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A simulation Model for Driver's use of
fn-Vehicle Information Systems
Wnrren¿ H. Lrvrso¡¡

A simulation model for predicting driver behavior and system
performance when the automobité driver performs concurrent
steering.and auxiliary in-vehicle tasks is described. The model
was used ìn support of an experimental study to develop evalu_
ation methods and human faitors guidelines ior in_vehicie infor_
mation systems. It is an integration-of two computerized models:
the procedural model and the driver/vehicle nìodel. The proce_
dural component deals primarily with in-vehicle tasks anà with
the task-selection and attention-allocation procedures, whereas
the driver/vehicle component predicts closed-loop continuous
control (steering) behavior.^Given.descriptions of the driving en-
vironment and of driver information-prócessing lirnitationsl tlte
resulting integrated model allows one io predict"a variety of'péi_
formance measures for typical scenarios. Application of the ¡nodel
to exp,eriment design is discussed, and quantitative examples are
provided for model calibration and for'preclicting the effects of
in-car telephone use on steering performance.

The U.S. government is promoting an urnbrella prograrn known
as intelligent vehicle-highway systerns (IVHS), ihe goal of
which is to apply advanced electronics, compuiing, anã com_
munications technology to improve highwáy efficiency and
safety. This technology will include a¿vancé¿ in_vehicle in_
formation systems to help drivers perform a number of func_
tions, including in-car telephoning, navigation, traffic status
monitoring, on-road hazards warning, ãnd vehicle systems
monitoring. Tho safety of such systems is in question because
of the potential for in-vehicle displays to dive;t attention from
the primary driving task (/-J).

This paper describes a simulation model that was developed
to predict driver l¡ehavior in support of an experimental study,
performed by the University of Michigan Transportation Re_
search Institute (UMTRI) for the U.S. Department of Trans_
portation, to develop evaluation methods ãnd human factors
guidelines for in-vehicle information systems (4). Given de_
scriptions of the tasks to be performed and óf u driu"r,,
information-processing limitations, the model predicts a va_
riety of performance measures for typical scenìrios. Repre_
sentative measures include lane deviations, control use and
monitoring times for a variety of in-vehicle systems, and vari_
ous measures of driver attention such as eye fixations times
and scan frequencies, task-to-task transitións, and statistics
relating to task interruptions.

The primary intended uses of this model are to aid in the
design of manned simulation experiments and to help ex_
trapolate experimental results. preexperiment model anãlysis
is of particular value in situations in which, because of the

expense or limited access to resources, it is critical to have
the experimental program well defined before starting a set
of simulation or on-road studies. By exploring a range of
potential experirnental variables-typically, much wideithan
would be practical to explore in properly controlled experi_
ments-one can use the model as an all_digital simulatòr to
predict which choices of parameter values will yield results
that are sensitive to experimental variation and which can_
didate experiments will tend not to show significant effects.
Armed with these results, one can presu,rlibly make better
choices as to which candidate experimental våriables to ex_
plore, the range of values to be explored, optimal settings for
other independent variables, and so on.

Similar types of postexperiment model analysis allow the
extrapolation of experirnental results to conditions not yet
tested. One potential application is to test the generality of
design guidelines developed from the experimental clata base.

DESCRIPTION OF MODEL

Overview

The model presented here, which is called the integrated driver
model (IDM), is an integration of two computerized models:
the procedural model and the driver/vehiclð model. The pro_
cedural model represents the driver of the vehicle in terms of
perceptual, neuromotor, and cognitive responses (5). Sub_
models may include visual scanning and detection,'uuditory
perceptual processing, neuromotor reaction time, and choice
and decision in the selection of activities. The procedural
model deals primarily with in-vehicle auxiliary iasks (i.e.,
tasks other than continuous vehicle control) and with the ìask_
selection and attention-allocation procedures.

The driver/vehicle model predicts closed-loop continuous
control behavior. This model, which is currently used to pre_
dict lateral path (steering) control, is based on ttre optimat
control model (OCM) for manually controlled systems (ó).
The structure and predictive value of the OCM have been
verified via extensive application to laboratory and opera_
tional manual control tasks, and the OCM hasieen applied
zuccessfully to the design of manned simulation studies (Z).
The driver/vehicle model is currently implemented to simulate
a constant-speed steering task.

