing) and enhanced to include the 
negative binomial and gamma distributions. 

The generalized linear modeling approach relates a linear 
predictive equation to the expected value of an observation 
via a "link function." The link function equates this linear 
predictive relationship to a nonlinear, and perhaps bounded, 
dependent variable. One link function is theoretically related 
to the error structure of the data. This link function is some­
times referred to as the "natural" (or canonical) link. The 
selection of the appropriate link function is often based on 
the distribution of the error structure; however, as noted by 
McCullagh and Nelder (9), this is not a requirement. The 
natural link functions Jor the Poisson distribution and nega­
tive binomial distributions are given by Equations 4 and 5, 
respectively: 
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ln[E(m)] (4) 

(5) 

where the linear predictive equation is 

(6) 

To implement proposed model form, it was necessary to 
take the inverse of the link function [i.e., E(m) = J- 1('Yl)], 
equate it to the right-hand side of Equation 2, and solve for 
11· For the Poisson link function, the resulting linear predictive 
model takes the following form: 

(7) 

where ln(n) is termed the offset variable with an implied 
coefficient of 1.0. For this type of analysis, the offset variable 
is equivalent to the number of years underlying the observed 
count (in this study, n = 3 years for all observations). This 
linear predictive model form lends itself to further expansion 
if additional regression parameters are desired in the _model. 
For example, a study by Pickering et al. (JO), where additional 
parameters were included to examine the effects of various 
geometric elements on accident frequency at unsignalized 
T-intersections, illustrates the use of this model. 

A similar calculation of the linear predictive model form 
was not as successful for the negative binomial link function. 
In fact, it was not possible to implement the proposed model 
(i.e., Equation 2) in its intended form using the natural link 
for the negative binomial structure. Because of this loss of 
generality, and in recognition that it is not a requirement to 
use the natural link, the Poisson link was used for all analyses 
in this study. 

Quality of Fit 

Several statistics are available from the NLIN procedure for 
assessing the model fit and the significance of model coeffi­
cients. One measure of model fit provided by NLIN is the 
generalized Pearson X2 statistic. This statistic is calculated as 

X2 = L [x -A E(m)]2 
V(x) 

(8) 

where V(x) is estimated from Equation 3 by substituting 
E(m) for E(m). This statistic is available from NLIN as the 
"Weighted Sum of Squares" for the Residual. McCullagh and 
Nelder (9) indicate that this statistic follows the x2 distribution 
with n - p - _1 degrees of freedom, where n is the number 
of observations and p is the number of model parameters. 
This statistic is asymptotic to the x2 distribution for larger 
sample sizes and exact for normally distributed error struc­
tures. As noted by McCullagh and Nelder (9), this statistic is 
not well defined in terms of minimum sample size when ap­
plied to nonnormal distributions; therefore, it probably should 
not be used as an absolute measure of model significance. 

Another, more subjective, measure of model fit can be 
obtained from a plot of the prediction ratio versus the estimate 
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of the expected accident frequency [i.e., E(m)]. In this con­
text, the prediction ratio is the ratio of the observed accident 
frequency to the expected accident ,frequency. This type of 
plot yields a visual assessment of the predictive .capability of 
the model over the full range of E(m). A well-fitted model 
would have the prediction ratios symmetric about 1.0 over 
the range of E(m). This technique was applied by Hauer et 
al. (3) in a recent study of safety at signalized intersections. 

The significance of the parameter coefficients (with respect 
to the hypothesis that they equal zero) is also helpful in as­
sessing the relevance of model factors. In this regard, NLIN 
provides the standard error and 95 percent confidence interval 
for each coefficient. Because the Pearson X2 statistic (i.e., 
Equation 8) has some limitations, the significance of the in­
dividual parameter coefficients may represent a more realistic 
measure of model fit. 

