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Method for Optimizing Transit 
Service Coverage 

LAZAR N. SPASOVIC AND PAUL M. SCHONFELD 

A method is presented for determining the optimal length of 
transit routes that extend radially from the central business district 
(CBD) into low-density suburbs. In addition to the route length, 
the route spacing, headway, and stop locations are also optimized. 
The equations for the route length, route spacing, headway, and 
stop spacing that minimize the sum of operator and user costs 
are derived analytically for many-to-one travel patterns with uni
form passenger trip density. These equations provide consider
able insight into the optimality conditions and interrelations among 
variables. The equations are also incorporated within an efficient 
algorithm that computes the optimal values of decision variables 
for a more realistic model with vehicle capacity constraints. The 
algorithm is applied to rectangular and wedge-shaped urban cor
ridors with uniform and linearly decreasing passenger densities. 
The results show that in order to minimize the total cost, the 
operator cost, user access cost, and user wait cost should be 
equalized. At the optimum, the total cost function is rather shal
low, thus facilitating the tailoring of design variables to the actual 
street network and particular operating schedule without sub
stantial cost increases. The actual stop spacing pattern is deter
mined for each corridor type. For a uniform passenger density, 
the stop spacing increases along the route in the direction of 
passenger accumulation toward the CBD. For a linearly decreas
ing passenger density, the stop spacing first decreases and then 
increases along the route toward the CBD. The sensitivity of 
design variables to some important exogenous factors is also 
presented. 

One of the main problems in designing transit services is to 
provide appropriate transit service coverage and particularly 
to determine how far outward to extend transit routes into 
low-density suburbs. Service operators and users have some
what conflicting objectives regarding the transit route length. 
Operators prefer short routes in order to minimize their costs. 
Passengers, especially those from the outer suburbs, prefer 
longer routes in order to minimize their access impedance. 
Since the route length has a significant impact on both op
erator costs and passenger impedance, its value should be 
carefully selected. 

The purpose of this paper is to develop a method for op
timizing the length of transit routes that extend radially out
ward from the central business district (CBD). However, this 
problem may not be considered independent of route location 
and service scheduling. Therefore, the problem considered 
here is finding optimal combinations of route length, route 
spacing, headway, and stop location and spacing that mini-
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mize the sum of operator and user costs for rectangular and 
wedge-shaped urban corridors with uniform and linearly de
creasing passenger trip densities. 

LITERATURE REVIEW 

Several previous studies sought to optimize various elements 
of transit network design and service using calculus and, to a 
lesser extent, mathematical programming methods (1-18). 
The summary of pertinent analytical models that are classified 
according to the design variable(s) optimized is presented in 
Table 1. The table shows that in most studies the travel de
mand was fixed and uniformly distributed over the service 
area. The usual travel pattern was many-to-one, which is typ
ical for suburb-to-CBD commuting. The most common ob
jective function was minimization of the sum of operator cost 
and user time cost. 

A literature review revealed only one published paper (15) 
that optimized the radial length of a transit route in an urban 
transportation corridor, which is the focus of this research. 
Given the significant impact of the route length on cost, it is 
rather surprising that this research topic has not beeri given 
more attention in the literature. Wirasinghe and Seneviratne 
presented an analytical method for deriving the optimal length 
of a rail transit line in an urban corridor currently served by 
bus (15). The objective function to be minimized included 
the total cost of rail fleet, rail and bus operating cost, and 
passenger time cost. The authors found that for nonuniform 
rail line cost there could be several line lengths at which the 
total transit system cost is locally minimized (or maximized). 
For uniform rail line cost, an optimal line length existed if 
the net gain in travel time and operating cost of transporting 
the total demand a unit distance by rail when compared with · 
bus exceeded the marginal line and fleet cost per unit length. 
The authors developed closed-form solutions for the line length 
for sectorial and rectangular corridors with uniformly distri
buted demand. 

That paper did not consider stations along the line and 
related access cost. Furthermore, by basing the minimum rail 
fleet size on peak-period passenger capacity requirements, 
the authors assumed that the route would operate at the max
imum allowable headway. This assumption may be unwar
ranted even for the peak periods since the optimal headway 
may be heavily influenced by user waiting time. The present 
work not only optimizes route length but also jointly optimizes 
the headway, route, and stop spacing. 
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TABLE 1 Summary of Pertinent Analytical Models for Transit Network Design 

