
94 TRANSPORTATION RESEARCH RECORD 1408 

Time-Dependent, Shortest-Path Algorithm 
for Real-Time Intelligent Vehicle Highway 
System Applications 

ATHANASIOS K. ZILIASKOPOULOS AND HANI S. MAHMASSANI 

An algorithm is introduced that calculates the ~im(!-dep~nd~nt 
shortest paths from all nodes in a .netw?rk to a .give~ destmatlon 
node for every time step over a given time honzon m a network 
with time-dependent arc costs. Unlike other time-dependent al
gorithms, this approach can handle networks whe~e th~ travel 
cost is not necessarily the travel time itself. The algonthm is based 
on the general Bellman's principle. of optimality. It d~scretizes 
the horizon of interest into small time mtervals. Startmg from 
the destination node, it calculates the paths operating backwards. 
A proof of the correctness of the proposed algorithm is presented. 
The algorithm is efficiently implemented and coded on a CRAY 
Y/MP-8 supercomputer and tested on a large actual street net
work as well as several random networks. The motivation for this 
study was the need to compute time-?epen.den.t sho~test path~ in 
a real-time environment in connection with mtelhgent vehicle 
highway systems. The suitability of the proposed algorithm for 
such applications is demonstrated. 

The development of intelligent vehicle highway systems (IVHS) 
has brought renewed interest in the subject of shortest-path 
algorithms. For an IVHS control system to respond to rapidly 
changing traffic conditions in urban street networks, it must 
be able to calculate optimum routes dynamically. In partic
ular, the calculation of shortest paths in networks with time
dependent arc costs is needed for the dynamic assignment of 
traffic by a central controller seeking to optimize overall sys
tem objectives. This calculation will most likely be repeated 
a number of times, as part of a real-time decision system, 
thereby requiring an efficient implementation of a fast dy
namic shortest-path algorithm (1,2). In addition, the calcu
lation of time-dependent shortest paths will be needed in other 
parts of the overall system. For example, routines that c~l
culate one-to-all dynamic optimum paths are necessary m 
simulation models. In addition, on-board computers must be 
able to calculate one-to-one dynamic shortest paths for the 
individual needs of the driver. 

The above requirements of IVHS control systems provided 
the primary motivation for this study. To our knowledge, no 
algorithm in the literature can be implemented in a way that 
fulfills all of the above requirements. Time-dependent, shortest
path problems are also encountered in a variety of appli~atio~s 
in logistics and distribution. This study attempts to fill this 
gap by presenting and implementing a time-dependent, shortest
path algorithm in a manner that allows it to efficiently cal
culate paths for large street networks on commercially avail-

Department of Civil Engineering, The University of Texas at Austin, 
ECJ Hall 6.204, Austin, Tex. 78712-1076. 

able computers. The period of interest (e.g., peak period) is 
discretized into very small intervals. Working in a label
correcting fashion, the algorithm calculates for every interval 
the time-dependent shortest paths from all the nodes in a 
network to a given destination node. The algorithm is imple
mented and coded on a CRAY Y-MP/8 supercomputer and 
tested on real streets as well as large random networks. 

LITERATURE REVIEW AND EVALUATION 

The first paper dealing with the time-dependent, shortest-path 
algorithms appears to be by Cooke and J:Ial~ey (3). Th~se 
authors developed an iterative function, which is an extension 
of Bellman's principle of optimality ( 4), that gives the time
dependent shortest paths from every node in the network to 
one destination node for a set of discrete departure time steps. 
The travel times on the arcs are defined in multiples of a 
positive unit of time 8 for every time step of the discrete scale 
SM = {t0 , t0 + 8, t0 + 28, .. ., t0 + M8}. The integer number 
M is chosen so that the travel times are defined for any t E 
S . The travel times fort> t0 + M8 are assumed to be infinite. 
This assumption eliminates all paths with arrival time to a 
destination node beyond t0 + M8, leading possibly to unde
termined paths for some nodes and time steps. This algorithm 

. has theoretical computational complexity O(V3 M), where V 
is the number of vertexes in the network. However, no im
plementation scheme for this approach has been report~d a~d 
hence no computational results are available to determme its 
actual performance. 

Dreyfus (5) proposed a label setting approach that gener
alizes Dijkstra's (6) static short~st-path algorithm. This ap
proach calculates the time-dependent shortest path between 
two nodes for one departure time step with the same com
putational effort as for the static case [ O(V2)]. However, if 
the paths from all the nodes to a destination node are soug~t, 
and for every time step, this approach has the same complexity 
as Cooke and Halsey's (3) algorithm. 

An implicit assumption in the Dreyfus approach is that the 
first-in-first-out (FIFO) property holds on the links of the 
network. If this assumption does not hold, then the Dreyfus 
algorithm fails to· detect the shortest paths. That was stated 
in some fashion by several authors, such as Kaufman and 
Smith (2), Halpern and Priess (7), Malandraki (8), and Orda 
and Rom (9). Orda and Rom recently proposed an approach 
that is not restricted to FIFO links only. This approach can 
identify optimum waiting times on the visited nodes when 



Ziliaskopoulos and Mahmassani 

such a waiting is allowed, or the optimum waiting time in the 
source node if waiting everywhere else is disallowed. How
ever, their approach fails to efficiently find the best path if 
waiting is not allowed everywhere along the path. 