Finally, the dispersion parameter CT ct is noted by McCullagh 
and Nelder (9) to be a useful statistic for assessing the amount 
of variation in the observed data. This statistic can be cal­
culated by dividing Equation 8 by the quantity n - p. It is 
also available from NUN as the "Weighted Mean Square" 
for the Residual. A dispersion parameter near 1.0 indicates 
that the assumed error structure is approximately equivalent 
to that found in the data. For example, if a Poisson error 
structure is assumed [i.e., V(x) = E(m)] and the dispersion 
parameter is 1.68, the data have greater dispersion than is 
explained by the Poisson distribution. In this situation, the 
negative binomial distribution might be considered, since it 
has a larger variance than does the Poisson (see Equation 3). 

Analysis Procedure 

Coefficient estimation for the proposed model was a multistep 
process. First, the data were analyzed using a Poisson error 
structure. Then NUN was used to fit Equation 3 to the squared 
residuals from the first analysis [Hauer et al. (3) indicate that 
the squared residuals can be used as an estimate of V(x)]. 
This second step yielded an estimate of the k parameter and 
a measure of its statistical significance. The need for a third 
analysis step was based on an assessment of the dispersion 
parameter and the k parameter significance. If the dispersion 
parameter wa~ more than 1.0 and the k parameter was sta­
tistically significant, a third analysis step was conducted using 

TABLE 3 Model Statistics 

Statistic 

Model Error Distribution 

Pearson X2 

2 
Xo.os,n-p-1 (n = 125, p = 3) 

Dispersion Parameter, ad 

Parameter1 Intercept, b0 

Major Road, b1 

Minor Road, b2 
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the negative binomial error structure with k from Step 2 as 
an estimate of the shape parameter. The residuals from this 
analysis were analyzed in a fourth step to determine a new k 
parameter. The third and fourth steps were repeated until 
convergence on a value of k. This procedure is consistent with 
that described by Hauer et al. (3). 

Calibrated Models 

The results of the first analysis step (Poisson error) are given 
in Table 3. As indicated in the table, there was sufficient 
dispersion (i.e., CT ct > 1.0) to justify further analysis in terms 
of the third and fourth steps (negative binomial error). The 
second step indicated that a k parameter of 3.9 was significant. 
The Pearson X2 statistic indicated that the assumed Poisson 
error structure did not account for a significant portion of the 
dispersion in the observations. Thus, further analysis via Steps 
3 and 4 appeared warranted. 

After two iterations of Steps 3 and 4 using a negative bi­
nomial error structure, the k parameter converged to 4.0. The 
fit of Equation 3 with the squared residuals is shown in Fig­
ure 1. Each circle represents the expected accident frequency 
averaged for several intersections. These intersections were 
ranked in ascending order of accident frequency before av­
eraging. Average values eliminate the visual "noise" associ­
ated with a plot of 125 individual data points and thereby 
better illustrate the underlying curvilinear trend. The number 
of intersections included in each average was based on the 
desire to plot 9 or 10 points that have weight as nearly equal 
as possible (8 points at a weight of 14 intersections and 1 at 
a weight of 13 worked best). Although most of the obser-

. vations are clustered near the origin, there appears to be a 
definite correlation with the variance function. 

On the basis of this analysis, the following model was de­
veloped for predicting the annual expected accident frequency 
for two-way stop-controlled intersections on rural highways: 

( ) 

0.256 ( ) 0.831 

E(m) = 0.692 l,~~0 l,~oo _. (9) 

The coefficients in this model are significant at a 95 percent 
level of confidence (i.e., 5 percent chance of false rejection). 
The Pearson x2 statistic was significant, indicating that the 

Analysis Steps 

1-2 3-4 

Poisson Neg. Binomial (k=4.0) 

215 136* 

147 147 

1.76 1.11 

0.650 (0.080)* 0.692 (0.121)* 

0.292 (0.065)* 0.256 (0.099)* 

0.791 (0.066)* 0.831 (0.102)* 

* Denotes significance at a 95-percent confidence level (5 percent chance of false rejection). 