Decision Objective Transit Mode 
Variables Function 

Route Length Min. operator rrul 
and user cost 

Zone Length, Min. operator bus 
Headway and user cost 

Route Min. operator bus and rail 
Spacing, and user cost 
Lengths and 
Headway 

Route Spacing Min. operator bus 
and user cost 

Route Spacing Min. operator bus 
and Headway and user cost 

Route Density Min. operator bus 
and Frequency and user cost 

Route Max. operator bus 
Spacing, profit, Max. 
Headway and user benefit, 
Fare etc. 
Route Min. operator feeder bus to 
Spacing, and user cost rail 
Headway and 
Stop Spacing 
Route Max. profit. bus 
Spacing, max. welfare, 
Headway and min. cost 
Fare 
Route Min. operator bus 
Spacing, Zone and user cost 
Length, 
Headway 

Station Min. total user rail 
Location and travel time 
Spacing 
Stop Location Min. operator rail 
and Spacing and user cost 

Stop Spacing Min. operator bus 
and user cost 

STUDY APPROACH 

The problem is to provide optimal transit service coverage in 
an urban corridor shown in Figure 1. The corridor of length 
E and width Y is divided into two zones. Zone 1 consists of 
the area between the CBD and the route terminus. Zone 2 
is area between the route terminus and the end of the corridor. 

The basic approach in this research is to develop a total 
cost function in which the various operator and user cost 
components are formulated as functions of several decision 
variables, namely, route length, headway, route spacing, and 
stop spacing. Optimal stop locations as well as stop spacing 
are determined. The design objective in determining the op
timal service area coverage is to minimize the total operator 
and user cost. The optimal values of the decision variables 
are found by taking partial derivatives of the objective func
tion of all decision variables, setting them equal to 0, and 
solving them simultaneously. This approach, as it will be seen 

Street Network Passenger Authors 
Geometry Demand 

rectangular General, Wirasinghe 
grid inelastic, and 

many-to-one Seneviratne 
(1986) 

rectangular Piecewise Tsao and 
grid uniform, Schonfeld 

inelastic, (1984) 
rectangular Uniform, Byrne (1976) 
grid inelastic, 

many-to-one 

rectangular Uniform, Holroyd 
grid inelastic, (1967) 

many-to-
many 

rectangular Uniform, Byrne and 
grid inelastic, Vuchic (1972) 

many-to-one 
rectangular General linear, Hurdle (1973) 
grid inelastic, 

many-to-one 
rectangular Uniform Kocur and 
grid Elastic, many- Hendrickson 

to-one (1982) 

rectangular General, Kuah and Perl 
grid inelastic, (1988) 

many-to-one 

rectangular Irregular, Chang and 
grid elastic, many- Schonfeld 

to-many, time (1989) 
dependent 

rectangular Uniform, Chang and 
grid inelastic, Schonfeld 

many-to-one (1993) 

linear Uniform, Vuchic and 
inelastic, Newell ( 1968) 
many-to-one 

rectangular Uniform, Hurdle and 
grid inelastic, Wirasinghe 

many-to-one (1980) 
radial General, Wirasinghe 

inelastic, and Ghoneim 
many-to-many (1981) 

later, resulted in a simple model that offered considerable 
insight into the optimality conditions and interrelations among 
variables. The equations obtained are incorporated within an 
efficient algorithm that determines decision variable values 
for a more realistic model that includes a service quality 
constraint. 

This analysis of optimal transit service coverage is based 
largely on Spasovic's master's thesis (16), in which more de
tailed derivations and results can be found. 

Simple. Model 

The following assumptions are made in this model: 

1. The corridor is served by a transit system consisting of 
n parallel routes of uniform length L, separated by a lateral 
spacing M. 
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FIGURE 1 Corridor and transit network under study. 

2. The routes extend from the CBD outward. 
3. The total transit demand is uniformly distributed along 

the entire corridor, over time, and is insensitive to the quality 
of transit service. 

4. The commuter travel pattern consists of many-to-one 
or one-to-many trips focused on the CBD. 

5. Passengers board and exit transit vehicles only at stops 
along the route. 

6. A very dense rectangular grid street network allows 
passengers orthogonal access movements (i.e., parallel and 
perpendicular to the route). 

7. Transit vehicles operate in local service (i.e., all vehicles 
serve all stations). 

8. The average access speed is constant. Walking is as
sumed to be the only access mode. 

9. Average wait time is assumed to equal one-half of the 
headway. The headway is uniform along the route, as well as 
among all parallel routes. 

10. Operator costs are limited to those for vehicles (i.e., 
infrastructure is freely available). 

11. D_emand does not exceed vehicle capacity. 
12. There is no limit on vehicle fleet size. 

The total cost objective function includes the operator cost 
C0 , and the user cost Cu- The operator cost represents the 
cost of resources used by the operator to provide the service. 
The user cost consists of the access, wait, and in-vehicle costs 
multiplied by their respective values of time. 

