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Statistical Evaluation of the Effects of 
Highway Geometric Design on Truck 
Accident Involvements 

SHAW-PIN MIAOU AND HARRY LUM 

Illustrated in this paper are ways in which the Poisson regression 
model can be used to evaluate the effects of highway geometric 
design on truck accident involvement rates and estimate and 
-quantify the uncertainties of the expected reductions in truck 
accident involvements from various improvements in highway 
geometric design. The data source used in this study was the 
Highway Safety Information System, a highway safety data base 
administered by the Federal Highway Administration. Among 
the five Highway Safety Information states currently available for 
analysis, Utah was considered to be the state that had the most 
complete information on highway geometric design and was se­
lected for illustration. Five years of highway geometric, traffic, 
and truck accident data for rural Interstate highways from 1985 
to 1989 were used. 

The effects of roadway characteristics on traffic safety are 
substantial, according to the nation's highway safety perfor­
mance records (1). For example, in 1988 the fatality rates on 
rural Interstate, other rural Federal-aid primary arterial, and 
.rural non-Federal-aid arterial are, respectively, 9.7, 21.7, and 
50.9 fatalities/billion vehicle km (1.56, 3.48, and 8.20 fatali­
ties/100 million vehicle mi). The records also suggest that if 
all urban and rural travel were at the same fatality rate as the 
corresponding Interstate rate, then fatalities would be 23,491 
instead of 47 ,093 in 1988, a reduction of over 50 percent (2). 
Potential factors that make vehicle accident rate different 
from one roadway class to another include the physical nature 
of the roadway, such as geometric design, roadway markings, 
and traffic signs, and the type of incurred travel, traffic con­
trol, and traffic conditions. 

Highway geometric design elements, such as horizontal cur­
vature, vertical grade, lane width, shoulder width, and me­
dian, are logical engineering factors that contribute to the 
differences in vehicle accident rate among roadway classes 
(3). Their effects on vehicle accidents are, however, difficult 
to quantify because of large confounding influences from the 
human factor, the environment (including lighting and weather 
conditions), traffic, and vehicles. Previous studies suggested 
that roads were rarely the sole factors associated with a traffic 
accident-only about 2 percent according to Rumar (4). It 
was mainly through the interactions with other factors, es-
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pecially human and environmental, that roads were associated 
with traffic accidents. 
· Ideally, to investigate the effects of highway geometric de­

sign on vehicle accidents, roadway, traffic, accident, environ­
mental, road user, vehicle, and exposure data for individual 
road sections are ·needed. In practice, many of these factors 
are qualitative in nature, especially human factors, and are 
not likely to be available for individual road sections in any 
accident data base. In addition, detailed vehicle exposure data 
(e.g., by vehicle type, time of day, weather, and vehicle speed) 
may not be available for individual road sections. This means 
that many factors that may have influence on the occurrence 
of vehicle accidents would not be available for study of the 
geometric design effects. 

In view of this inevitable omitted variable problem, when 
any geometric design effect is discussed, we have in mind the 
average observed effect, which includes the collective influ­
ence of all the interacting effects. This includes the influence 
of interacting factors such as the driver's physical condition, 
driving skill, mood, and knowledge; vehicle speed; weather; 
and so on. Thus, the geometric design effects are estimated 
to be conditional on the omitted variables. That is, the effect 
of the same highway geometric design on vehicle accidents 
would be different if some of the omitted variables change 
over time. For example, changes in socioeconomic, legisla­
tive, and law-enforcement conditions over the years would 
change the driver's behavior and, therefore, would change 
the geometric design effects on. vehicle accidents even if noth­
ing is done to the road. For this reason, the analysts should 
always be careful in interpreting the estimated effects, be 
conscious of any potential bias, and be cautious in using the 
effects derived from one area for other areas. 

To give another example, consider two hypothetical road 
sections of the same roadway class, say ClO and Cl, the 
geometry of which are different only in horizontal curvature: 
ClO is a 10-degree curve (per 30.48-m or 100-ft arc) and Cl 
is a 1-degree curve. The distribution of vehicle speed on ClO 
is expected to be different from that on Cl, and the average 
vehicle speed on ClO is expected to be less than that on Cl. 
Given that the vehicle speed distribution on these two curves 
is not known, estimated curvature effects on vehicle accidents 
for ClO and Cl will be the effects averaged over their re­
spective vehicle speed distribution and, therefore, conditional 
on their vehicle speed distribution. If the underlying vehicle 
speed distribution of any curve changes because of speed limit 
change, for example, then its average curvature effect is likely 
to change too. 
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Many statistical models have been developed to establish 
the empirical relationships between vehicle accidents and 
highway geometric design for different roadway classes, ve­
hicle configurations, and accident severity types (3). How­
ever, most of these models were developed on the basis of 
the conventional multiple linear regression approach, and have 
been shown to be lacking the distributional property to ad­
equately describe discrete, nonnegative, and typically spo­
radic vehicle accident events on the road (5- 7). These un­
satisfactory properties of the linear regression models have 
led to the investigation of the Poisson regression and negative 
binomial regression models in recent studies (6-9). In gen­
eral, most of these studies found the Poisson regression model 
to be appropriate for studying the relationships among vehicle 
accidents and the contributing factors under their study. In 
addition, despite the limitations in existing highway geometric 
data, some encouraging relationships have been developed 
for horizontal curvature, vertical grade, and shoulder width 
using the Poisson regression model. 

The objective of this paper is to illustrate how the Poisson 
regression model can be used to evaluate the effects of high­
way geometric design elements on truck accident involvement 
rates. Also, described in this paper is the way in which the 
model can be used to estimate and quantify the uncertainties 
of the expected reductions in truck accident involvements 
from various improvements in highway geometric design. The 
data source used in this study was the Highway Safety Infor­
mation System (HSIS), a highway safety data base adminis­
tered by the Federal Highway Administration (FHWA) (10). 

