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Ridership Sampling for Barrier-Free 
Light Rail 
PETER G. FuRTH AND AsHoK KuMAR 

The challenges and current practice in ridership estimation on 
light rail lines, particularly barrier-free lines, are reviewed. Two
stage sampling is an efficient plan because of the high level of 
accuracy demanded and the small number of scheduled trips. The 
theory of two-stage sampling is reviewed, and modifications are 
derived for times when the second-stage sample size varies be
tween primary units. Sampling plans for light rail lines in greater 
Los Angeles and San Jose are offered as examples~ Necessary 
samples sizes are as low as 25 round trips for 10 percent annual 
precision at the 95 percent confidence level, 80 round trips for 5 
percent precision, and 400 round trips for 2 percent precision. 

Responsible management demands reliable ridership esti
mates in order to monitor system performance, to track and 
forecast ridership and revenue trends, and to fulfill Ff A Sec
tion 15 reporting requirements. However, estimating transit 
ridership poses a challenge for nearly every North American 
system because in most systems all passengers are not rou
tinely counted. Ridership estimation is done by sampling, for 
which many techniques have been advanced. This paper de
scribes a statistically based sampling technique that is appro
priate to barrier-free light rail lines (although it certainly can 
be used in other situations as well) and its application to two 
new West Coast systems. 

Statistical sampling is an established discipline, covered, 
for example, in the work by Cochran (1). Stopher and Mey
burg's text reviews sampling in the context of transportation 
planning (2). Application of statistical sampling techniques 
to transit began with the Bus Transit Monitoring Manual 
(BTMM) (3) and its update, the Transit Data Collection De
sign Manual (TDCDM) (4), both of which were written for 
bus systems. In part, these manuals were driven by UMTA 
Section 15 requirements that systems receiving operating 
assistance report, among other things, systemwide annual 
estimates by mode of boardings and passenger miles that are 
based on a statistically sound methodology and satisfy specific 
accuracy requirements (10 percent precision at the 95 percent 
confidence level). UMTA published circulars describing two 
approved methodologies for bus systems (5 ,6) and one for 
demand-responsive systems (7), but no standardized method 
for light rail or other modes has been established. Applications 
of statistical methodologies seeking greater efficiency than the 
standard techniques have been published, but again they are 
designed for bus systems.· These applications include cluster 
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sampling (8), ratio-based estimation (9), and regression-based 
estimates (10). 

Ridership sampling for barrier-free light rail systems de
mands special attention for several reasons. First, accurate 
ridership estimates are sought for a single line or a very small 
number of lines; for bus systems, however, total ridership 
must be estimated over a large number of lines. Light rail 
systems can therefore be expected to exhibit less variability 
than bus systems, and techniques that reduce between-line 
variability such as stratifying by line type or line length be
come moot. Second, greater accuracy is often sought for light 
rail lines, particularly new lines whose ridership levels are 
being watched carefully by public officials and the press. The 
intensive sampling needed to achieve high levels of accuracy, 
when applied to a single light rail line, means that there is a 
high likelihood that a particular scheduled trip will be sampled 
more than once, and it is even possible that every scheduled 
trip will be sampled once or more. Statistical techniques that 
assume an infinite population of scheduled trips can safely be 
used for a bus system in which a few trips are sampled each 
week from a sampling frame of thousands of daily trips, but 
not for a light rail system in which a large fraction of the 
scheduled trips is sampled each month. 

Third, barrier-free systems with off-vehicle revenue collec
tion do not easily lend themselves to revenue-based sampling, 
a very efficient technique in many bus systems. Revenue
based estimation typically requires jointly measuring ridership 
and revenue for a sample of trips, and when there is no on
board revenue collection it is virtually impossible to assign 
revenue to a specific trip. Revenue-based estimation can be 
done on a basis other than vehicle trips, for example, by 
correlating boardings during a sample of time intervals at a· 
sample of stations to revenue collected at ticket-vending ma
chines at those stations during those intervals; but this ap
proach raises a host of issues of its own. For example, it 
provides no measurement of passenger miles; in addition, 
there can be a huge variance in revenue per passenger at 
different stations and different times of day due to trans
fer patterns, availability of round-trip tickets, and pass use 
patterns. 