The operator cost includes the maintenance and overhead 
as well as more direct costs of operation (driver wage, fuel, 
brake shoes, etc.). Vehicle depreciation might also be in
cluded as a portion of operator cost. In this paper, the op
erator cost is defined by the hourly operation cost c. The total 
hourly operator cost is the fleet size multiplied by the hourly 
operation cost. By definition, the fleet size is the number of 
on-line vehicles required to provide service and is obtained 
by dividing the total round-trip time (running time and layover 
time) by the headway. The average transit operating speed is 
selected to reflect running and layover times. Therefore, the 
total round-trip time is the round-trip route length divided by 
average speed. The stopping delay d is also included in de
riving the operator cost. The delay d is a linear function of 
the number of people waiting for vehicles at stops and the 
passenger boarding rate: 

d = const. 

+ (number of passengers)(boarding time per passenger) 

A constant delay due to acceleration and deceleration is as
sumed at each stop. The impact of these delays on the cost 
of operation is taken into account by multiplying the number 
of stops (given as N = LIS) by the stopping delay d and the 
operator hourly cost c. The total hourly operator cost is then 

C = 2cYL(_!_ q_) 
0 HM V + S 

where 

c = vehicle operating cost ($/veh-hr), 
Y = corridor width (km), 
L = length of transit route (km/route), 
d = stopping delay (hr/stop), 

H = route headway (hr/veh), 
M = route spacing (km/route), 
V = average transit speed (km/hr), and 
S = average stop spacing (km/stop). 

(1) 

The hourly user cost, Cu, consists of the access (Ca), wait 
(Cw), and in-vehicle (C;v) costs: 

(2) 

Since the trip origins are uniformly distributed over the 
corridor served by parallel routes, an average passenger ac
cessing the route perpendicularly walks one-quarter of the 
spacing between the two routes, for an access distance of 
M/4. The length of passenger access alongside the route de
pends on whether the trip originated within Zone 1 or Zone 
2. A passenger from Zone 1 walks along the route one-quarter 
of the local stop spacing S before reaching the stop. Passengers 
originating in Zone 2 have no other choice but to board the 
route at the terminus, thus having an average access distance 
of (E - L)/2 + M/4. The total hourly user access cost, Ca, 
is then obtained by multiplying the average access distances 
by the value of access time (Va) and the ridership, and dividing 
by the access speed ( G) . .The total user access cost is then 

C.= d[(E;L)P(E-L)Y+~PLY+~PEY] (3) 

where E is corridor length in kilometers and P is passenger 
trip density in passengers per square kilometer hour. 

The total waiting cost, Cw, equals the value of waiting time, 
V w, multiplied by the average wait time per passenger (H/2) 
and by the total ridership ( P EY). 
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C = VJi PEY 
w 2 (4) 

The total user in-vehicle cost is obtained by multiplying the 
time that an average passenger spends in the vehicle by the 
value of in-vehicle time (V;v) and the total number of pas
sengers. In this model, the in-vehicle time consists of two 
parts: the actual riding time between the origin stop and CBD, 
and the additional delay due to stops at stations. The average 
in-vehicle riding time is obtained as the average distance trav
eled divided by the spe~d· (V). Therefore, the passengers 
originating in Zone 1 travel about an average distance of 
L/2, and those from Zone 2 travel the whole length of the 
route L. Thus, the total user in-vehicle cost is given as 

(5) 

No out-of-pocket costs were included in the user costs. Transit 
fares are not part of the total cost since they are merely 
transfer payments from users to operators. 

The hourly total system cost, TC, a sum of operator (Equa
tion 1) and user costs (Equations 3-5) is then 

2cYL(l d) TC(L,H,M,S) = HM V + S 

+ Va PY[ ( E - L )2 + §_ L + ME] 
G 2 4 4 

+ V~ PEY 

+ V,"PY[ ~~ + ~(E - L) 

+dU +d!::._(E-L)] 
2S S (6) 

The total cost function can be minimized by setting its partial 
derivatives with respect to the decision variables to 0. In 
this case, the partial derivatives of the optimization variables, 
the route length, headway, route spacing, and the stop spac
ing are 

aTC(L) = 2c Y (_!. + ~) 
aL HM V S 

+ Va py[zCE - L) ( - l) + §_] 
G 2 4 

[
L E 2L L 

+V.PY -+---+d-_ 
IV v v v s 

+d~-d2~] =O 

aTC(H) = _ 2cYL (_!. + ·~)· +:Vw pfy·~ O . 
aH H2M l/ S . 2 . .' . 