. The resulting integrated model allows one to predict con_
tinuous steering performance as visual attention is intermit_
tently diverted from the roadway to one or more monitoring
locations associated with the auxiliary in-vehicle tasks. The
model also allows the driver to attend visually to the roadway
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while processing auditory information. Attention is switched
and tasks are selected on the basis of time-varying priorities
that consider, at each decision point, the penalties for tasks
not performed. The presentation of auxiliary tasks is con-
trolled in part through dependencies on the state of the driving
environment as predicted by the model and in part through
scripting (i.e., state-independent time-based occurrence of
events defined before the model run).

Figure 1 contains a diagram of the IDM showing the prin-
cipal functional elements of the model and the major com-
munications paths. To make maximum use of previous im-
plementations, the continuous control driver/vehicle model
and the procedural model are implemented as separate
processes.

Driver/Vehicle Model

The major assumptions underlying the driver/vehicle model
are the following:

1. The operator is sufficiently well trained and motivated
to perform in a near-optimal manner subject to system goals

and limitations.
2. ^lhe driver constructs an internalized representation

("mental model") of the driving environment in which all
dynamic response processes are represented by linear equa-
tions of motion.

3. Perforrnance objectives can be represented by a quad-
ratic performance index (e.g., minimize a weighted sum
of mean-squared lane deviation and rnean-squared control
activity).

4. Driver limitations can be represented as response-
bandwidth limitations, time delay, and wide-band "noise"
processes to account for information-processing limitations.

To obtain a model solution, the user must provide infor-
mation sufficient to describe the task environment, the perfor-
mance goals, and the operator's response and information-
processing limitations. Because the model is a simulation model,
timing parameters must also be specified. The following kinds
of input must be specified for the driver/vehicle models:

1. Description of driving environment

-Vehicle response dynamics,

-Perceptual variables,

PROCEDURAL
MODEL
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-Command and disturbance inputs, and

-Initial conditions;
2. Driver characteristics

-Mental model of the task environment,
-Information-processing limitations (S/N),

-Perceptual limitations ("thresholds"),

-Time delay, and

-Motor lag;
3. Simulation parameters

-Simulation update interval, and

-Data recording interval.

The flow of information within the driver/vehicle model
component is shown in Figure 2. For applications in which

the vehicle is maintained at near-constant speed and under-
goes relatively low lateral accelerations, the model compo-

nents enclosed in boxes are implemented as linear dynarnic
processes for which the behavior of the system states is de-

scribed by a set of linear differential equations. The vehicle

response behavior element contains a description of the dy-

namic response of the automobile, the kinematic equations
that relate tur¡ì rate and speed to lateral displacement, and

any dynamic response elements that might be needed to model
external disturbances.

The cue generation element accepts the system states and

external command inputs to generate the set of perceptual
cues assumed to be used by the driver. This element contains
a linearized approximation that relates the perspective real-
world scene cues to system states and co¡nmand inputs. (For
a constant-speed steering task, typical perceptual cues are lane

error, drift rate, heading relative to the road, turn rate relative
to the road, and road curvature.) These perceptual cues are

the¡r corrupted by wide-bandwidth observation noise and de-

lay, where the observation noise reflects both a signal-to-noise
type of information-processing limitation as well as perceptual
threshold limitations.

The driver's adaptive response behavior is represented by
the optimal estimator and pledictor, the optimal control laws,

and the response lag, with an additional motor noise cor-
rupting the motor response. The mental model noted earlier
is a component of the optimal estimator. The estimator and
predictor construct a least-squared-error estimate of the cur-
rent system state, and the (linear) optimal controller generates

the optimal control response operating on these state esti-
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FIGURE I Overview of IDM.
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mates. The motor noise serves to provide some uncertainty
concerning the response of the vehicle to the driver's inputs,
and the response lag may be thought of as reflecting a penalty
for generating a high-bandwidth control response.

The form and quantification of the estimator, predictor,
and controller are determined by the specific problem for-
mulation according to well-developed mathematical rules for
optimal control and estimation (8,9). Model outputs consist
of quantities similar to those measurable in a manned simu_
lation (e.g., time histories for all important system variables),
as well as quantities that cannot be directly measured (e.g.,
the driver's estimate of the value of any system variablè).

The driver's assumed mental model of the driving environ_
ment is a key feature of the driver/vehicle model. Typically,
the driver is assumed to be sufficiently well trained in the
specific driving task to allow the mental model to replicate
the model of the physical environment. However, the con_
sequences of the driver's misperception of the external world
can be explored by making the mental model different from
the world model in terms of parameters values or structure.