Finally, the greater accuracy demands of new light rail sys
tems and their larger vehicles make load-based estimation, a 
technique used in several bus systems, impractical. One un
published study of the accuracy of wayside bus load mea
surements suggests a mean absolute error of 13 percent and 
a bias of 3 to 6 percent. A load-based estimate has three 
sources of error. The first two are sampling errors, first in 
the load data and second in ride check data (load, boardings, 
and passenger miles data used to derive the ratio-to-load fac-
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tors). These errors can be reduced by making more point 
checks and more ride checks. However, the third source of 
error, bias in the load measurements, cannot be diminished 
by increasing sample size, making high accuracy unattainable 
using wayside counts. Even if measurement error were elim
inated (e.g., by having checkers count on board the vehicle, 
introducing a new set of problems), the compounded errors 
from the point check sample and the ride check sample limit 
the value of the technique to desired precision levels of 10 
percent or greater. 

ESTIMATION METHODS IN USE 

An informal survey of light rail operators was conducted, 
supplementing an earlier survey ·performed by Kumar and 
Parry (11), to see what techniques are used to estimate rid
ership on light rail lines in the U.S. and Canada. Three rel
atively new barrier-free systems use a technique described 
later in this paper, a special case of two-stage sampling in 
which every scheduled trip is sampled several days a year. In 
another barrier-free system, ticketed boardings are counted 
directly from ticket-vending machines, and non ticketed (i.e., 
pass, transfer, and free) boardings are estimated from a ran
dom sample of trips expanded in proportion to ticketed board
ings. A fifth barrier-free system expands a random sample of 
trip portions by service minute rather than simply by number 
of trips. Among other light rail systems, a variety of methods 
are used, including the methods of Circular 2710.1 (5) (direct 
expansion of a sample of about 550 trips), Circular 2710.4 (6) 
(revenue-based expansion of a sample of 208 trips), and others 
( 4) (expansion of point load data based on ratio-to-load fac
tors that are updated every few years). At least one system 
uses a sampling method for Section 15 reporting while using 
electronic farebox and turnstile counts without sampling for 
internal purposes. Another uses revenue-based expansion in 
which the ratio-to-revenue factors are updated every few years 
and there is no sampling during the intervening years. The 
Canadian systems, which are not subject to Section 15 re
quirements, do not sample for passenger miles and are less 
systematic in estimating boardings than the U.S. systems, 
preferring to concentrate on peak load. 

TWO-STAGE SAMPLING METHODOLOGY 
DEVELOPED FOR SOUTHERN CALIFORNIA 
RAPID TRANSIT DISTRICT METRO BLUE LINE 

The Metro Blue Line is a 23-mi-long light rail facility con
necting downtown Los Angeles to downtown Long Beach. 
This 22-station line, operated by the Southern California Rapid 
Transit District (SCRTD), was opened to the public on July 
14, 1990. Like recently· completed light rail facilities in San 
Diego, Sacramento, San Jose, and Portland, the fare collec
tion systems on the Metro Blue Line are barrier-free, meaning 
that patrons are required to neither go through any turnstiles 
or fare gates nor show their fare media to an on-board op
erator or conductor. Under a contract from SCRTD, fare 
payment is enforced by a team of roving county deputy sheriffs 
who, besides patrolling the line for security purposes, are 
authorized to randomly inspect passengers for valid fare 
media. 
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Being the first new rail project in the Los Angeles area in 
more than 30 years and the first segment of a 150-mi rail rapid 
transit system currently under development, the Metro Blue 
Line drew considerable attention from the local news media 
and elected officials at the time of its opening. 

For about 2 months, ridership was tracked on a daily basis 
and shared with the news media. The passenger counting 
program is conducted by unionized schedule checkers em
ployed by SCRTD. As operations stabilized, attention was 
focused on finding an efficient, statistically sound method
ology for making reliable quarterly and annual patronage es
timates for both internal management and external reporting 
purposes. 

Several considerations dictated the statistical methodology 
chosen for estimating ridership. First,- because there was no 
auxiliary variable such as revenue suitable for ratio estima
tion, boardings would be estimated and expanded directly. 
Second, both sampling efficiency and variance reduction sug
gest using the round trip as the sampling unit rather than the 
one-way vehicle trip. Third, variance reduction and economy 
suggest estimating weekday, Saturday, and Sunday ridership 
in separate strata. Finally, the population of transit trips has 
a natural two-dimensional structure-that is, the fundamental 
sampling element is trip (i,j), the ith scheduled trip on the 
jth day. Because there is one pattern of variation between 
scheduled trips and another pattern of variation between days, 
the appropriate technique is two-stage sampling. 