(6a) 

(6b) 

.'-\·/ 
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aTC(M) = - 2cYL (! ~) + Va PEY = 0 
aM HM2 v+ s 4G (6c) 

aTC(S) = _ 2cYLd Va PLY 
as HMS2 + 4G 

+ V,.,PYL[ -d2~ - d;2 (E- L)] = 0 (6d) 

When Equations 6a-6d are solved independently, we obtain 
the following equations: 

L* 
&a(i + ~) + PHMV,,S 

E - ~~~~~~~~-'---~~-

4 [ v. - v,"a( i + ~) ]PHM 
(7a) 

[ ( 1 d)] 112 

4cL V + S 
V,NPE 

(7b) H* 

M* [ ( 1 d)] 112 

ScLG V + S 

VaHPE 
(7c) 

S* = [4Gd(2c - v,"PHM)(~ - E )]

112 

VfiPM 
(7d) 

Several observations should be made here: when the route 
length, route spacing, headway, and stop spacing are opti
mized independently of each other, their relation to the other 
decision variables can be read directly from Equations 7a-
7d. These equations provide the optimal value of one of the 
decision variables as a function of the other three variables 
and provide useful insights into the relations between the 
decision variables and parameters. For example, Equation 7a 
can be used to find the optimal route length when the head
way, route spacing, and average stop spacing are given (e.g., 
to satisfy the minimum service standards). Such equations 
may be useful by themselves in some situations in which cer
tain decisions variables such as the route length L or the stop 
spacing S cannot be modified. Unfortunately, Equations 7a-
7d cannot be solved simultaneously using algebraic methods. 

According to Equation 7a, the optimal route length varies 
directly with the corridor length E, passenger density P, op
erating headway H, route spacing M, value of access time Va, 
transit speed V, and stop spacing S. It varies inversely with 
the vehicle operating cost c, and access speed G. 

The optimal headway varies directly with the square root 
of operator cost, route length, and stopping delay. It varies 
inversely with the square root of the wait cost, passenger 
density, transit speed, corridor length, route spacing, and stop 
spacing. 

The optimal route spacing varies directly with the square 
root of access speed, operator cost, route length, and stopping 
delay. It varies friversely with the square root of the access 
cost, passenger d~ns.ity, transit speed, corridor length, head
way, an~ stop spacing. 

.- ... 
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Finally, the optimal average stop spacing varies directly 
with the square root of access speed, operator cost, and time 
lost per stop. It varies inversely with the square root of the 
access cost, passenger density, headway, route spacing, and 
in-vehicle cost. 

More Realistic Model 

Although the simple model provided valuable insights into 
the relationship among the decision variables and exogenous 
parameters, it is still too complex for the simultaneous opti
mization of all of the decision variables algebraically. To solve 
the model, a numerical algorithm was developed. In addition~ 
some of the original assumptions were relaxed by the intro
duction of a vehicle capacity constraint. This constraint en
sures that the total capacity provided on the routes satisfies 
the demand by restricting the maximum allowable headway; 
it is written as 

y 
PEY:5 K-l 

MH 
(8) 

where K equals capacity of transit vehicle (in spaces), and I 
is the allowable peak load factor at the CBD. 

Finally, the model can be written in the following form: 

TC(L HMS) = ZcYL(_!_ ~) 
' ' ' HM V + S 

+ Va py[(E - L)2 + §_ L + ME] 
G 2 4 4 

+ V~ PEY 

+ V,"PY[~~ + ~ (E - L) 

U L ] + d - + d - (E - L) 
2S S 

subject to 

PEMH :5 Kl 

L,H,M,S;:::::: 0 

OPTIMIZATION ALGORITHM 

The preceding model is formulated as a constrained optimi
zation problem with nonlinear objective function and linear 
constraints. The model can be solved by using a penalty method 
(20) as an unconstrained optimization problem by pricing the 
constraint out of the constraint set and introducing it into the 
objective function with a penalty. 

Instead of using the penalty function method, an algorithm 
was developed that sequentially applied Equations 7a-7d in 
somewhat modified form to advance from an initial feasible 
solution toward the optimal solution. The algorithm, shown 
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in Figure 2, starts with a trivial feasible solution to the problem 
and in each step improves the value of the objective function 
by computing an optimal value of one decision variable while 
keeping the others at their feasible levels. In computing the 
optimal values of decision variables, the algorithm first com
putes the number of stops, then route length, route spacing, 
and finally headway. In each step, the value of a newly com
puted variable is recorded and used in the next step for com
puting the optimal values of other decision variables. The 
algorithm keeps improving the objective function until it con
verges to an optimal solution. The algorithm decides to ter
minate on the basis of two criteria. The first criterion examines 
whether the newly obtained optimal headway satisfies the 
capacity constraint-that is, it checks whether the optimal 
headway is smaller than maximum allowable headway. If the 
optimal headway is greater than the maximum allowable 
headway, the algorithm terminates. The optimal headway is 
set equal to the maximum allowable headway, and the last 
set of decision variables is considered an optimal solution. 
The second criterion determines that the values of total costs 
from two successive iterations are sufficiently close that no 
significant further improvement can be expected. Assuming 
that the optimal set of decision variables is reached, the pro
gram computes the values of the total cost function for the 
optimal route length, number of stops, and spacing (i.e., 
N* ,L * ,M*) allowing variations in the headway, H. The pur
pose of this is to investigate the shape of the total cost near 
the optimum. As discussed later, the total cost turned out to 
be a relatively flat (shallow, four-dimensional, U-shaped) 
function. Thus, small deviations from the optimal decision 
variables result in even smaller relative changes in total cost. 