POISSON REGRESSION MODEL 

The Poisson regression model employed in this paper was 
proposed by Miaou et al. (8) to develop the relationship be­
tween vehicle accidents and highway geometric design. In 
theory, the model can be applied to any roadway class, vehicle 
configuration, and accident severity type of interest. The fol­
lowing presentation focuses on accidents of all severity types 
involving large trucks (more than 4,545 kg or 10,000 lb) on 
a particular roadway class. 

The Model 

Consider a set of n road sections of a particular roadway type; 
for example, a rural Interstate. Let Y; be a random variable 
representing the number of trucks involved in accidents on 
road section i during a period of 1 year, where i = 1, 2, ... , 
n. Here the same road section in different sample periods can 
be considered as separate road sections. This allows the year­
to-year changes in geometric design and traffic conditions to 
be considered in the model. Further, the actual observation 
of Y; during the period is denoted as y;, where y; = 0, 1, 2, 
3, ... and i = 1, 2, ... , n. The amount of truck travel (or 
truck exposure) during the sample year on road section i, 
denoted by V;, is computed as 

365 x AADT; x (T%/l00) x I; 
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where 

AADT; = average annual daily traffic (in number .of 
vehicles), 

T%; = average percentage of trucks (or percent trucks) 
in the traffic stream (e.g., 15), and 

I; = length (in km or mi) of road section i. 

Note that AADT; x (T%/100) represents the "truck AADT" 
of road section i during the year. Associated with each road 
section i, there is a k x 1 covariate vector, X;, describing its 
geometric design characteristics, traffic conditions, and other 
relevant attributes. The transpose of the covariate vector is 
denoted by x; = (x;1 , X;2 , . .. , X;k). Withoutloss of generality, 
let the first covariate xil be a dummy variable equal to one 

· for all i (i.e., X;1 = 1). 
To the extent possible, these n road sections should be 

selected to cover as much variation in geometric design, traffic 
conditions, and other relevant attributes as possible. In ad­
dition, to avoid the bias in estimating the truck accident­
geometric design relationship, the selection of road sections 
should not be based on the outcomes of the dependent var­
iable (i.e., y;s). 

Under the assumption that (a) truck exposure data and 
other covariates are free from errors, (b) the occurrences of 
truck accidents on different road sections are independent, 
and ( c) the number of trucks involved in accidents on a par­
ticular road section i, Y;, follows a Poisson distribution, Miaou 
et al. (8) proposed the following model to establish the re­
lationship between truck accidents and highway geometric 
design: 

µfi e-µj 

y;! 

Y; = 0, 1, 2, 3, ... , i = 1, 2, 3, ... , n, 

where 

(1) 

V;[e~f=1Xijl3i] = V;A; i = 1, 2, 3, ... ' n. (2) 

and ~ is a k x 1 vector of unknown regression coefficients 
to be estimated from the data, the transpose of which is de­
noted by W = (~ 1 , ~2 , •.. , ~k). This model assumes that 
the number of trucks involved in accidents Y, i = 1, 2, ... , 
n, are independently and Poisson distributed with mean µ;, 
and the meanµ; (i.e., the expected number of trucks involved 
in accidents) is proportional to truck travel v;. The model also 
assumes an exponential rate function, A; = E(Y;)lv; = 

exp(x;~), which ensures that accident involvement rate is al­
ways-nonnegative. This type of rate function has been widely 
employed in statistical literature and found to be very flexible 
in fitting different types of count data (11,12). Note that when­
ever appropriate, higher order and interaction terms of co­
variates can be included in Equation 2 without difficulty. 

On the basis of the model, the variance, Var(Y;), and coef­
ficient of skewness, skew(Y;), of the underlying distribution 
of Y; are µ; and µ;- 112

, respectively. The variance Var(Y;), 
which is equal to the mean µ;, depends on its rate function 
and thus involves unknown regression coefficients. In addi-
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tion, Var(Y;) grows linearly with truck exposure V;. The model 
supposes a positive skewness coefficient that varies from road 
section to road section, depending on their means [skew(Y;) 
= µ;- 112

]. As mean µ; increases, either as a result of an in­
crease in vehicle exposure V; or an increase in the rate function 
A;, the skewness coefficient skew(Y;) decreases, and as µ; 
decreases, skew(Y;) increases. 

Estimation and Statistical Inference 

In this paper, the regression coefficients of the Poisson regres;. 
sion model are estimated using the maximum likelihood method. 
The maximum likelihood estimates (MLE) of the regression 
coefficients are obtained by maximizing the following loglike­
lihood function: 

L(~) log(
1

[1
1

p(y;)) = log(fJ µy; e-µ;) 
i=l yi! 

n 

L [y;Iog(µ;) - µ; - log(y;!)] 
i=l 

n 

L[y;(::!:;~) + y;log(v;) - v;~;~ - log(y;!)] (3) 
i=l -

The first derivative of the loglikelihood function with respect 
to the jth regression coefficient can be shown to be 

(4) 

where j = 1, 2, ... , k and must all vanish at the MLE ~­
Because the first covariate X;1 is a dummy variable equal to 
1 for all i, the MLE requires that l,Y; = I;v; exp(x;~). That 
is, the (estimated) expected total number of accide~tTnvolve­
ments, I;µ;, has to be equal to the observed total l,Y;, where 
µ; = v; exp(::!:I~). This is a desirable statistical property in 
modeling vehicle accidents (6). Note that most of the sug­
gested conventional multiple linear regression models for es­
tablishing geometric design-vehicle accident relationships do 
not have such a property ( 6). 