When the driver is required to share attention between the
vehicle control task and one or more auxiliary tasks (e.g.,
look at the rearview mirror, tune the radio), performanceãf
the control task will in general degrade. The-effects of such
interference are accounted for in one of two ways. For in_
tervals in which visual attention is directed away from the
roadway cues to some other visual input, the mathematical
"driver" receives no perceptual inputs relevant to vehicle con_
trol, and the model continues for a short time to generate
control inputs based on the internal model only.

The driver is assumed to attend simultaneously to vehicle
control and to auxiliary tasks requiring speaking or listening.
In this case the driver is assumed to continue to iixate visually
on roadway cues, but central-processing resources are now
shared between the two tasks. The effects of less than full
cognitive attention to the driving task is modeled by degrading
the driver's signal-to-noise ratio-in effect, by inóreasing thã
observation noise level (/0). Either type of attention_shãring
tends to decrease the portion of the driver's control ,"rponrð
that contributes to effective control and to increase the sto_
chastic component of the driver's control, with the net effect
of degrading vehicle control performance.

Procedural Model

Besides acting as the supervisory element of the integrated
model, the procedural model simulates the in-vehicle auiiliary
tasks and performs task selection. First considered is the tasi<
selection algorithm, and then the overall logic of the proce_
dural model is discussed.

Tas k Selection Algorithm

Task selection is based on assumptions that are generally
consistent with the multiple-resource theories of Wiclens aná
Liu (1/). Specifically, it is assumed rhat

o If two or more tasks require different visual fixation points,
only one such task may be performed at any given instant.
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o If two or more tasks require listening or speaking, only
one such task may be performed at a given instant.

o If one task requires visual inputs and another requires
auditory inputs, the tasks may be performed concurrently
(with presumably some performance degradation) if tney re_
quire different "processing codes" (i.e., one requires spatial
processing, the other verbal processing).

o Task selection is based on the perceived relative impor_
tance of competing tasks and is computed by minirnizing the
expected net penalty of tasks not perforrned.

o If an auditory and a visual task are perforrned concur_
rently, cognitive attention is allocated according to the penalty
functions.

o When a task is first attended to, or first reattended to
following attention to another task, attention must remain on
this task for some minimum .,commit time," after which the
driver is free to allocate attention as described.

Note that the steering task (which requires attention to the
road) is always competing for attention. The logic for selecting
a task when multiple tasks compete for attention is dia_
grammed in Figure 3.

Model Inputs and Output.e

The following kinds of input must be specified for the pro-
cedural model:

o Description of activities (hard-coded)
-Models of perforrnance versus tirne, ancl
-Penalty functions (penalty for not performing task);

Solecled
Task

FIGURE 3 Task selection logic.
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o Script of events: times at which activities are spawned;
and

o Simulation parameters: simulation update interval.

The description of activities (auxiliary in-vehicle tasks) must
be implemented in the computer code, unlike all other pro-
cedural and driver model inputs, which are specified at run
time.

An auxiliary task may consist of one simple activity (e.9.,
glance at the rearview rnirror) or a sequence of activities, such
as the telephone task described later in this paper. An ele-
mental activity may require visual attention (eyes) or visual
and manual attention (eyes and hand).

Two categories of parameters need to be specified for each
activity: parameters that relate to the performance of the task,
and parameters that determine the relative importance or
urgency of the task. Performance is usually defined by one
or more time parameters, which may include (a) times to
move eyes and hands, if necessary, in preparation for the
task; (b) time to complete the task; and (c) minimum commit
time following initial (re-) attention to the task. So¡ne tasks
are described by a simple task-completion time. Other tasks
are defined by a rate of progress, with the driver allowed to
interrupt after some commit time and later continue the task.

For tasks that consist of sequences of activities, sequencing
rules need to be implemented, as do rules for which sequences

of tasks must be performed as a unit before the driver is

allowed to select another task. (For example, in an in-car
telephoning task, the driver may be assumed to dial the entire
area code before deciding whether to look back at the road
or to continue dialing.)