Review of Two-Stage Sampling 

Two-stage sampling means sampling a number of primary 
units, and then, for each selected primary unit, sampling a 
number of elements or subunits within that primary unit. An 
example of two-stage sampling is the methodology of UMT A 
Circular 2710.1 (5), in which a number of days (the primary 
unit) is selected, and for each selected day a number of trips 
is selected. Because for a given day type each trip is run every 
day, we have two-stage sampling with primary units of equal 
size. The discussion will assume simple random sampling at 
each stage unless noted otherwise. Notation and definitions, 
following Cochran's text (1), are as follows: 

N = number of primary (Stage 1) units in population 

M = number of subunits (Stage 2) in population of each 
primary unit 

Y; = population mean per subunit in primary unit i 

= 1 " -Y = population mean per subunit overall = N L.J Y; 

n = number of primary units sampled 

m = number of subunits sampled in each primary unit 

Y;i = value for jth subunit in ith primary unit 

Y; = _!_ L Y;i = sample mean per subunit in ith primary unit 
mi 

= 1" b. y = - L.J )J; = overall sample mean per su umt 
n 
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Si 1 ""' -
N - 1 L.J (Y; Y)2 = variance among primary unit 

means 

s~ 
1 

N(M _ l) ~ .t (Y;1 - Y;) 2 = variance among sub-

units within primary units 

As Cochran demonstrates, y is an unbiased estimate of 
Y, and its variance, accounting for the finite population cor
rection, is 

(=) (N - n) Si (M - m) S~ Vy=---+ -
N n M mn 

= 1 - f1 Si + 1 - !2 S~ 
n mn 

(1) 

where f 1 = n/N and f 2 = m/M are the sampling fractions in 
the first and second stages, and (1 - f 1) and (1 - / 2) are the 
finite population corrections. 

Of course, Si and S~ are unknown and must be estimated 
from data. Define the sample Stage 1 variance and the sample 
Stage 2 variance as 

(2) 

2 - 1 ""' ""' ( - - )2 
S2 - n(m _ l) ~ f Y;1 Y; (3) 

As Cochran points out, s~ is an unbiased estimator of S~. 
However, si overestimates Si because si is calculated from 
sample means rather than true means, introducing additional 
variance that is proportional to the .variance of these sample 
means. Correcting for this additional variance yields the fol
lowing unbiased estimate of Si: 

s~(l - /2) si - --=...;'-----~ 
m 

(4) 

Two-Stage Sampling Schemes for Transit 

As mentioned earlier, UMTA Circular 2710.1, as well as the 
BTMM, use two-stage sampling for transit ridership in which 
the day is the primary stage and the trip is the subunit. (Their 
sampling plans involve a degree of systematic sampling in the 
selection of days, for the same number of days is selected 
each week. This departure from simple random sampling is 
expected to have a small but beneficial effect on precision 
and a negligible effect on bias, and can therefore be ignored.) 
The other possible two-stage scheme is to have the trip be 
the primary unit. In this scheme a number of trips would be 
selected from the daily schedule, and each trip would then 
be sampled on a fixed number of randomly selected days. 

The more efficient scheme is simply the one with the lowest 
total sample size (i.e., total trip-day combinations), since nei
ther scheme offers any significant efficiencies in collecting the 
data. (In addition, the first scheme can concentrate the check
ing on a smaller number of days, which may have a small 
impact on manpower availability.) Under either scheme, it 
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will usually be efficient to define "trip" as a round trip, since 
checkers must usually make round trips anyway in order to 
return to their starting point. Efficiency therefore depends on 
the Stage 1 and 2 variances and the finite population correc
tions, as indicated by Equation 1. 