The asymptotic covariance and !-statistics of the estimated 
coefficients, as the sample size n becomes infinite, can be 
determined using the second derivative of the loglikelihood 
function (i.e., Fisher's information matrix), as follows. The 
second derivative, or the Hessian matrix, of the loglikelihood 
function can be derived as 

j = 1, 2, ... 'k, q = 1, 2, ... ' k (5) 

which is a function of unknown regression coefficient ~. and 
does not involve dependent variable Y;· Provided the Poisson 
assumption is adequate and the sample size is reasonably 
large, the asymptotic covariance matrix of the MLE can be 
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obtained as 

cov(~) 

[ 

S11 S12 

S21 S22 

Ski Sk2 

(6) [/(~))-1 

where 

. . . hlkl 
• • • h2k 

h~k ~=~ 
(7) 

is the Fisher information matrix evaluated at the MLE ~ (13). 
The asymptotic !-statistic for each estimated regression coef­
ficient ~i is computed as ~/(si) 112 , where (si) 112 is the asymp­
totic standard deviation of ~i and j = 1, 2, ... , k, and its 
significance level can be assessed using a t distribution table 
with n-k degrees of freedom or simply using a normal prob­
ability table because of large n. The asymptotic correlation 
matrix of the estimated regression coefficients can be con-
structed as Pii = s;/(s;;sii)112

, for i = 1, 2, ... , k, and j = 1, 
2, ... , k. (Note that Pu = 1 for i = 1, 2, ... , k.) 

A limitation of using the Poisson regression model, which 
is well known in the statistical literature (14 ,15), is that the 
variance of the data is restrained to be equal to the mean. In 
many applications, count data were found to display extra 
variation or overdispersion relative to a Poisson model (15). 
That is, the variance of the data was greater than the Poisson 
model indicated. 

If the overdispersion exists in the data, the MLE of the 
regression coefficients, ~, under the Poisson regression model, 
will still be close to the-true coefficients, ~, when the sample 
size n is large. (This is assuming that the rate function in 
Equation 2 has the correct form.) However, under the Poisson 
regression model, the variances of the estimated coefficients 
(i.e., sii' j = 1, 2, ... , k) would tend to be underestimated 
and, therefore, the associated !-statistics ~/(sii) 112 , j = 1, 2, 
... , k, would tend to be overestimated (16). Following Wed­
derburn (17), to correct for the overdispersion problem for 
the Poisson regression model, it can be assumed that the 
variance of Y; is 'Tµ; instead ofµ;, as originally assumed in the 
Poisson model, where 'Tis called the overdispersion parameter 
(typically, 'T ~ 1). Furthermore, a moment estimator of the 
overdispersion parameter 'T is 1- = X 2/(n - k), where X 2 is 
the Pearson's chi-square statistic, n is the number of obser­
vations (i.e., the number of road sections in this case), and 
k is the number of unknown regression coefficients in the 
Poisson regression model. The Pearson's X 2 statistic is com­
puted as I;(y; - µy;µ;. A better estimate of the asymptotic 
covariance matrix of the estimated coefficients is 1- x 
cov(~) and, therefore, a better estimate of the !-statistic for 
regression coefficient ~i is ~/(1- siy12

, j = 1, 2, ... , k [see, 
e.g., Agresti (18)]. 

Model Applications 

To illustrate how the Poisson regression model can be used 
to estimate the expected reduction in truck accident involve-
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ments caused by improvements in some geometric design ele­
ments, consider a particular road section i, and let the value 
of its covariates before and after the improvement. be xt and 
xij, for j = 1, 2, ... , k. Also, let vf and vf be the amount 
of truck travel in one year on road section i before and after 
the improvement. 

Based on the Poisson regression model (Equations 1 and 
2), the expected number of truck accident involvements on 
road section i before and after the improvements of geometric 
design elements are, respectively, vf exp(Ijxt~) and vf exp(Ij 
xij~). The percentage reduction in the expected truck accident 
involvements can be computed as 

(8) 

The percentage reduction R; is sometimes referred to as the 
truck accident involvement reduction factor. If v; is the same 
before and after the improvement (i.e., vf = vi) then R; also 
represents the percentage reduction in truck accident involve­
ment rate. By substituting ~j with the MLE ~j in Equation 8 
for j = 1, 2, ... , k, a MLE of the reduction in the expected 
number of truck accident involvements can be obtained, de­
noted by R;. Because, for a large sample, ~is approximately 
normally distributed with mean ~ and with covariance matrix 
f x cov(~) [see, for example, Agresti (18)], it can be shown 
that the Standard deviation (s.d.) of R; is approximately as 
follows: 

(
Va) { [ k ~ k k 

s.d.(R;) = ~ x exp 2: (xij - xt)~j + -
2
T 2: 2: 

V; 1=l m=lq=l 

(9) 

The derivation uses the property that if z is normally distrib­
uted with mean µ and variance cr 2 , then the variance of exp( z) 
is {exp[µ+ (1/2)cr2]}2.[exp(cr2) - 1] [see Lindgren, (19), page 
191]. Equation 9 allows the uncertainty of the estimated re­
duction to be assessed by quoting plus or minus one standard 
deviation. 

ILLUSTRATION AND DISCUSSION 

Data Source 

To illustrate the use of the Poisson regression model, data 
from the HSIS were employed to develop relationships be­
tween truck accidents and key highway geometric design var­
iables. The HSIS currently has data from five states. A general 

TRANSPORTATION RESEARCH RECORD 1407 

description of the HSIS data base is given in Council and 
Paniati (10). Specifically, accidents involving trucks (of more 
than 4,545 kg or 10,000 lb) on rural Interstate highways from 
Utah were used. Among the five HSIS States, Utah was con­
sidered to be the state that had the most complete information 
on highway geometric design. In addition, Utah was the only 
HSIS state with a historical road inventory file in which year­
to-year changes on highway geometric design element and 
traffic conditions were recorded. Thus, accidents in a given 
year could be matched to the road inventory information of 
the same period. Data from 1985 to 1989 were used for the 
illustration. 

Utah data in HSIS were stored in six files: roadlog, hori­
zontal curvature, vertical grade, accident, vehicle, and oc­
cupant files. Thus, these files had to be linked before any 
analysis could be performed. Each record in the roadlog file 
represented a homogeneous section in terms of its cross­
sectional characteristics, such as number of lanes, lane width, 
shoulder width, median type and width, AADT, and percent 
trucks. However, these road sections were not necessarily 
homogeneous in terms of their horizontal curvatures and ver­
tical grades. Road sections in the horizontal curvature and 
vertical grade files, on the other hand, were delineated in 
such a way that they were homogeneous in terms of their 
horizontal curvatures and vertical grades, respectively, but 
not necessarily in terms of other road characteristics. 