Besides computing the optimal values of the decision var
iables very quickly, the algorithm allows us to incorporate a 
scanning procedure for deriving the actual location of stops 
along the route. Note that Equation 7d calculates an optimal 
value of the average stop spacing, thus implying uniform spac
ing along the route. Although a uniform spacing is quite com
mon on bus transit routes in urban areas with grid street 
networks (e.g., Philadelphia and Manhattan), it does not yield 
the optimal solution for our objective function that minimizes 
the total user and operator costs. Intuitively, one might see 
that the actual stop location, thus spacing, will vary along the 
line as a result of the trade-off between the delay cost at stops 
incurred by the operator and passengers aboard the vehicles 
and the access cost of passengers boarding the vehicle along 
the route. Therefore, a scanning approach is incorporated in 
the algorithm to optimize variable stop spacing along transit 
routes. This scanning algorithm is somewhat similar to a method 
presented by Newell (4) and Hurdle (6). They integrated the 
demand function over time and dispatched the vehicle each 
time the optimum condition was reached. Wirasinghe used a 
somewhat analogous integration procedure over space to lo
cate stops on feeder bus routes when the function of cumu
lative number of stations reached an integer (10). Chang and 
Schonfeld used a similar approach to optimize the lengths of 
bus service zones (18). 

The partial total cost equation, derivation of formulas for 
optimal decision variables that are used in the algorithm, and 

, description of the scanning procedure for determining the 
actual location of the stops are described in the following. 
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FIGURE 2 Optimization algorithm. 
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Optimal Number of Stops and Stop Spacing 

The local station spacing on a route depends on trade-offs 
between delays to vehicles and passengers already on board 
versus the passengers' access cost. Clearly, under the objec
tive of minimizing the total cost, the vehicle traveling on the 
route will not stop if the combined cost of delaying the pas
sengers aboard the vehicle and operator cost outweighs the 
access cost of passengers waiting along the route. 

stop within increment AX, and the delay cost for the cumu
lative transit demand (i.e., the passengers aboard the vehicle) 
that originated at an area beyond the potential stop in the 
increment AX and the outer end of the corridor. The parts 
of the function that do not affect stop spacing are left out of 
the total cost equation because they drop to 0 in the deriv
atives· of the cost function. The partial cost function at any 
point X along the corridor is 

To apply such logic in determining actual stop locations, 
the corridor was partitioned into a finite number of small 
areas, AX, and scanned from its end toward the CBD. At 
any point along the route at X distance from CBD, and for 
the small increment AX (e.g., 0.1 km), the number of people 
within the increment as well as the cumulative number of 
people (from the end of the corridor to X) aboard the vehicle 
entering the increment AX was computed. At any point along 
the route at X distance from CBD, the total cost function that 
affects the stop location consists of the three parts: the op
erator cost of vehicle currently at X stopping in the next 
increment AX, the cost of users along the route accessing the 

TC(Si) = 2cdYfx _!_dx 
HM x-uSi 

+ ~; +r_jx+ v;"dm~J:dx] (9) 

The partial derivative of Equation 9 with respect to stop spac
ing is 

a TC( Si) 
a Si 

2cdY. VaY 
- Si2HM AX+ 4G PAX 

+ VivdAXY P(E _ X) O 
Si2 

(10) 



34 

The optimal stop spacing is 

.* _ {4Gd[2c + V;vHP(E - X)M] 
Si - · VaPHM }

112 

(11) 

Equation 11 is used to compute the optimal fractional number 
of stops within each increment i, that is, Ni* 

~x 
Ni*= -

Si* 
(12) 

The total number of stops in the corridor is then obtained by 
summing incremental stops over all the increments i, namely, 

E/t;.x 

N* = L N*i (13) 
i=l 

The optimal number of stops is used in the next step to derive 
the optimal route length. After the optimal values of all de
cision variables are computed, the actual location of a stop 
is determined using Equation 13 by summing the stop incre
ments on the route in the direction to the CBD. Each time 
an integer number is reached in the cumulative function of 
the number of stops, a true stop is established. 