DESCRIPTION OF THE ALGORITHM 

Formulation of the Problem 

Let G = (V,E) be a V node finite directed graph with E 
directed edges connecting the nodes. Let dit) be the non
negative time required to travel from Node i to Node j when 
departure time from Node i is t; dit) is a real-valued function 
defined for every t E S, where S = {t0 , t0 + B, t0 + 2B, ... 
t0 + MB}, t0 is the earliest possible departure time from any 
origin node in the network, Bis a small time interval during 
which some perceptible change in traffic conditions may oc
cur, and M is a large integer number such that the interval 
from t0 to t0 + MB is the period of interest (e.g., the traffic 
peak period). · 

It is assumed that dit) for t > t0 + MB is constant and 
equal to dito + MB). This is a reasonable assumption for 
urban transportation networks where, after the peak hour, 
somewhat stable travel times can be assumed. Nevertheless, 
it is not a restrictive assumption because M is user defined 
and can always be increased to include periods with variable 
travel times on some arcs. It is also assumed that dij( T) = 
d;i(t0 + kB) for every Tin the interval t0 + kB < T < t0 + (k 
+ l)B. This is not a restrictive assumption, considering that 
by definition Bis very small. Node N denotes the destination 
node of interest in the network. The algorithm proposed in 
this paper calculates the time-dependent shortest paths from 
every node i in the network and at every time step t to the 
destination node N. 

At each step of the computation, denote by X.;(t) the total 
travel time of the current shortest path from Node i to Node 
Nat time t. Let A; = [X.;(t0), X.;(t0 + B), ... , X.;(t0 + MB)] 
be an M-vector label that contains all the labels A.;(t) for every 
time step t E S for Node i. Every finite label X.;(t) from Node 
i to Node N is identified by the ordered set of nodes P; = 
{i = n1, llz, .. . ,nm = N}. 

According to Cooke and Halsey (3), X.;(t) is defined by the 
following functional equation: 

>.-;(t) = {
0
mini,.,;{d;i(t) + >..Jt + dit))} fori = 1,2, ... ,N - l;tE S 

fori=N;tES 

(1) 

A modified version of this equation is the building block of 
the approach. Instead of scanning all the nodes in every it
eration, a list of scan eligible (SE) nodes is maintained, con
taining the nodes with some potential to improve the labels 
of at least one other node. The proposed algorithm operates 
in a label correcting fashion; therefore, the label vectors are 
just upper bounds to the shortest paths until the algorithm 
terminates. 

95 

The Algorithm 

Initially the SE list contains only the destination node N. In 
the first iteration all the nodes that can directly reach N are 
updated according to Equation 2 and inserted in the SE list. 

i E r- 1 {N} (2) 

where r- 1{N} is the set of nodes that can directly reach N. 
The rest of the labels are set equal to infinity. Next, the first 
node i of the SE list is scanned according to the following 
equation: 

(3) 

for every time step t E S. If at least one of the components 
of Ai is modified, Node j is inserted in the SE list. This scheme 
is repeated until the SE is empty and the algorithm terminates. 
Relations 2 and 3 are modifications of Equation 1, which in 
turn is an extension of Bellman's principle of optimality (4). 

The steps of the algorithm are as follows: 

Step 1. Create the SE list and initialize it by inserting into 
it the destination node N. Initialize the label vectors at the 
following values: AN = (0, 0, ... , 0) and A; = (oo, oo, ... , 
oo) for i = 1,2, ... ,N - 1. 

Step 2. Select the first node i from the SE list, name it 
"Current Node," and delete it from the list. If the SE list is 
empty, go to Step 4. Scan the current node i according to 
Relation 3 by examining each node j, j E r- 1{i}. Specifically, 
for every time Step t E S, check whether X.lt) is greater than 
di;(t) + X.;[t + di;(t)]. If it is, replace X.i(t) in the label vector 
Ai at position i with the new value. If at least one of the M 
labels of Node j has been improved, insert Node j in the SE 
list. The details of the structure of the SE list and the asso
ciated operations of creation, insertion, and deletion are dis
cussed in the next section. 

Step 3. Repeat Step 2. 
Step 4. Terminate the algorithm. The M-dimensional vec

tors A; for every node i in the network contain the travel times 
of the time-dependent shortest paths from every node i to the 
destination node N for each time step t E S. 

Without proving it, the following theorem is stated: On 
termination of the algorithm, every element of the vector label 
is either an infinite number, meaning that no path exists from 
this node to the destination node at the corresponding time 
step, or a finite number that represents the shortest path from 
this node and time step to the destination node. 

The proof of this theorem is given by Ziliaskopoulos and 
Mahmassani (10). 