Therefore, after matching road sections in the horizontal 
curvature and vertical grade files with the road sections in the 
roadlog file, each road section in the road inventory file may 
have contained more than one horizontal curvature or vertical 
grade. In this illustration, those road sections with multiple 
curvatures and grades were further disaggregated into smaller 
subsections so that each subsection contained a unique set of 
horizontal curvature and vertical grade. Each subsection, which 
was totally homogeneous in cross-sectional characteristics, 
horizontal curvature, and vertical grade, was then considered 
as an independent road section in the model. In order to test 
the effects of the length of curve and grade, information on 
the length of the original curve and grade, from which the 
subsection was delineated, was maintained for each subsection. 

Accidents, Characteristics of Road Sections, and 
Covariates 

The time period considered was 1 year, which means that the 
same road section, even if nothing had changed, was consid­
ered as five independent sections-one for each year from 
1985 to 1989. As indicated earlier, this allowed the year-to­
year changes on highway geometric design and traffic con­
ditions to be considered in the model. A total of 8,263 ho­
mogeneous road sections during the 5-year period were con­
sidered to have reliable data. These road sections covered 
about 99 percent of the entire rural Interstate highway mileage 
in Utah and constituted 23,570 lane-km or 14,731 lane-mi of 
roadway. Data for each year contained roughly Ys of the total 
sections and lane-km. The section lengths varied from 0.016 
to 12.43 km (0.01 to 7. 77 mi)-with an average of 0. 72 km 
(0.45 mi). Descriptive statistics of these 8,263 road sections 
on truck accident involvements and truck miles (km) traveled 
are given in Table 1. 
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TABLE 1 Variable Definitions and Summary Statistics of the 8,263 Rural Interstate Road Sections 

Variable Notation & Definition (for section i) Min Max Mean % Zero 

Number of Trucks lnvolYed in Aa:idents Y; 0 8 0.20 86 

Section Length (in mi) t; 0.01 7.77 0.45 0 

Truct Miles or Truct Elqn;ure (in 106 truck-miles) V; = [365xAADT;x(T%/lOO)xt;]/106
, where 8x10-4 5.03 0.25 0 

T%; is percent trucks (366 for leap years). 

Dummy Intercept X;1 = 1 

Dummy Variable for Year 1986, representing year-to-year X;i = 1, if the road section is in year 1986 
changes due to random fluctuations, annual trend, and = 0, otherwiS(! 
omitted variables such as weather. 

Dummy Variable for Year 1987 (See above explanation) Xi3 = 1, if the section is in 1987 
= 0, otherwise 

Dummy Variable for Year 1988 (See above explanation) X;4 = 1, if the section is in 1988 
= 0, otherwise 

Dummy Variable for Year 1989 (See above explanation) X;s = 1, if the section is in 1989 
= 0, otherwise 

AADT per Lane (in lOOO's of vehicles), a surrogate variable xi/5 = (AADT/number of lanes;)/1000 0.35 12.04 1.80 0 
to indicate traffic conditions or traffic density. 

Horizontal Curvature, HC, (in degrees per 100-ft arc) X;7 0 12.00 1.00 67 

Length of Original Horizontal Cunoe, LlIC, (in mi) from xiB = LHC, if x;7> 1 and LHC s 1 mi. 0 0.96 0.05 81 
which this curve was subdivided for creating homogeneous = 1.0, if x;7> 1 and LHC > 1 mi. 
sections; only for HC > 1 and LHC s 1. = 0, ifX;7Sl 

Vertical Grade, VG; (in percent) X;9 0 8.00 2.14 20 

Length of Original Vertical Grade, LVG, (in mi) from which X~10 = LVG, ifX;9>2 and LVG :!: 2 mi. 0 2.00 0.21 74 
this section was subdivided for creating homogeneous = 2.0, ifx;9>2 and LVG > 2 mi. 
sections; only for sections with VG > 2 and L VG s 2. = 0, ifX;~2 

Deviation of Pawed Inside Shoulder Width (per direction) xw = max{O, 12 - paved inside shoulder width} 4.00 12.00 8.16 0 
from an "ideal" width of 12 ft (3.66 m). 

Percent Trucks in the traffic stream (e.g., 15) X~l2 

HCx LlIC X~13 = X;7 x Xi8 

VGxLVG X~u = X19 x X~JO 

(1 mi = 1.61 km; 1 ft = 0.3048 m) 

During the 5-year period, 1,643 large trucks were reported 
to be involved in accidents on these highway sections, re­
gardless of truck _configuration and accident severity type. 
With the total truck travel estimated to be 3,248 million truck 
km (MTK) or 2,030 million truck mi (MTM), the overall truck 
accident involvement rate was therefore 0.51 truck accident 
involvements/MTK or 0.81 truck accident involvements/MTM. 
These accidents occurred on only 14 percent of the 8,263-road 
sections. The maximum number of trucks involved in acci­
dents on an individual road section in one year was 8. On 
average, each section had 0.20 trucks involved in accidents 
in 1 year. 

The covariates considered for individual road sections and 
their definitions are also presented in Table 1. They include 

1. Yearly dummy variables to capture year-to-year changes 
in the overall truck accident involvement rate caused by, for 
example, long-term trend, annual random fluctuations, changes 
in posted speed limit, and changes in omitted variables such 
as weather; 

7.00 57.00 24.13 0 

0 2.88 0.18 81 

0 13.37 0.97 74 

2. AADT/lane, used as a surrogate measure for traffic flow 
density; 

3. Horizontal curvature (HC); 
4. Vertical grade (VG); and 
5. Deviation of paved inside (or left) shoulder width/direc­

tion from an "ideal" width of 3.66 m (12 ft). 

Note that paved inside shoulder width (ISH) of 3.66 m (12 
ft)/direction is recommended by the "Greenbook" for roads 
with heavy truck traffic (20). Because all of the road sections 
were 3.66 m (12 ft) in lane width, more than 89 percent of 
them had 4 lanes, and all road sections had paved outside (or 
right) shoulder widths of 3.05 m (10 ft), the effects of these 
variables could not be determined in this study. 