Optimal Route Length 

The optimal route length is obtained as a result of the trade
off between operator and user access costs. Intuitively, the 
route should end at the point at which the supplier marginal 
costs equals the marginal access cost for users accessing the 
route from an area beyond the terminus. Access along the 
route to the stop is omitted from consideration for the optimal 
number of stops has been determined in the previous step. 
Thus, the partial cost function is 

2cYL V (E - L)2 

TC(N* L) = -- + ---E. PY 
' VHM G 2 

(14) 

Taking the partial derivative of Equation 14 with respect to 
the route· length and setting it equal to 0 yields the following 
expression for the optimal route. length: 

(15) 

Equations 13 and 14 are used as input for computing the 
optimal route spacing M*. 

Optimal Route Spacing 

The optimal route spacing depends on the magnitude of user 
access cost via paths perpendicular to the route as well as on 
the operator cost per route. In Equation 7c the LIS is replaced 
by N*, yielding the modified equation that is used within the 
algorithm: 

* = 8G(L *c + dN*) 
[ ]

112 

M VaPEH2 
(16) 
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Optimal Headway 

The optimal values of N* ,L * ,M* are then input into the mod
ified Equation 7d, yielding the optimal operating headway on 
the route: 

H* = [4c(L * + VdN*)] 
112 

VWPEM*V 

NUMERICAL EXAMPLE-RECTANGULAR 
CORRIDOR WITH UNIFORM 
PASSENGER DENSITY 

(17) 

The input data for this example are shown in Figure 3. The 
parameter values were taken from Keeler and Small (21) for 
values of time and from Fisher and Viton (22) for costs. The 
algorithm generated optimal route length, route spacing, op
erating headway, number of stops, supplier and user cost, and 
the total cost of the transit system, which are given in Table 
2. The table shows several iterations of the algorithm, which 
shows that it converges quickly toward the optimum solution. 
Note that the optimal headway of 8.5 min that minimizes the 
total cost is much smaller than the maximum allowable head
way of 12 min that was used as an .initial feasible solution. 
The total cost function is relatively flat near the optimum. 
This indicates that minor deviations away from the optimum 
will not increase the cost significantly. It is notable that at the 
optimum, the costs of user access time, of operating the ser
vice, and of waiting time are equal. This optimality condition 
is similar to the findings reported by Holroyd (1), Kocur (12), 
and Tsao and Schonfeld (13,14) for their particular models. 
The optimal route length, route spacing, and stop location 
are shown in Figure 3. This figure shows that the stop spacing 
increases along the route in the direction of passenger accu
mulation toward the CBD. At the outer end of the transit 
route, the delay cost of operator and passengers already on 
board is smaller than the access cost of passengers along the 
route who are trying to board. As access costs outweigh delay 
costs, more frequent stops are established. As the route ap
proaches the CBD, the number of passengers aboard the 
vehicles increases so that the 9elay cost begins to outweigh 
the access cost to passengers along the route who are trying 
to board, thus increasing the optimal stop spacings. 

SPECIAL CASES 

The optimization approach was also applied to a rectangular 
corridor with the passenger density decreasing linearly from 
the CBD and to a wedge-shaped corridor with uniform pas
senger density. The input data for these cases are the same 
as for the previous example. 

Rectangular Corridor with Linearly Decreasing 
Passenger Density 

To yield the same passenger volume as in the previous ex
ample so that the results can be compared, the passenger 
density of 77.2 passengers per kilometer per hour was assumed 
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8.045 km (5 miles) 
4.827 km (3 miles) 
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transit corridor length: 
transit corridor width: 
average transit speed: 
average access speed: 
boarding (or alighting) time: 
operator cost: 

16.09 km/hour (10 miles/hour) 
4.39 km/hour (2.73 miles/hour) 
2 seconds 

value of access time: 
value of in-vehicle time: 
value of waiting time: 
passenger density: 
transit vehicle capacity: 
allowable peak load factor: 

$30/vehicle-hour 
$9/passenger-hour 
$3/passenger-hour) 
$9/passenger-hour) 
38.6 passengers/km2-hour (100 passengers/mile2-hour) 
50 seats/vehicle 
1.0 

.-..~~~~~~~~~~~~~ L -~~~~~~~~~~---.i 

,_..~~~~~~~~~~~~~E 

o = Stop/Station 
Optimal Values: 
Route Length L: 7.78 km/route (4.83 miles/route) 

1MILE .. 
1 

Headway H: 8.5 minutes 
Spacing M: 1.24 km/route (0.77 miles/route) 

FIGURE 3 Optimal transit route configuration for rectangular area with 
uniform passenger density. 

in the linear density function-P = 77.2(1 - x!E). Figure 4 
(top) shows the optimal transit route configuration. From the 
figure, it can be seen that the stop spacing is decreasing along 
the route toward the CBD. This is consistent with the pas
senger distribution along the route. Because passenger density 
decreases from the CBD, the passenger transit demand in the 
outer area is much smaller than it is near the CBD. At a 
certain distance from the CBD, the stop spacing starts in
creasing. As the route approaches the CBD, the number of 
passengers aboard vehicles rises rapidly so that these passen
gers' delay costs increase faster than the access costs of pas
sengers along the route. As in the previous example the 
algorithm converges quickly to the optimal solution. A de
tailed discussion of this case study may be found in work by 
Spasovic (16). 