For estimating ridership of a bus system composed of many 
bus lines, the first scheme appears appropriate. There are 
only 250 or so weekdays per year as opposed to thousands of 
trips in the daily schedule, so if the day is the primary unit it 
is certainly plausible that the finite population correction for 
Stage 1 will be considerably below unity, or even zero if every 
day is sampled, substantially reducing or eliminating the Stage 
1 variance's contribution to standard error and leaving as the 
main source of variability the variance between trips on a 
given day, which, while large, is divided in Equation 1 by mn, 
the total number of subunits in the sample. However, for a 
simple light rail line the second scheme, with the trip as the 
primary unit, appears more natural. The weekday schedule 
is likely to have about 100 round trips, fewer than the number 
of weekdays in a year, so the Stage 1 finite population cor
rection factor can more easily become zero under Scheme 2. 
If the sample size is at least 250, Stage 1 variance vanishes 
for either scheme, and efficiency depends entirely on second
stage variance, which in Scheme 1 depends primarily on peak
ing of demand and in Scheme 2 depends on day-to-day vari
ation in demand and operations. In Figure 1, second-stage 
variability is illustrated for both schemes on the basis of Metro 
Blue Line data. It was expected-and the data in Figure 1 
confirm the expectation-that the second-stage variance would 
be smaller under Scheme 2. As it turned out, the difference 
between the two schemes was not as great as expected. 

200---------------------------..--__.. __ ~ 

100------------------------------·-m-im-i._.._.._.l-ll---

200 

100 

FIGURE 1 Second-stage variability for two sampling 
schemes: top, Scheme 1, within a day; bottom, Scheme 
2, within a trip. 
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Varying Second-Stage Sample Sizes 

The available Metro Blue Line data had been sampled fol
lowing the first scheme-that is, days were selected at random 
each week and trips were selected at random for each selected 
day. Matters were complicated by the fact that the sampling 
rate had changed overtime-sampling had been more inten
sive soon after the line opened because both management and 
public interest were great at that time. Therefore, although 
each primary unit (the day) is still equal in size (same number 
of trips), the second-stage sample size was not the same across 
all sampled days. Letting 

m; = number of subunits sampled within primary unit i 

the sample within unit variance should be defined as follows: 

1 n [ ~ (y ij - y;)2] 
s~ = - 2: 1_=_1 ___ _ 

n i=l m; - 1 
(3a) 

1 n [ ~ (yij - y;)2] 1 n 

s~ = - L 1=1 = - L s~; 
n i=l m; - 1 n i=l (3b) 

which is then an unbiased estimator of S~. An unbiased es
timator of Si is then 

2 s~(l - f;) 
S1 - m' (4a) 

where m' is the harmonic mean of the second-stage sample 
size given by 

and 

f' - m' 
2 - M 

(5) 

(6) 

Furthermore, the variance of the final estimate, given in 
Equation 1, should be modified by replacing m with m' and 
f 2 with/;. 

To find the expected value of an estimate, first average 
over all possible second-stage samples for a fixed set of n 
Stage 1 units. Then average this result over all possible Stage 
1 samples of n units. This logic can be represented as£(•) = 
£ 1 [ £ 2(•)]. Applying this logic to Equation 3a, 

[ ~ (yij - y;)2] 
E2 -1 = S22· 

m; - 1 , (7) 

where S~; is the variance among subunits within the ith pri
mary unit. Therefore 

(8) 
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Then averaging over all possible first stage samples of size n, 

(9) 

To obtain the expected value of si (still given by Equation 
2), two results should first be established. First, given that 
unit i has been selected in Stage 1 and asigned to have m; 
randomly selected subunits sampled, the variance of the Stage 
2 sample mean of unit i is, from the theory of simple random 
sampling without replacement, 

(-) s2 (M - mi) var2 Y; = 2i Mm; (10) 

Likewise, for a given Stage 1 selection and a given assignment 
of Stage 2 sample sizes m;, 

- ( 1 ~ ) 1 ~ (M - m ·) var2(y) = var2 -;; L.J Y; = n2 L.J S~; Mm; ' (11) 

Considering now si, we know that 

2: (Yi - y) 2 
. = 2: y'f - n Y2 (12)' 

so that 

(n - l)E,(sl) = E, ( L;.vi) - nE,(J') 

= L; Yi + L: Sl, ( M ,;m~') 

= 1~ (M-m-) - nY2 - - L.J S2 . ---' 
n n 2. Mm; 

= L (v.-Y.)' 
+ (n: l)L:si,(~, - ~) (13) 

where Yn is the population mean per subunit for the selected 
n primary units. 