It has been suggested that as the length of grade increases 
to a point that can slow a truck to a speed significantly slower 
than the speed of the traffic stream (e.g., 16 km/hr or 10 mi/ 
hr), the accident rate increases (3). Also, for a fixed curvature 
degree, as the length of curve increases, the accident rate 
increases (21). To test the effects of length of curve and length 
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of grade on truck accident involvement rate, two covariates­
length of original curve (LHC), X;,8 , and length of original 
grade (LVG), x;,10 ,-were considered. As indicated earlier, 
each curve or grade considered in the model· may have been 
subdivided from a longer curve or grade for achieving total 
homogeneity. Thus, for each road section in the model, these 
two covariates were defined as the length of the original un­
divided curve or undivided grade to which this section be­
longed. In addition, these two covariates were defined only 
for curves with horizontal curvatures greater than 1 degree 
per 30.48-m (100-ft) arc and sections with grade greater than 
2 percent. (Note that these two covariates were set equal to 
0 if horizontal curvature is less than or equal to 1 degree or 
if vertical grade is less than or equal to 2 percent.) This def­
inition was based on an assumption that the length of a mild 
curve or grade has no aggravated effect on truck accident 
involvement rate. On the basis of engineering judgments, it 
was further assumed that there were no additional effects after 
LHC reached 1.6 km (1.0 mi) or after LVG reached 3.2 km 
(2.0 mi). This assumption makes the effects of LHC and LVG 
on truck accident involvement rate more robust to unusually 
long curves and grades. The interactions of HC and LHC 
(x;, 13 = X;,7 x X;,8), VG and LVG (x;, 14 = X;, 9 x X;, 10), and 
HC and VG (x;,7 x X;,9) were also considered. 

Percent trucks in the traffic stream was included in the 
model to evaluate the effects of automobile-truck mix. Pre­
vious studies suggested that as percent trucks increases, truck 
accident involvement rate decreases. One possible reason is 
that, for a constant vehicle density, as percent trucks in­
creases, the frequency of lane changing and overtaking move­
ments by automobiles decreases. Also, previous records showed 
that more trucks were involved in truck-automobile multi­
vehicle accidents than in truck-truck accidents [e.g., see Jov­
anis and Chang (5)]. 

Model Results 

The estimated regression coefficients of some of the tested 
models using the 8,263 homogeneous road sections and the 
associated t-statistics are presented as Models 0-7 in Table 
2. The estimated overdispersion parameter (7), loglikelihood 
function evaluated at the estimated coefficients, L(~), and 
the Akaike Information Criterion (AIC) value (22) for each 
model are also given in the table. Note that AIC = -2L(~) 
+ 2k, where k is the total number of regression coefficients 
in the model, and the estimated models with high loglikeli­
hood function and low AIC values are preferred. Further­
more, the expected total number of trucks involved in acci­
dents across road sections (I;µ;) was compared with the 
observed total (IJ';). 

These eight models in Table 2 are arranged as follows. 

Model 0: This is the simplest form of the Poisson regression 
model, which includes only truck exposure (v;). That is, Y; is 
assumed to be Poisson distributed with meanµ; = V; exp(r31). 

This model served as a baseline for the measurement of model 
improvement as additional explanatory variables were included. 

Model 1: This model includes only truck exposure and yearly 
dummy variables (x;i, j = 2, ... , 5) to c;ipture year-to-year 
changes in the overall truck accident involvement rate. 
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Model 2: This model includes truck exposure, yearly dummy 
variables, and traffic variables, including AADT per lane (x;6) 

and percent trucks (x;,d· 
Models 3-5: These models include truck exposure, yearly 

dummy variables, traffic variables, and geometric design var­
iables, including horizontal curvature, length of original curve, 
vertical grade, length of original grade, and paved inside 
shoulder width (x;i, j = 7, 8, 9, 10, 11). The interactions 
between horizontal curvature and length of curve (x;, 13) and 
between vertical grade and length of grade (x;,14) were also 
tested. (Note that the interaction between HC and VG was 
not found to be significant at a 20 percent ex level.) 

Model 6: This model uses the same explanatory variables 
as in Model 5. It was intended for examining the effect of 
short road sections on the estimation of model coefficients. 
Only road sections with length greater than 0.08 km (0.05 mi) 
were used to estimate model coefficients. There were 7 ,004 
road sections and 1,603 reported truck accident involvements. 

Model 7: This model has the same explanatory variables as 
in Model 5. It was used for checking the effect of road sections 
with large model residuals on the estimation of model coef­
ficients. Based on Model 5, there were 53 road sections with 
large standardized residual values [defined as road sections 
with IY; - ilY(7 f}-;) 112 > 5]. These road sections were first re­
moved and Model 5 was then recalibrated to obtain Model 7. 

The following observations can be made from these eight 
models: 

1. The AIC value continues to decrease and L(~) continues 
to increase from Model 0 to Model 3, as yearly dummy var­
iables, traffic variables, and geometric design variables are 
included in the model. 

2. By comparing Model 3 with Model 4, it can be observed 
that it is through the interaction with horizontal curvature 
that length of curve becomes a significant factor in affecting 
truck accident involvement rate. This is shown by the unad­
justed t-statistic of 0.02 for ~8 in Model 3 and of 2. 76 for ~ 13 
in Model 4. 

3. It is suggested from Model 4 that length of grade by itself 
is a significant determinant for truck accident involvement 
rate. [The adjusted t-statistics for ~10 is 1.99/(1.57)112 = 1.59.] 
As can be seen from Model 5 through the interaction with 
vertical grade, the effect of length of grade becomes more 
significant. [The adjusted t-statistics for ~ 14 is 2.26/(1.57) 112 = 
1.80.] In this study, Model 5, which had the lowest AIC value, 
was considered for further analyses and illustrations. The 
asymptotic correlation matrix, P;i, i = 1, 2, ... , k, j = 1, 
2, ... , k, for the estimated regression coefficients in Model 
5 is shown in Table 3. 