Penalty functions for in-vehicle tasks may be specified as a
single number or as a number that (typically) increases with
time, up to some limit, until the task is completed. A different
kind of penalty function is used for the driving (steering) task,
namely, the predicted probability of exceeding a lane bound-
ary within a "prediction time" that consists of the time re-
quired to perform the in-vehicle task segment plus an assumed
time to recover control of vehicle path upon reattending to
the road. This computation is based on the driver's current
estimate of lane deviation, drift rate, and heading and is sim-
ilar to the time-to-line-crossing metric proposed by Godthelp
et al. (12).

The output file produced by the procedural model includes
time histories of the driver's visual fixation point, the position
of the driver's free (nonsteering) hand, and measures of per-
formance for each in-vehicle task in progress (e.g., number
of words read so far from the visual monitor, time elapsed
since initiation of the task). As with a manned simulation
experiment, posttrial analysis of model outputs can be per-
formed to yield a variety of performance statistics, such as

means and standard deviations for all continuous variables
relevant to the steering task (including variables internal to
the driver), statistics relating to the duration of a given in-
vehicle tasks, and statistics on dwell times and intervals of
inattention.

Simulation Cycle

After the model has been initialized, the simulation cycle is
executed once per update interval until some stopping cri-
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terion has been reached (typically, a stopping time specified
at the start of the run). The cycle begins with a check on
which new tasks, if any, are to be added to the active list (the
set of tasks now competing for the driver's attention). New
tasks may be spawned according to the time-based script or
because of completion of an antecedent subtask.

If the task currently attended to is locked up, the driver
must continue to attend to that task. If the task is not locked
up, the task selection algorithm is executed to determine the
task to be next attended (which may be the same task). Active
tasks are updated, and simulation variables needed for post-
simulation analysis are recorded in the output file.

MODEL CALIBRATION

To the extent that the driving tasks of interest may differ in
important respects from driving tasks modeled previously, a
certain amount of initial empirical data is desired to calibrate
the model for the baseline experimental condition. Calibra-
tion data may be needed for the driving task, the auxiliary
in-vehicle tasks, or both, depending on the amount of preex-
isting data relevant for model calibration.

The continuous control component of the IDM has been
validated against a considerable body of laboratory tracking
data and has been found able to. replicate these data with
nearly invariant values for driver-related independent model
parameters for idealized cueing conditions (13). These data
provide an initial selection of independent model parameter
values, which may be modified as necessary to account for
the nonideal control environment associated with real-world
driving tasks.

The procedural component of the IDM is new and is there-
fore in need of a more substantial calil¡ration effort. To the
extent that specific data are lacking for the in-vehicle tasks
of interest, one may use data obtained from the human perfor-
mance literature (e.g., times to make eye and hand move-
ments, times to read words of text, times to read numbers,
etc.) and later refine relevant model parameters as additional
empirical data become available.

As an example of a typical calibration exercise, the cali-
bration exercise performed for the Green and Olson in-vehicle
display project just before preparation of this paper is sum-
marized. Data from four subjects were provided for the base-
line driving task performed on the UMTRI driving simulator.
This simulator contained a steering wheel as an input device
and a relatively sparse visual scene roughly approximating
nighttime viewing conditions. The highly simplified vehicle
response dynamics, although not a true representation of au-
tomobile steering response behavior, provided a workload
representative of a driving task (14). The subject's task was
to remain near the middle of the lane while driving at constant
speed on a road having a sinusoidal curvature with a period
of about 26.5 sec and a zero-peak lateral deviation of about
4 ft. The data base used for model calibration consisted of
one 4-min trial from each of four subjects.

To calibrate the model, first the task-related model param-
eters were set to reflect the simulator dynamics and roadway
curvature. Then driver-related model parameters were se-
lected as follows:
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o Response delay was set to 0.2 sec, on the basis of labo_
ratory tracking data.

o_An information-processing metric (implemented as a noise_
to-signal ratio) was quantified, on the'basis of laboratory
tracking data.

o Perceptual noise terms were specified to reflect a visual
or indifference threshold of 0.305 m (l ft) and 0.305 m/sec (1
ftlsec) for path error and path error rate. ihese numbers wel.e
set substantially higher than associated with idealized labo_
ratory tracking displays to reflect the relative difficulty of
obtaining precise information from the simulated perspeótive
roadway display.

o A trade-off between allowable path error and allowable
steering wheel activity was modeled by adjusting an effective
driver response bandwidth parameter.