1 Parameter values include coefficient estimates and standard error. Standard error is in 
parentheses. 
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Average of Squared Residuals 
0 

30 ·-·--·-·----··-·--···--·-·------------------·-- - ·-·--·--··-·-··-··---·-·-·-·----·--· -·-·---

2 4 6 8 10 

Average E(m), accidents/3 years 

FIGURE 1 Relationship between expected accident frequency 
and estimated accident variance. 

negative binomial error structure is able to explain a signifi­
cant portion of the deviation from the predicted values. The 
dispersion parameter was much nearer to 1.0 than for the first 
analysis, which further supports the selection of the negative 
binomial structure. 

The fit of the model to the data can be assessed using the 
open circles in Figure 2. The ratio of the observed accident 
count to the expected accident frequency for a 3-year period 
is shown. The desired symmetry of observations around 1.0 
is not as apparent as desired; however, the large black dots 
(averages of 14 ratios previously ranked in ascending order) 
indicate that a symmetry around 1.0 exists. 

The curvilinear trend suggested by some combinations of 
the open circles stems from the reciprocal nature of the plotted 
quantities [i.e., E(m) versus 1/E(m)]. For example, the most 
distinct curvilinear combination in Figure 2 represents those 
intersections having an observed accident count of one acci­
dent per 3 years. 

The predictive capability of the model is shown in Figure 
3. The starred data points represent the average annual ac­
cident frequencies from the row and column summaries of 
Table 2. Each open circle represents the average of the pre­
dicted annual accident frequency for the intersections that are 
included in the starred data points. The number of intersec-

Prediction Ratio (observed!E(m)) 
5....-------------------------. 

4 ·-----·--·-·-·----·-·-------·--·---·-·-·-------·--·-----------

oo 
0 

3 _Q ___________________ o ____ . ___________ _ 
0 0 0 

8 0 2 ---:;::-o----o---O·---------··-__ _ 

-~ ~ 0 0 
0 

2 4 6 8 10 

E(m), accidents/3 years 

FIGURE 2 Evaluation of model fit using prediction ratios. 
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Annual Accident Frequency 
5.--------------------------, 

Accident Frequency 

4 ·-----·--------- *-----·--------·-·-------- -&- Predicted, E(m) 

* Observed 

3 
'Minor Road 

5 10 15 20 
Daily Traffic Demand (Thousands) 

FIGURE 3 Accident frequency as a function of daily traffic 
demand. 
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tions that underlies each pair of data points is also provided 
in the row and column summaries of Table 2. 

Figure 3 provides further support for the exponential re­
lationship between accident frequency and traffic demand. 
The close agreement between the observed and predicted 
frequencies suggests that Equation 9 is a good predictor of 
the expected number of accidents at a typical rural, two-way 
stop-controlled intersection. A comparison of Equation 9 with 
the model proposed by Van Every (4) (i.e., Equation 1) in­
dicated good agreement between the models. 

CONCLUSIONS 

This paper describes the application of the generalized linear 
modeling approach to the development of a model relating 
intersection traffic demands to accident frequency. The gen­
eral linear model was implemented using the nonlinear regres­
sion procedure (NUN) of the SAS program (8) with appro­
priate modification. 

Several techniques for assessing model fit have been de­
scribed and any inherent limitations noted. Of the techniques, 
the authors place the most confidence in the plot of prediction 
ratio versus expected number of accidents. This plot indicates 
the amount of dispersion in the predicted values as well as 
the existence of any model bias over the range of accident 
frequencies considered. 

The product-of-flows-to-power model formulation appears 
to explain a large portion of the variability in accidents among 
intersections of similar geometry and traffic control. The strength 
of this model format has been shown by others (2-4,10) and· 
in this paper as applied to two-way stop-controlled intersec­
tions on rural highways. The form of this model suggests that 
mean accident frequency increases in a nonlinear fashion with 
increasing major or minor road demand. 

The analysis of accident data for 125 two-way stop-controlled 
intersections supports the theory that the distribution of ac­
cident counts can be described by the negative binomial distri­
bution. Also supported is the assertion that the mean accident 
frequency for the group of similar intersections is gamma 
distributed. Knowledge of these distributions and their par­
ametric values can be used to identify hazardous locations 
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and the true effect of safety treatments on accident frequency. 
A considerable amount of research in this area has been per­
formed by Hauer and Persaud (11). 
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