4. The comparison of the estimated coefficients of Model 
5 and Model 6 suggested not only that the conclusions reached 
regarding the significance level of the relationships between 
truck accidents and the examined traffic and highway geo­
metric variables were consistent, but also that the estimated 
coefficient values were very close. This suggests that the Pois­
son regression model is not sensitive to the length of road 
sections. 

5. The comparison of the estimated regression coefficients 
for the traffic and geometric design variables (i.e., r36 through 
r3 14) between Model 5 and Model 7 suggested that the deletion 



TABLE 2 Estimated Regression Coefficients of Some Tested Poisson Regression Models and Associated Statistics 

Model 0 Model 1 Model 2 Model 3 Model 4 Model 6 Model 7 

Section length and ?:0.01 mi :!:0.01 mi ?:0.01 mi ?:0.01 mi ~0.01 mi >0.05 mi ?:0.01 mi 
number of road sections 8,263 8,263 8,263 8,263 8,263 7,004 8,210 

P1 -0.212230 0.121263 0.570141 -0.472330 -0.472494 -0.526103 -0.500055 
Dummy intercept (:t0.025;-8.60) ( :t0.058;2.08) (:t0.112;5.07) (:t0.287;-1.65) (:t0.287;-1.65) (:t0.290;-1.81) (:t0.298;-1.68) 

P2 -0.363320 -0.163271 -0.182576 -0.185384 -0.171759 -0.252277 
Dummy variable for 1986 (:t0.082;-4.44) (:t0.086;-1.90) (:t0.086;-2.12) (:t0.086;-2.15) (:t0.087;-1.97) (:t0.089;-2.83) 

P3 -0.340802 -0.139415 -0.160249 -0.162656 -0.160869 -0.1~97 
Dummy variable for 1987 ( :t0.080;-4.24) (:t0.085;-1.64) (:t0.085;-1.89) (:t0.085;-1.91) (:t0.086;-1.86) (:t0.087;-2.14) 

P4 -0.327909 -0.090187 -0.114524 -0.112753 -0.096243 -0.166516 
Dummy variable for 1988 (:t0.078;-4.21) (:t0.085;-1.06) (:t0.085;-1.35) (:t0.085;-1.33) (:t0.086;-1.12) .(:t0.088;-1.90) 

Ps -0.518223 -0.289009 -0.315484 -0.313863 -0.299701 -0.355124 
Dummy variable for 1989 ( :t0.079;-6.54) (:t0.088;-3.29) (:t0.088;-3.57) (:t0.088;-3.57) (:t0.089;-3.36) (:t0.091;-3.92) 

p6 0.027600 0.026710 0.022138 0.025220 0.030559 
AADT per lane (1 oJ) ( :t0.015; 1.85) ( :t0.015; 1. 73) (:t0.015;1.38) (:t0.015;1.63) (:t0.016;1.94) 

P1 0.147259 0.089178 0.096170 0.081928 
Horizontal curvature ( :t0.022;6.85) (:t0.028;3.15) ( :t0.029;3.27) (:t0.030;2.75) 

Ps 0.004148 
Length of original curve ( :t0.232;0.02) 

p13 (Horizontal curvature)x 0.232377 0.221877 0.239432 
(Length of original curve) (:t0.084;2. 76) ( :t0.087;2.56) ( :t0.088;2. 73) 

P9 0.083423 0.084194 0.078218 0.050211 
Vertical grade ( :t0.027;3.06) (:t0.027;3.09) (:t0.028;2.78) (:t0.028;1.77) 

P10 0.165342 0.156212 
Length of original grade ( :t0.078;2.11) (:t0.078;1.99) 

P14 (Vertical grade)x (Length 0.031085 0.044749 
of original grade (:t0.015;2.03) (:t0.015;2.89 

Pu Deviation of paved inside 0.088652 0.091478 0.094814 0.088546 
shoulder width from 12 ft ( :t0.036;2.46) (:t0.036;2.54) ( :t0.036;2.60) ( :t0.037;2.36) 

P12 -0.028940 -0.025260 -0.025738 -0.025308 -0.022769 
Percent trucks (e.g., 15) (:t0.004;-6.96) (:t0.004;-5.91) (:t0.004;-6.01) (:t0.004;-5.82) (:t0.004;-5.11) 

,. 1.90 1.84 1.76 1.57 1.57 1.32 0.97 

-3916.4 -3895.0 -3845.5 -3775.3 -3771.7 

A/CValue 7834.7 7800.0 7705.0 7574.5 7567.3 

F.xpected vs. Observed Total 1,641.8 1,645.6 1,641.6 1,642.3 1,644.2 1,604.5 1,540.8 
Truck Accident Involvements 1,643.0 1,643.0 1,643.0 1,643.0 1,643.0 1,603.0 1,539.0 

Notes: (1) Values in parentheses are (unadjusted) asymptotic standard deviation and t-statistics of the coefficients above. 
(2) ----- Not included in the model. 
(3) 1 mile = 1.61km,1 ft = 0.3048 m. 



TABLE 3 Asymptotic Correlation Matrix, (p!i), of the Estimated Regression Coefficients, 
~'for Model 5 
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FIGURE 1 The relationship between truck accident involvement rate and 
key highway geometric design variables for rural Interstate highways 
(continued on next page). 
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FIGURE 1 (continued). 

of the 53 road sections with high standardized residuals only 
slightly altered the coefficient estimates. This also meant that 
no particular road section had unusually high influence on the 
estimates. 

6. All of the estimated coefficients for the traffic and geo­
metric variables are consistent among different models and 
have expected algebraic signs. 