Within-trial mean and standard deviation scores for path
error and wheel displacement were computed for each of the
four experimental trials, and intertrial n'"un, and standard
deviations of the standard deviation scores were computed.
Model runs were then generated for various values of the
bandwidth parameter until an acceptable joint match to the
average path error and wheel defrection scores was obtained.
The following table shows that model predictions matched
the experimental standard deviation scorås to within two stan-
dard deviations (and to within l0 percent):

Variable Experimenr Mode!
Path error (m.) 0.210 (0.22) 0.195path en.or (ft) 0.689 i0.07i) 0.ó40
Wheel deflcction 17.7 (1.j5) D.t

(degrees)

Figure 4 shows 2-min segments of the wheel deflection time
historie-s generated by one of the subjects and by the model
using the parameters calibrated as describecl. Because the
human controller is represented as a mathematically linear
system plus noise, and because the road cur.vature was sinu_
soidal, the wheel response is expected to consist of a sinusoidal
component of the same frequency as the road sinusoid, plus
a stochastic disturbance about this sinusoid. Figure 4 shows
that this qualitative description appears to fit boih the model
and the experimental data, which offers additional validating
evidence of the model as a predictor of performance trends.
The discrepancies between the high-freqúency components of
the model and experimental time historiês renect ttrè fact that,
by definition, the model cannot replicate (other than statis_
tically) the stochastic component of the driier,s time history.

uv t¿o l¿to 160
TIME (seconds)

FIGURE 4 Experimental and predicted rvheel tinre histories:
solid curve = subject; dashed cirve = mo¿ul.- 
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APPLICATION OF MODEL TO
EXPERIMENT DESIGN

Th¡ee kinds of independent.model parameters are rnost Iikely
to be varied when the IDM is used io help design experiments
involving in-vehicle displays: (a) the in_vehicle task¡, (b) fac-
to¡s influencing the difficulty of the primary driving tait, an¿
(c) driver performance capabirities.'The ii-vehiclõ tasks are
presumed to be the prirnary variables of interest and would
be programmed into the IDM for testing. Driving_task pa_
rameters such as roadway curvature profile, speeã profile,
wind gusts, and vehicle dynamics may oi may not be of interest
as experimental variables. If not, and if the experimenter is
free to select one or more of these variables, ihe IDM can
be useful in selecting param€ter values that provide a driving
workload (or range ofworkloads) that results in a reasonable
sensitivity of driving performance to the in_vehicle tasks.

Finally, the moder can be used to predict the extent of driver
po.pulation effects on performance trends by suitably varying
driver-related parameters of the driver/ve'hicle model. For
example, 

^one 
rnight represent the older driver as having one

or more of the following: larger response delay, less aggressive
response behavior, less efficient information_pro."ising ca_
pability, and larger commit time after switctring attention.

To illustrate how the model might be applieà in this man_
ner, a modeling activity is reviewed that was performed for
the in-vehicle display project in progress at the tìme this paper
was written. The model results presented in the following were
obtained without the benefit of knowledge of results tõ gen_
erate some a priori performance predictions for subseqient
comparison with data.

The model was run for the baseline driving_only condition
described earlier, and for one of the experiirental tasks in_
volving in-car telephone usage. The teleihone task modeled
here involved the following steps:

1. Flip to the next page of an index_card telephone direc_
tory on the seat next to the driver.

2. Read the name of the person to be called. (For this
condition, the subject knew the telephone number from mem_oy ulg needed to be prompted only as to the person to be
called.)

3. Pick up the handset.
4. Dial 1 + area code.
5. Dial the exchange.
6. Dial the last four digits.
7. Press the Call button.
8. Conduct a 30-sec conversation.
9. Press the End button.

10. Set the relephone down.

Model analysis was based on the assumed performance times
given in the following table for the component activities
underlying the 10 steps listed:

ø
ooL
o)oIt
õo.cÌ Activity

Eye movement
Hand movement between buttons

on handset
Hand movement betrveen devices
Flip page
Read name
Pick up, set down handset
Push button

Performance
Time (sec)

0.2
0.2

0.4
1.0
0.8
0.4
0.2
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A hand (thumb) movement of at least 200 msec was assumed
prior to entering each digit of the telephone nurnber. Mini-
mum dialing times were thus 1.2 sec for the three-digit ex-
change and 1.6 sec for four-digit combinations.

Except for the 30-sec conversation, the mathematical "driver"
was required to time-share visual attention between the sim-
ulated roadway scene and the telephone. (The driver was

assumed to obtain no useful roadway information while look-
ing at the telephone.)