When averaging over all possible Stage 1 samples of n units 
with assigned Stage 2 sample sizes m;, random sampling and 
random assignment implies that 

E,[ Sl, (~)] = E,(Sl,)E, (~.) 1 - s2-- 2m' (14) 

Therefore, dividing Equation 13 by (n - 1) and taking the 
expectation over Stage 1, 

E(s2) = s2 + s2 (_!_ ~ 1-) 
1 1 2 m' M 

= s2 + s~ (1 - f') 
1 m' 2 

(15) 

from which Equation 4a follows. The proof for the modifi
cation to Equation 1 follows the same line of reasoning. 
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Metro Blue Line Results 

Results for Scheme 1 are presented in Table 1, Column a on 
the basis of weekday data from July 1991 through February 
1992, during which time the rail line schedule and the sampling 
schedule were relatively stable. Variance information is pre
sented in the form of coefficient of variation (relative standard 
deviation) or cv = (square root of variance)/mean, since the 
cv is more readily visualized and is closely related to statistical 
precision. As indicated in the table, the Stage 1 sample cv 
(variation between the sample means of the sampled days) is 
21 percent, on the basis of a sample of 135 days with a har
monic mean = 1.3 trips per day. The Stage 2 sample cv 
(variation between trips within a day) is 22 percent, on the 
basis of data from 56 days on which multiple trips were sam
pled (harmonic mean of 2.3 trips per day). This figure con
forms with expectations based on occasional 100 percent ride 
checks (checking every trip on a given day). The estimated 
Stage 2 cv is the same as the sample Stage 2 cv, 22 percent, 
but the estimated Stage 1 cv, 9 percent, is far smaller than 
the sample Stage 1 cv. This is a good example of the bias 
inherent in the sample Stage 1 variance-it incorporates vari
ance from both the true Stage 1 variance and from the sam
pling variance inherent in a sample of only (on average) 1.3 

TABLE 1 Sampling for Weekday Boardings 

sampling element 
stage 1 
stage 2 
N 
M 

ANALY_SIS DATASET 
n 
m 
total sampled trips 
mean 
CV 

CV 

Estimated CV 
Estimated CV 

(a) 

round trip 
date 
trip 
255 
112 

135 
1.3 
219 
395 
0.21 
0.22 

0.09 
0.22 
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trips per day. Applying Equation 4a with cv's and ignoring 
the insignificant Stage 2 finite population correction, 

cvi = CVi + CVilm' = CVi + cv~lm' 

0.2l2 = 0.092 + 0.222/1.3 

where CV; is population stage i coefficient of variation and 
cv; is sample stage i coefficient of variation. 

With these results, first- and second-stage sample sizes nec
essary to achieve a given precision level can be determined 
by trial and error. For the Metro Blue Line, and probably 
for most light rail lines, efficient plans for increasing levels of 
precision involve sampling one trip per day for n days until 
every day is covered once, then adding a second trip, and so 
on. (Under such a plan, the Stage 2 finite population correc
tion can be neglected.) The sample size necessary to estimate 
annual weekday boardings to a precision of 10 percent was 
found to be one round trip per day for 22 days, which com
pares favorably with the more than 540 randomly selected 
one-way trips required by UMTA Circular 2710.1. For 5 per
cent precision, the necessary sample size is 1 round trip per 
day for 82 days, and for 2 percent precision it is 2 round trips 
per day, every weekday of the year, for a total sample size 

(b) 

round trip 
trip 
date 
112 
255 

112 
1.3 
219 
385 
0.26 
0.19 

0.19 
0.19 

(c) 

round trip 
trip 
date 
224 
128 

same 
as 
(b) 

0.19 
0.19 

(d) 

one-way 
trip 
date 
206 
255 

206 
2.3 
757 
46.5 
0.58 
0.32 

0.54 
0.32 

trip 

SAMPLING PLAN FOR 10% PRECISION (m=1) 
n 22 

SAMPLING PLAN FOR 5% PRECISION (m=1) 
n 82 

SAMPLING PLAN FOR 2% PRECISION 
n 255 
m 
m 
nm = sample size 

(a) Metro Blue Line, scheme 1 
(b) Metro Blue Line, scheme 2 

2 
2 

510 

26 

76 

112 
3.25 
3.2 
364 

27 

91 

224 
1.75 
1.6 
392 

(c) Metro Blue Line, scheme 2 with thorough midyear timetable change 
(d) Guadalupe Line, scheme 2 

98 

190 

206 
5 
5 

1030 
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of 510 round trips. (Here and throughout the paper the 95 
percent confidence level is used, for which the precision is 
1. 96 times the relative standard error.) · 