7. Based on Model 5, truck accident involvement rates for 
different combinations of AADT/lane, horizontal curvature, 
length of original curve, vertical grade, length of original grade, 
paved inside shoulder width, and percent trucks are illustrated 
in Figure 1. These rates are computed using the average es­
timated coefficients for 1987-1989 dummy variables as a base 
rate: ~i = exp[~1 + (~3 + ~4 + ~s)/3 + X; 6~6 + xi 1~1 + 
xi,13~13 + xi,9~ + xi,14~4 + x;,11~1 + xi,12~2] =·exp[ -0.626471 
+ 0.02440xi,6 + 0.088861x;,7 + 0.234209xi,13 + 0.077815x;,9 

+ 0.033973xi,14 + 0.085763x;,11 - 0.025233x;,n] 
[In Figure 1, Lines 1 through 10 in each part of the figure 
show truck accidents-geometric design relationships for dif­
ferent combinations of horizontal curvature (HC) in degrees 
per 30.48-m (100-ft arc) and length of original curve (LHC) 

in mi: Line 1: HC = O; Line 2: HC = 3, LHC = 0.1; Line 
3: HC = 3, LHC = 0.5; Line 4: HC = 3, LHC = 1.0; Line 
5: HC = 6, LHC = 0.1; Line 6: HC = 6, LHC = 0.5; Line 
7: HC = 6, LHC = 1.0; Line 8: HC = 9, LHC = 0.1; Line 
9: HC = 9, LHC = 0.5; Line 10: HC = 9, LHC = 1.0. Note 
that this figure applies mainly to road sections with 3.66-m 
(12-ft) lane width and 3.05-m (10-ft) paved outside shoulder 
width. Also, in each part of the figure, the line numbers from 
the bottom to the top are: 1, 2, 3, 5, 4, 8, 6, 9, 7, and 10.] 

8. For the ranges of covariates indicated in Table 1, Model 
5 suggests the following relationships between geometric de­
sign elements and truck accident involvement rates: 

1. As AADT/lane increases by 1,000 vehicles/lane, truck 
accident involvement rate increases by about 2.5 percent. 

2. As horizontal curvature increases, truck accident in­
volvement rate increases. However, the increase depends 
on the length of curve. For example, for a curve with 0.1 
mi in length and with curvature greater than 1 degree/30.48-
m (100-ft) arc, as horizontal curvature increases by 1 de­
gree, truck accident involvement rate increases by about 
11.9 percent. 
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FIGURE 1 (continued). 

3. As vertical grade increases, truck accident involve­
ment rate increases. The increase, however, depends on 
the length of grade. For example, for a grade with 0.8 km 
(0.5 mi) in length and with vertical grade greater than 2 
percent, as grade increases by 1 percent, truck accident 
involvement rate increases by about 9.9 percent. 

4. As the length of curve increases, truck accident in­
volvement rate increases. The increase, however, depends 
on the curvature degree. For example, for a 5 degree curve, 
as the length of curve increases by 0.16 km (0.1 mi), truck 
accident involvement rate increases by about 7 .3 percent. 

5. As the length of grade increases, truck accident in­
volvement rate increases. The increase depends on the 
steepness of vertical grade. For example, for a 5 percent 
grade, as the length of grade increases by 0.8 km (0.5 mi), 
truck accident involvement rate increases by about 5.2 
percent. 

6. As paved inside shoulder width per direction increases 
by 0.3048 m (1 ft), truck accident involvement rate de­
creases by about 8.2 percent. 

7. For a constant vehicle density, as percent trucks in the 
traffic stream increases by 5 percent, truck accident in­
volvement rate decreases by about 11.9 percent. 

Example Applications 

Based on Model 5, the reduction in the expected number of 
truck accident involvements and its estimated one-standard 
deviation (from Equations 8 and 9) caused by improvements 
in horizontal curvature, vertical grade, and paved inside 
shoulder width of a road section, are illustrated in Tables 4 
and 5. These illustrations assume no changes in truck travel 
after the improvements. The expected reductions caused by 
an improvement in one geometric design element are shown 
in Table 4, and the expected reductions caused by improve­
ments in two geometric design elements are shown in Table 
5. Note that Equations 8 and 9 can be used· to estimate the 
expected reductions of a road section caused by improvements 
in any combination of geometric design elements. 



TABLE 4 Expected Reductions in Truck Accident Involvements on a Rural Interstate Road Section 
After an Improvement in One Geometric Design Element 

Length of Original Curve Horizontal Curvature (HC) in degrees/100-ft arc: for 2° S HC s 12° 
(mi) 

Reduce 1° Reduce 2° Reduce 3° Reduce 4° Reduce 5° 

0.10 10.6% 20.1% 28.6% 36.2% 43.0% 
(±2.5%) (±4.5%) (±6.0%) (±7.2%) (±8.1%) 

0.25 13.7% 25.5% 35.7% 44.5% 52.1% 
(±1.9%) (±3.3%) (±4.2%) (±4.9%) (±5.3%) 

0.50 18.6% 33.8% 46.1% 56.1% 64.3% 
(±2.7%) (±4.4%) (±5.4%) (±5.8%) (±6.0%) 

0.75 23.2% 41.1% 54.8% 65.3% 73.4% 
(±4.3%) (±6.6%) (±7.7%) (±8.0%) (±7.8%) 

~LOO 27.6% 47.6% 62.1% 72.5% 80.1% 
(±5.8%) (±8.6%) (±9.6%) (±9.5%) (±9.0%) 

II Length of Original Grade Vertical Grade (VG): for 2% < VG <9% 
(mi) 

Reduce 1% Reduce 2% Reduce 3% Reduce 4% Reduce 5% 

0.10 7.8% 15.0% 21.6% 27.7% 33.4% 
(±3.1%) (±5.7%) (±7.9%) (±9.7%) (±11.3%) 

0.50 9.0% 17.3% 24.7% 31.5% 37.7% 
(±2.5%) (±4.6%) (±6.3%) (±7.7%) (±8.8%) 

1.00 10.6% 20.0% 28.5% 36.0% 42.8% 
(±2.1%) (±3.7%) (±5.0%) (±5.9%) (±6.7%) 

~2.00 13.5% 25.3% 35.4% 44.2% 51.7% 
(±2.1%) (±3.6%) (±4.6%) (±5.4%) (±5.8%) 

Paved Inside Shoulder Width (ISH) oer Direction: for ISH s 12 ft 

Increase 1 ft Increase 2 ft Increase 3 ft Increase 4 ft 

8.2% 15.7% 22.7% 29.0% 
(±4.2%) (±7.7%) (±10.7%) (±13.2%) 

Notes: (1) Values in parentheses are one standard deviation of the expected reductions above. 
(2) 1 ft = 0.3048 m; 1 mi = 1.61 km. 