The driver was assumed to perform each of the visual and
manual tasks in the preceding list without interruption. When
a task was completed and a subsequent visual or manual task
became current, the model cletermined whether the driver
should continue with the next telephone task segment or glance
at the road for at least a predetermined minimum interval
(400 msec). Similarly, if the driver was looking at the road
while an in-vehicle visual task was pending, the model de-
termined whether it was appropriate for the driver to resume
the telephone task sequence. The decision algorithm was as

follows:

1. Predict the probability of exceeding a lane boundary over
a prediction time that consists of the time required to perform
the next telephone task segment plus an assumed time to
recove¡'control of vehicle path upon reattending to the road.

2. If the probability exceeds 1 percent, attend to (or con-
tinue to attend to) the roadway cues; otherwise, attend to the
telephone task.

The driver was assumed to obtain roadway cues while con-
versing, but with some performance decrement. While the
conversation was in progress, the model allocated cognitive
attention between the driving and conversational tasks ac-

cording to instantaneous driving performance. [See elsewhere
for a discussion of how the effects of cognitive attention-
sharing on continuous control performance are modeled (/0).]
Attention allocation was quantized to the nearest 0.25, with
the restriction that the driver always allocated at least 25
percent attention to the driving task.

The model predicted an increase in root-mean-square lane
error of about 60 percent: 0.19 m (0.62 ft) for the baseline
task,0.32 m (1.05 ft) for the experimental driving plus tele-
phone condition. Figure 5 shows the path error time histories
for the baseline (solid curve) and telephone task (dashed curve).
Because the same random number sequence was used to pro-
duce the stochastic portion of the driver's response, the dif-

TIME (seconds)

FIGURE 5 Predicted path error trajectories for baseline and
experimental conditions: solid curve = steering only; dashed
curve = stecring rvhile telephoning (l ft = 0.305 m).
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ferences between the two curves reflect the effects of the
concurrent telephone task and are not confounded with run-
to-run variability.

As expected, larger error peaks are shown for the experi-
mental task. Comparison of this figure with the cognitive
attention timeline of Figure 6 shows that performance dec-
rements were predicted for the portions of the task when
conversation was in progress, as well as when visual attention
was shared between driving and telephone stal't-up tasks. For
this curve, a value of 1 indicates full attention to the road, a

value of0 indicates full visual attention to the telephone task,
and values between 0 and 1 indicate a reduced level of cog-
nitive attention to the roadway cues while conversing. Ac-
cording to this timeline, the "driver" made three minimal 0.4-
sec glances and one 0.8-sec glance to the road while perform-
ing the preconversation telephone tasks.

This discussion is intended to illustrate the kinds of perfor-
mance predictions available from the model.To make a more
definitive prediction of performance trends, a number of model
runs per condition would be made with different random se-

quences in order to account for run-to-run variability of the
type expected in an experiment. Then a statistical analysis
would be performed on the model predictions-just as would
be done with experimental data-to predict whether perfor-
rnance differences acl'oss experirnental conditions are likely
to be significant.

DISCUSSION OF RESULTS

Because its predecessor (the optimal control model) has been
in existence for about two decades, the driver/vehicle com-
ponent of the IDM is supported by a substantial amount of
validation data. Although the calibration data presented in
this paper are not sufficiently rich to allow identification of
all the independent driver-related parameters, these param-
eters have been shown to be individually identifiable from
laboratory tracking data using specialized identification tech-
niques (/3). There is thus a firm foundation for quantifying
some of these parameters on the basis of past data. Further-
more, the ability to match performance in a variety of control
situations with a near-invariant set of parameter values tends
to validate the basic model structure.

In contrast to the driver/vehicle model, the recently de-
veloped procedural model component is not similarly sup-

FIGURE 6 Predicted attention to driving task rvhile
performing concurrent telephone task.
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ported by data. This is particularly true of the task selection
procedure and associated penalty functions, for which the goal
was to develop algorithms that are plausible and consistent
with what is known about task-sharing behavior and with
approaches used by others ilr modeling multiple-task perfor-
rnance (11,15,1ó). Validation of this aspect of the model awaits
the availability of experimental data against which to test
model behavior.