The same data set was used to test the second scheme for 
two-stage sampling, namely, selecting n trips at the first stage 
and then selecting m days on which to sample each selected 
trip. The results of this analysis are approximate since they 
are based on a sample that was selected after the first scheme, 
so that the selection of days is not entirely independent from 
one trip to another. The results, presented in Table 1, Column 
b, are that the Stage 1 (variation between the means of dif
ferent round trips) cv is estimated to be 19 percent, and the 
Stage 2 (variation between days for a given round trip) cv is 
also estimated to be 19 percent. Consequently, the ~ample 
sizes needed to achieve 10, 5, and 2 percent precision, re
spectively, are 26, 76, and 364 round trips. The latter case 
involves sampling every trip 3.25 times on average, meaning 
75 percent of the round trips are sampled three times a year 
and the rest are sampled four times. The harmonic mean of 
the second-stage sample size is 3.2, so whereas the sampling 
cost is proportional to 3.25 days per trip, the precision is 
calculated as if there were only 3.2 days per trip. 

Comparing the two schemes, there appears to be little dif
ference except when the sample size is large enough that 
nearly every Stage 1 unit is covered, in which case the effect 
of the Stage 1 variance is greatly diminished by the finite 
population correction and the critical factor is the Stage 2 
variance. The prior expectation. was that the Stage 2 variance 
in Scheme 2 (variation between days for a given trip) would 
be considerably smaller than the Stage 2 variance in Scheme 
1 (variation between trips for a given day), making Scheme 
2 more efficient. However, the available data show only a 
small advantage for Scheme 2. Given the limited scope and 
imperfections of the data set, further data collection and anal
ysis will be needed before anything definitive can be con
cluded about the relative efficiencies of the two schemes. 
Further data collection and analysis will also be needed to 
see that the levels of variance observed are maintained as the 
systems matures. 

Practical Considerations 

Transforming these results into actual sampling plans for the 
Metro Blue Line required some modifications to account for 
several complications. 

1. Data were available for 2 fiscal years, 1990-1991 and 
1991-1992. Both data sets were analyzed and cv's were taken 
as an average for the 2 years, with a greater weight placed 
on the more recent year. 

2. The same analysis was applied to Saturday and Sunday 
data. In the final sampling plan each day type is a separate 
stratum. For the final annual estimate the strata are combined 
using standard formulas for stratified sampling. , 

3. The trip schedule does not consist only of simple round 
trips. There are pull-outs and pull-ins as well from the depot 
that is located along the line about 3 mi from the Long Beach 
terminal. Therefore, the sampling unit is a generalized round 
trip, which may be a simple round trip, a round trip plus a 
pull-in or pull-out between the depot and Long Beach, or a 
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depot-Los Angeles-Long Beach trip, or any other combi
nation whose ridership is expected to be comparable to that 
of a simple round trip. The daily schedule should be divided 
a priori into sampling units, and each sampling unit selected 
with equal probability (within a day type stratum). 

4. What if the timetable changes during the year? For Scheme 
1, this change could be ignored, assuming the underlying 
between-day and between-trip variations do not change much. 
For Scheme 2, a thorough timetable change can be treated 
like a doubling of the number of scheduled trips and a halving 
of the number of days each trip runs. This modification can 
affect significantly the magnitude of the finite population cor
rection (since the population of trips doubles), reducing the 
efficiency of the method. If the timetable change is partial (as 
are most timetable changes), the effect is less severe. Asam
pling plan for the Metro Blue Line that assumes there will be 
one thorough timetable change in the year is shown in Table 
1, Column c. Sample sizes are only a little higher than with 
no timetable change, assuming no change in the Stage 1 and 
2 variances. Of course, if the timetable change significantly 
affects the underlying variances (e.g., changing departure times 
to smooth out vehicle loads should reduce the between-trip 
variance), the underlying variances should be reestimated, 
and the before and after parts of the year treated as separate 
strata. 