Increase 5 ft 

34.9% 
(±15.4%) 

TABLE 5 Expected Reductions in Truck Accident Involvements on a Rural Interstate Road Section 
After an Improvement in Two Geometric Design Elements 

Length of Original Curve (LHC) = 0.10 mi and Length of Original Grade (LVG) = 0.50 mi 

Horizontal Curvature (HC) in degrees/100-ft arc: for 2° s HC s 12° 
Vertical Grade (VG): 

Reduce 1° Reduce 2° Reduce 3° Reduce 4° Reduce 5° for 2% < VG < 9% 

Reduce 1% 18.7% 27.3% 35.0% 42.0% 48.1% 
. (±3.1%) (±4.4%) (±5.6%) (±6.6%) (±7.4%) 

Reduce 2% 26.0% 33.9% 40.9% 47.2% 52.8% 
(±4.5%) (±5.0%) (±5.8%) (±6.4%) (±7.0%) 

Reduce 3% 32.7% 39.9% 46.3% 52.0% 57.1% 

Reduce 4% 
(±5.8%) (±5.9%) (±6.2%) (±6.5%) (±6.9%) 
38.8% 45.3% 51.1% 56.3% 61.0% 

(±7.0%) (±6.7%) (±6.7%) (±6.7%) (±6.9%) 
Reduce 5% 44.3% 50.3% 55.5% 60.3% 64.5% 

(±7.9%) (±7.4%) (±7.1%) (±7.0%) (±6.9%) 

Length of Original Curve (LHC) = 0.10 mi 

Horizontal Curvature (HC) in degrees/100-ft arc: for 2° s HC s 12° 
Paved Inside Shoulder Width per 
Direction (lSH): for ISH < 12 ft Reduce 1° Reduce 2° Reduce 3° Reduce 4° 

Increase 1 ft 18.0% 26.7% 34.5% 
(±4.4%) (±5.3%) (±6.3%) 

Increase 2 ft 24.7% 32.7% 39.9% 
(±7.2%) (±7.3%) (±7.5%) 

Increase 3 ft 30.9% 38.2% 44.8% 
(±9.8%) (±9.3%) (±9.0%) 

Increase 4 ft 36.6% 43.3% 49.3% 
(±12.0%) (±11.1%) (±10.5%) 

Increase 5 ft 41.8% 48.0% 53.5% 
(±13.8%) (±12.7%) (±11.8%) 

Notes: (1) Values in parentheses are one standard deviation of the expected reductions above. 
(2) 1 ft = 0.3048 m; 1 mi = 1.61 km. 

41.4% 
(±7.1%) 
46.2% 

(±7.9%) 
50.7% 

(±8.9%) 
54.7% 

(±10.0%) 
58.4% 

(±11.1%) 

Reduce 5° 

47.6% 
(±7.8%) 
52.0% 

(±8.2%) 
55.9% 

(±8.9%) 
59.5% 

(±9.7%) 
62.8% 

(±10.5%) 
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To give a simple illustration of the computations involved, 
consider a curved road section i with 0.16 km (0.10 mi) in 
length. By reducing 1 degree (per 30.48-m or 100-ft arc) of 
the curve and all else equal, the expected truck accident in­
volvement reduction percentage is calculated as 

= {l - exp[(xf,7 - xf.1)~1 + (xf,1 X xf,8 - xf,7 X xf,8)~ 13]} 
x 100 

= {1 - exp[( -1) x 0.088861 + ( -1 x 0.1) x 0.234209]} 
x 100 

= [1 - exp(-0.1123)] x 100 

= 10.6 

The standard error of this expected reduction percentage is 
computed using Equation 9 as 

x ( (xf.1 - xt1_)2s1,1 + (xf,13 - xt13)2sl3,l3 

+ 2(xf,1 - xt1)(xf,13 - xt13)P1,1h1,1S13,13) 112)]} 

x {exp [ -r( (xf,1 - xt1)2s1,1 + (xf,n - xt13)2sn,n 

+ 2(xt,, - xi,,)(xf.,, - xi,.,)1l,,.,(s,,.,s0 ,.,)'n)] -I rn 
x 100 

= {exp[ -0.1123 + i.;7
( (-1)2(0.028)2 

+ ( -1 x 0.1)2(0.084)2 

+ 2 x ( -1)(-1 x 0.1)( -0.792)(0.028)(0.084))]} 

x {exp[ 1.57( ( -1)2(0.q2s)2 + ( -1 x 0.1)2(0.084)2 

+ 2 x ( -1)( -1 x 0.1)( -0. 792)(0.028)(0.084))] 

- I rn x 100 

= 2.5 

where (s7 ,7) 112 and (s13,13)
112 are th~ stand!lrd deviations of the 

estimated regression coefficients j37 and j313 , respectively, and 
are available in Table 2. 

The Poisson regression model introduced in this paper can 
be developed and tested for other states in a similar manner. 
For those states in which detailed rural Interstate roadway 
and accident data are not available for conducting such an 
analysis, it is recommended that Model 5 be used with a slight 
modification, as follows: 
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fl,~ (~~) v,exp(-0.626471 + 0.02440x,_6 

+ 0.088861x;,7 + 0.234209x;,13 + 0.077815x;,9 

+ 0.033973x;,14 + 0.085763x;, 11 - 0.025233x;,12) (10) 

where AR represents the overall truck accident involvement 
rate/MTM in recent years for the rural Interstate Highways 
in another state of interest, and 0.81 is the overall truck ac­
cident involvement rate/MTM for the road sections examined 
in this study. This modification is intended to adjust for the 
differences between Utah and the state of interest in, for 
example, weather and socioeconomic conditions, as well as 
the differences in accident reporting practices for nonfatal 
accidents and in the criteria used for classifying roadways. 
Under this modified model, the expected percentage reduc­
tions in truck accident involvements and associated standard 
deviations can still be computed from Equations 8 and 9 with­
out any changes. 
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