The model need not mimic all relevant aspects of human
response behavior to meet the intended uses that have been
suggested here, which are to help design experiments and to
extrapolate experimental results. Instead, it is enough that
the model be able to reliably predict performance trends re-
sulting from changes in the task environment and to do so
with a minimum of preexperiment calibration and with a well-
defined set of procedures for quantifying independent model
parameters. This is still a tall order, and validation data will
be needed to test the model's capabilities in this respect.

ACKNOWLEDGMENTS

The work reported in this paper was performed for the Uni-
versity of Michigan in support of a contract with FHWA, U.S.
Department of Transportation.

REFERENCES

1. A. J. McKnight and A. S. McKnight. The Effect of Cellular phone
Use upon Driver Attention. Report 853. AAA Foundatiorr for
Traffic Safety, 1991.

2. Y. l. Noy. Attention and Perþrmance While Drivittg with Aux-
iliary In-Vehícle Displays. Publication 'fP n727 (E). Transport
Canada, Ottawa, 1990.

3. J. \Valker, E. Alicandri, C. Sedney, and K. Roberts. In-Vehicle
Navigation Devices: Effects on the Safety of Driver Petformance.
SAE aper 920754. SAE, Warrendale, Pa., 1992.

4. P. Green, M. Williams, C. Serafin, and C. Paelke. Human Fac-
tors Research on Future Automotive Instrumentation: A Prog-
ress Report. Proc., Human Factors Society 35th Annual Meeting,
Santa Monica, Calif., 1991, pp. 1120-1124.

l3

5. K. M. Corker, N. L. Cramer, and E. H. Henry. Methodology
for Evaluation of Automation Impacts on Tacticai Co¡nnand aiã
Control Systems. Final Report 7242. BBN Systems and Tech_
nologies, Cambridge, Mass., 1990.

6. W. H. Levison. The Optimal Control Model for Manual Con_
trolled Systems.In Applications of Human perþrmance Models
12 Sys_t9m Design (G. R. McMillan et â1., eds.), plenum press,
New York, 1989, pp. 185-198.

7. W. H. Levison. Application of the Optimal Control Model to the

P?ySn of Flight Simulation Experiments. SAE paper g51903.
SAE, Warrendale, Pa., 1985.

8. ?.L. Kleinman, S. Baron, and W. H. Levison. An Oprimal
Control Model of Human Response, part I: Theory and' Vali-

, dation. Automatica, No. 6, 1970, pp. Z57-369.
9. D. L. Kleinman, S. Baron, and-W. H. Levison. A Control-

Theoretic Approach to Manned-Vehicle Systems Analysis. ^IEEETransactions on Automatic Control, AC-16, No. 6, 197i, pp. g24-
833.

10. W. H. Levison. A Model for Mental Workload in Tasks Re-
quiring Continuous Information Processing. ln Mental Workload:
lts Tleory and Measurem¿n¡ (N. Moray, ed.), plenum press,
London and New York, 1979.

11. C. D. Wickens and Y. Liu. Codes and Modalities in Multiple
Resources: A Success and a Qualificalion. Hwnan Factors, ño.
30, 1988, pp. 599-ó16.

12. H. G:dtheþ,-P. Milgram, and G. J. Blaauw. The Development
of a Time-Related Measure To Describe Driving Strategy. Hu-
man Factors, Yol. 26, No. 3, 1984, pp. 257-268.

13. W. H. Levison. Development of a Modet for Human Operating
I-e3r1iyg,irt Çontinuoui Estimation and Control Tasks.' Repori
AFAMRL-TR-83-088. Air Force Aerospace Medical Reseàrch
Laboratory, Wright-Patterson Air Force Base, Ohio, 19g3.

14. P. Green and A. Olson. The Development and Use of the UMTRI
Driving Simulator. Report UMTRI-89-25. University of Michi-
gan Transportation Research Institute, Ann Arbor, i9g9.

15. S. Baron and K. Corker. Engineering-Based Approaches to Hu-
man Performance Modeling. ln Applications of Human perþr-
m.ance M_odels yq System Design (G. R. McMillan et al., eds.),

. Plenum Press, New York, 1989, pp.203-217.
16. R. Harris, H. P. Iavecchia, and A. O. Dick. The Human Op-

erator Simularor (HOS-IV). ln Applications of Hurnan perfòr-
m.ance Models y9 System Design (G. R. McMillan et al., eds.),
Plenum Press, New York, 1989, pp.275-280.

Publicalion of this paper sponsored by Committee on Si¡nulation and
Measurement of Vehicle and Operator Performance.