Wedge-Shaped Corridor with Uniform 
Passenger Density 

Figure 4 (bottom) shows the optimal transit configuration for 
the wedge-shaped corridor. In it, the stop spacing increases 
along the route in the direction of passenger accumulation 
toward the CBD. As the route approaches the CBD, the 
number of passengers aboard the vehicle increases so that 
their delay costs outweigh the access costs of passengers along 
the route waiting to board the vehicle. In addition, because 
of the wedge shape of the service area, the number of pas
sengers is decreasing in the direction of the CBD. As in the 
previous examples, the algorithm converges quickly toward 
the optimal solution. At the optimum, the total supplier cost 

(including delay cost) and the user access cost are equal. The 
user wait costs are about 25 percent lower than either operator 
or user access cost. However, it should be pointed out that 
the operating cost (without stop delay) and the user wait cost 
are equal at the optimum. A detailed discussion of this case 
study also may be found in work by Spasovic (16). 

Sensitivity Analysis 

The sensitivity analysis is performed to show how changes in 
the more important exogenous parameters affect the values 
of the decision variables. The results are presented in the · 
form of elasticities, which are convenient dimensionless mea
sures of sensitivity. Two approaches.for performing the sen
sitivity analysis were used. First, the sensitivity of one transit 
design element with respect to a particular parameter was 
examined without reoptimizing the system. This approach 
provides a very good insight into the relative changes in the 
dependent element of the transit system if a change in a par
ticular parameter occurs. Second, the sensitivity of the groups 
of transit design variables with respect to the single parameter 
has been measured after reoptimizing the system. The elas
ticities of the design variables-namely, route length, spac
ing, headway and number of stops with respect to the corridor 
length, passenger density, transit and access speed, operator 
cost, and values of riding access and waiting times without 
and with reoptimization-are presented in Tables 3 and 4. 
The tables show that, for example, if the passenger density 
is increased by 10 percent the headway will be reduced by 
4.8 percent. This result confirms that headway varies (ap-
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TABLE 2 Optimal Cost and Design Variables 

Solution I n m 
No. 

Route 7.9 7.69 7.8 
Length 

<km/route) 
Route 1.609 1.054 1:303 

Spacing 
(km/ 
route) 
Route 1.609 0.949 0.767 

Density 
(routes/ 

km) 

Headway 12.00 7.52 9.1 
(minute/ 
vehicle) 
No. of 24.96 21.20 23.15 
Stoos 

Operator 441.81 1046.22 709.47 
Cost 

($/hr) 
Operator 89.25 194.01 135.03 

Delay Cost 
($/hr) 
Total 531.06 1240.23 844.5 

Operator 
Cost 

($/hr) 
User 1240.35 834.51 1013.25 

Access 
Cost 

($/hr) 
User Wait 1350.0 846.6 1024.8 

Cost 
($/hr) 
Total 4451.19 4182.27 4172.49 

System 
Cost 
($/hr) 

Fleet Size 17.702 41.341 28.15 
(vehicles) 

proximately) with the square root of the passenger density. 
In addition, in both cases the optimal route length L is elastic 
(i.e., the absolute value of the elasticity exceeds 1.0) with 
respect to the corridor length E. The reason for this is that 
as the length of the corridor E is increased, the length of 
the area between the terminus and the end of the corridor, 
E - L, is increased very slowly, thus increasing L faster than 
E. The results of sensitivity analysis for the other two cases 
may be found in work by Spasovic (16). 

CONCLUSIONS 

The model developed in this paper provides simple guidelines 
for optimizing the extent of transit routes and other major 
operating characteristics. Equations 7a-7d can be used to 
optimize separately route length, route spacing, headway, and 
stop spacing. The square root in Equations 7b-7d indicates 
that optimal solutions are relatively insensitive to changes in 
system parameters. 

The algorithm provides an efficient and accurate method 
for simultaneously optimizing the decision variables. The re
sults closely confirm that in a system optimized for minimum 

IV v VI lop~a1f vm 

7.76 7.78 7.77 7.78 7.77 

1.197 1.252 1.230 1.241 1.236 

0.835 0.8 0.8138 0.806 0.768 

8.3 8.6 8.4 8.5 8.5 

22.32 22.71 22.54 22.62 22.59 

846.3 781.44 810.3 797.13 803.07 

158.58 147.24 152.19 149.88 150.90 

1004.88 928.68 962.49 947.01 953.97 

933.3 974.73 959.19 967.44 964.29 

930.3 966.9 947.7 954.9 951.0 

4166.34 4162.92 4163.07 4162.71 4162.77 

33.496 30.956 32.083 31.567 31.799 

total cost, the vehicle operating cost, user wait cost, and user 
access cost should be equal. This finding is similar to those 
of previous studies (1,12-14) for somewhat different transit 
systems and provides a useful optimality guideline for de
signing real transit systems. 