5. As mentioned earlier, with either scheme the most ef
ficient sampling plan for moderate to high levels of precision 
calls for only one second-stage sample per primary unit sam
ple. The data generated by this kind of sampling are insuf
ficient to reestimate Si and S~ in the future. Therefore, it is 
recommended that a sampling plan involving 2 days per trip 
be followed every third year or so to permit reestimation of 
the underlying variances. To illustrate the loss of efficiency 
from increasing the Stage 2 sample size, an analysis was done 
for Scheme 2, considering a stratified sample with three day 
types, a mid-year schedule change, and a given number (124) 
of round trips. Sampling 62 round trips on 2 days each resulted 
in a precision of 7 .2 percent, and sampling 124 round trips 
on 1 day each yielded a precision of 5.5 percent. 

SAMPLING METHODOLOGY FOR SANTA 
CLARA COUNTY TRANSIT DISTRICT 
GUADALUPE LINE 

The Guadalupe Light Rail Line is operated by the Santa Clara 
County Transit District in a north-south corridor through 
downtown San Jose, California. Like the SCRTD Metro Blue 
Line, the Guadalupe Line is barrier-free, with ticket-vending 
machines and multiticket canceling machines on station plat
forms. The ride check data available for this study came from 
1990, when only the downtown and northern portions of the 
line were open. 

Like the Metro Blue Line, the Guadalupe Light Rail line 
is the first light rail line in its county in several decades. Its 
ridership is changing rapidly as people accommodate their 
travel patterns to the line's availability and as new segments 
of the line open. Both management and the general public 
have a keen interest in tracking ridership. Therefore, ridership 
estimates must be more accurate than the annual 10 percent 
precision mandated by Section 15. After consulting with man-
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agement, it was concluded that the desired precision was 1 to 
2 percent for annual estimates, corresponding to a precision 
of 2 to 4 percent for quarterly estimates. At this level it was 
clear that data collection would have to be sufficiently inten
sive to cover every trip in the schedule once a month for 
weekday trips and once a quarter for Saturday and Sunday 
trips. The sampling method then is a special case of two-stage 
sampling following Scheme 2 (first select trips, then select 
days for each trip) in which every trip in the schedule is 
selected; in effect, it becomes stratified sampling with each 
trip representing a stratum. Because every Stage 1 unit is 
sampled, Stage 1 variance is inconsequential; the only con
tribution to the variance of the estimate comes from Stage 2 
variance, the variance between days for a given trip. 

Presented in Table 1, Column dare the results from analysis 
of Guadalupe Line weekday data. The Stage 2 cv is 32 percent. 
This value is considerably higher than the corresponding vari
ance for the Metro Blue Line (22 percent). Recognizing that 
mean boardings were about 50 per one-way trip on the Guad
alupe Line and about 400 per round trip on the Blue Line, 
this result is in keeping with the common finding that the cv 
diminishes as the ridership level increases and suggests that 
the variance on the Guadalupe Line will diminish as the line 
expands and ridership grows. The Saturday and Sunday Stage 
2 cv's are still greater: 64 and 45 percent, respectively. Esti
mating weekday ridership with a 2 percent annual precision 
requires sampling all 206 weekday trips five times a year, for 
a total of 1,030 one-way trips. For 5 and 10 percent precision 
estimates, the high between-trip cv necessitates sampling 190 
and 98 one-way trips, respectively, once a year. 

Alternative sampling plans were recommended for the time 
after the southern portion of the line opened. By way of 
illustration, one plan was to sample each weekday trip once 
every 2 months and each weekend trip once a quarter. As
suming that the cv's will be the same after the line expands, 
an assumption that the authors consider conservative, this 
plan is expected to achieve 1.5 percent precision in the esti
mate of total annual boardings and 3 percent precision for 
quarterly estimates. Calculations for this stratified sampling 
plan are shown in Table 2. The following formulas are used 

TRANSPORTATION RESEARCH_RECORD 1402 

in that table (the Stage 2 finite population correction is 
ignored): 

h = stratum identifier 

wh = stratum weight = (total trips)h/(total trips) 

variance = L [wh(mean per trip)h(within trip cv)h]2/nhmh 
h 

mean = L wh(mean per triph 
h 

precision = 1. 96 Vvariance/mean 

It is interesting to note that if each sampling unit (a date
trip combination) is treated as an independent unit without 
recognizing its two-stage structure, the sample size necessary 
to achieve a given level of precision would be a little more 
than three times larger than needed when the two-stage struc
ture is exploited .. If the sampling units are stratified into 10 
strata by period (Saturday, Sunday, and four weekday pe
riods) and by direction (for weekday only), the necessary 
sample size would still be almost twice as large as required 
by the two-stage scheme, which is effectively stratified sam
pling with about 500 strata (one each for 231 weekday, 135 
Saturday, and 135 Sunday trips). 

RELATIONSHIP TO OTHER PUBLISHED 
SAMPLING PLANS 

It seems appropriate to contrast the methodology described 
in this paper with those in the four major publications dealing 
with statistical sampling for transit ridership: the BTMM (3); 
its update, the TDCDM (4); and UMTA Circulars 2710.1 (5) 
and 2710.4 (6), all of which were written primarily for bus 
systems. 

The BTMM assumes a two-stage sampling plan. Circular 
2710.1 is based on its methodology and established necessary 
sample sizes by using default values for the Stage 1 and 2 
variances and ignoring the finite population correction. The 
BTMM formulas differ from those used in this paper in two 

TABLE 2 Stratified Sampling Plan for Guadalupe Line 

Wkday Sat Sun Total 

N {trips) 231 135 135 
M. (days) 255 52 58 365 
total trips =MN 58905 7020 7830 73755 
stratum weight 0.799 0.095 0.106 
mean per trip 46.5 37.7 35.2 
mean contribution 37.1 3.6 3.7 44.5 
within trip cv 0.32 0.64 0.45 

SAMPLING PLAN 
n 231 135 135 
m 6 4 4 
sampled trips = mn 1386 540 540 2466 
variance contribution 0.0976 0.0090 0.0049 0.1116 
standard error 0.334 
precision @ 95% conf. 1.5% 
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ways, and it seems proper to explain the differences for the 
sake of avoiding confusion. 

1. The BTMM uses si, the variance between Stage 1 sample 
means, as an estimator of Si, the variance between Stage 1 
true means. As we have shown, s'f is always greater than S'f 
because the former incorporates a degree of Stage 2 sampling 
variation inherent in the sample means. Omitting the correc
tion from the BTMM makes its results more conservative than 
necessary. 

2. The BTMM formula for Stage 1 or between-day variance 
(3 ,p.118) differs from Equation 2 in that each primary unit 
is weighted by the number of subunits sampled, k; (called m; 
in this paper). The BTMM formula for Stage 2 or within-day 
variance (3,p.119) differs from Equation 3a likewise. Weight
ing is appropriate only in the case of a stratified sample (e.g., 
a sample that includes weekday and weekend trips). However, 
even in such a case the weights should be the population 
weights, not the sample weights. Therefore, these formulas 
are valid only when the sample weights are the same as the 
population weights (e.g., when every trip, regardless of stra
tum, has an equal probability of selection). The examples 
presented in the BTMM (3 ,pp.134-135) have equal sampling 
rates, and are therefore correct. However, if the sampling 
rate is not the same in all strata, or if some weekdays are 
sampled more often than others (say, due to invalid samples 
being discarded), the BTMM formula will bias the results in 
favor of the days that, for whatever reasons, are overrepre
sented in the sample. 

Circular 2710.4 and the TDCDM model the sampling pro
cess as simpler one-stage sampling, assuming that trip-day 
combinations are simply selected at random. (In fact, as in 
Circular 2710.1, selections in Circular 2710.4 are not purely 
random but contain a systematic element in that an equal 
number of selections are made for every week.) These doc
uments retreat from the two-stage sampling of their antece
dents because when there are thousands of trips in the daily 
schedule, as is the case in large bus systems, and the required 
precision demands a sample of fewer than one trip a day, the 
possibility of a trip being repeated in a one-stage sample is 
so remote that a one-stage sample is essentially indistinguish
able from a two-stage sample. It can easily be shown that (a) 
when m = 1 (i.e., each sampled trip is sampled only once) 
and (b) the finite population corrections at both stages are 
negligible, the two-stage estimates of the overall mean per 
trip and of its variance become identical to single stage esti-
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mates from an infinite population, which is the assumption 
of the TDCDM and Circular 2710.4. Why then does this paper 
revertto two-stage sampling? Because the vastly smaller num
ber of scheduled trips and the greater demands for accuracy 
on a light rail line make it almost certain that a one-stage 
sample will include some scheduled trips many times while 
other trips are excluded, whereas a two-stage sample can be 
designed to provide for even coverage of all trips. Even cov
erage is more efficient statistically and benefits the transit 
agency more in meeting other data needs. 
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