The total cost function is relatively flat near the optimum. 
For practical applications, this implies that a near-optimal cost 
can be attained while fitting the transit network to the par
ticular street network or modifying its operating schedule. 

FUTURE RESEARCH 

Several simplifying assumptions should be relaxed in future 
models. More realistic and irregular distributions of d~mand 
over space and time should be used. The model should be 
improved to handle non-CBD trips and access modes other 
than walking. The cost of transit facilities (e.g., station cost) 
should be considered in order to make the methodology more 
applicable in planning fixed guideway modes. Demand elas
ticity should be explicitly considered in formulating demand 
as a function of level of service and fare. This will also allow 
optimization for objectives such as profit, revenues, and welfare. 
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Optimal Values: o = Stop/Stat 1on 

Route Length L: 6.47 km/route (4.02 miles/route) 
I• 1MtLE 

Headway H: 7.9 minutes 
SpacingM: 1.14 km/route (0.71 miles/route) 

Optimal Values: 
Route Length L: 7.9 km/route (4.91 miles/route) I• 

]MILE 

Headway H: 7.5 minutes 
Spacing 0: 19°19' degrees/route 

FIGURE 4 Optimal transit route configuration: top, rectangular area with 
linearly decreasing passenger density; bottom, wedge area with uniform 
passenger density. 

TABLE 3 Elasticities of Design Variables with Respect to Various 
Parameters for Rectangular Area with Uniform Passenger Density, 
Without Reoptimization 

Desiim Variables 
Route Length Headway Route Spacing Number of 

Stops 
Corridor 1.0286 - 0.0013 -0.0010 0.6912 
Lenl?th 
Passenger 0.0185 - 0.4807 -0.4806 0.0625 
Densitv 
Transit Soeed 0.0185 - 0.4103 - 0.4103 0.0000 
Access Soeed -0.0328 0.0000 0.5052 -0.5050 
Operator Cost -0.0328 0.5051 0.5052 -0.2447 
Value ofln- 0.000 0.000 0.0000 - 0.2967 
Vehicle Time 
Value of 0.0185 0.000 -0.5049 0.5050 
Access Time 
Value of Wait 0.000 - 0.5050 0.000 0.0000 
Time 

1 



38 TRANSPORTATION RESEARCH RECORD 1402 

TABLE 4 Elasticities of Design Variables with Respect to Various 
Parameters for Rectangular Area with Uniform Passenger Density, with 
Reoptimization 

Desism Variables 
Route Length Headway Route Spacing Number of 

Stops 
Corridor 1.0278 - 0~0076 0.0068 0.7317 
Leneth 

Passenger 0.0.116 - 0.3247 - 0.3258 0.0083 
Densitv 
Transit Sneed 0.0146 ·-0.2742 -0.2751 - 0.1207 
Acce5s Sneed · - 0.0282 -03487 . -0.6596 -0.3892 ' 
Onerator Cost - 0.0125 0.3382 0.3379 -0.'1296 
Value of In- -0;00005 0.0002 - 0.00003 ;.0.25%. 

Vehicle Time • .. ·• 

Value of 0.0209 0.3476 - 0.6618 0.3806 
Access Time .. 
Value of Wait -0.0135 - 0.6819 0.3257 - 0.0289 

APPENDIX A 
Notation 

Time. 

The following symbols are used in this paper: 

c = vehicle operating cost ($/veh-hr) 
ca = total access time cost ($/hr) 
civ = total in-vehicle travel time cost ($/hr) 
C0 = total operator cost ($/hr) 
Cu = total user time cost ($/hr) 
Cw = total waiting time cost ($/hr) 
d = average time lost per stop (hr/stop) 
E = corridor length (km) 
G = average passenger access speed (km/hr) 
H = operating headway for a transit route (hr/vehicle) 
K = vehicle capacity (seat/vehicle) 
L = length of transit route (km) 
l = allowable p~ak hour load factor at CBD 
M = lateral route spacing for rectangular area (km/route) 
n = number of routes 
N = number of stops on route 
e = lateral route spacing for wedge area (degree/route) 
P = passenger trip density (passenger/km2-hr) · 
S = average stop spacing (km/stop) 
TC = total cost of a transit system ($/hr) 
V = average transit operating speed (km/hr) 
Va = value of access time ($/passenger-hr) 
V;v = value of passenger in-vehicle time ($/passenger-hr) 
V w = value of passenger waiting time ($/passenger-hr) 
Y = corridor width (km) 
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