IMPLEMENTATION 

The implementation of this algorithm is similar to the im
plementation of a static label correcting algorithm. The three 
principal implementation issues are the network representa
tion, the data structure of the SE list, and the path storage. 

The network representation is more complicated than in 
the static case because travel times need to be specified for 



96 

every time step (M steps) for every arc. The most efficient 
way to store the network is the "backward star" structure 
because at Step 2 of the algorithm we need all the arcs that 
end at a specific node. A description of the backward star 
structure is given by Dial et al. (11). To handle the time
dependent trip times, we use the second dimension of the 
backward star to store pointers to an E x M matrix, where 
Eis the number of arcs of the network. The required memory 
to store this structure is the minimum possible, N + E(M + 
2) units, 

The structure of the SE list for the label correcting algo
rithms has been studied extensively in the literature (11-14). 
Any SE list structure is appropriate for the proposed algo
rithm: a simple list with any priority rule, a queue, a double
ended queue, as well as Glover et al. 's partitioning shortest
path scheme with two SE lists (13). In this paper, a double
ended queue ( deque) structure is implemented. Deque was 
introduced by D'Esopo and tested by Pallotino (14). The 
deque structure allows the insertion of nodes at both ends of 
the SE list according to a predetermined strategy and removal 
from the beginning of the SE list. 

The deque is implemented as suggested by Pape (12). A 
one-dimensional array, called deque, holds an integer number 
and can take the following values: 

Deque(i) j-; 
+oo 

if Node i has been in the SE list at least 
once but is not there any longer; 
if Node i has never been in the SE list; 
if Node i is currently in the SE list and 
j is the node next to it in the list; and 
if Node i is the last node in the SE list. 

In addition, two pointers are kept, one pointing to the first 
(FIRST) and the other to the last (LAST) node in the deque. 

We define the following operations associated with this 
structure: 

• Creation: Creation is an initialization step, which is ac
tivated just once to set Deque(i) = 0, i = 1,2, ... ,N - 1 
and Deque (N) = oo. Infinity is defined practically as a very 
large number-for example, 999,999. This operation also sets 
the variables FIRST =:= LAST = N. The whole operation 
requires N + 3 computational time units. 

• Insertion: Insertion involves inserting a node at the be
ginning or the end of the deque. To determine the insertion 
point, the operation checks the value of Deque(i). If it is 0, 
indicating that Node i has never been in the deque, the node 
is inserted at the end of the SE list and the value of the pointer 
LAST is set equal to i and Deque(i) = oo. If Deque(i) = -1, 
Node i is inserted at the end of the deque; Deque(i) is set to 
FIRST, and the value of FIRST = i. Otherwise, it does noth
ing because the node is already in the deque. The computa
tional effort required by this step is three time units. 

• Deletion: Deletion selects the first element of the deque 
and assigns it to the variable "CurrentNode." Then, it changes 
the valu.e of the FIRST to the second element in the deque 
[which is the Deque(FIRST) node]. It sets the values of De
que( CurrentNode) to -1. The computational effort for this 
operation is three time units. 

TRANSPORTATION RESEARCH RECORD 1408 

The creation operation is called only once from Step 1 of 
the algorithm and does not contribute significantly to the total 
computation time of the algorithm. On the other hand, dele
tion and insertion are called repeatedly from Step 2; as such, 
they are critical in the determination of the total computa
tional effort of the algorithm. 

Finally, the paths are maintained in an M x 2-dimensional 
array of pointers for each node. These pointers point to the 
successor node and its label address. This arrangement re
quires 2VM memory locations-the least possible. 

In pseudocode form the algorithm is summarized in 
Figure 1. 

The most time-consuming part of the algorithm is Step 2 
(see description of the algorithm) in which each element of 
the M-vector is updated for every node adjacent to the scanned 
node. This step corresponds to Loop 2 in the pseudocode and 
requires 4Md computational time units, where d is the in
degree of the scanned node (number of iterations of Loop 2). 
Inner Loop 3 can be efficiently vectorized because of the 
absence of interdependencies, and the number of iterations 
Mis usually greater than 64 (the number of registers in the 
CRAY's vector processor), which leads to maximum vecto
rization speed-up (15). 

The efficiency of the algorithm, however, depends essen
tially on the total number of scanned nodes before the process 
terminates. The lower bound on this number is the total num
ber of nodes in the network (V), whereas the upper bound 
is V2M. The upper bound is obtained by direct extension of 
the results for the corresponding static label correcting case. 
As shown in the next section, this upper bound is not a tight 
bound in practical applications. The complexity of the algo
rithm is that of Step 2 (Loop 2) multiplied by the upper bound 
of the number of repetitions of this step (iteration number of 
Loop 1) or O(V3M2) in the general case that the maximum 
indegree of a node is V - 1. 

This implementation of the algorithm was coded in the 
FORTRAN CFI77 language and run on a CRAY Y-MP/8 
supercomputer. The results from the tests are presented in 
the next section. 

COMPUTATIONAL EXPERIENCE 

Four different sets of networks are used to test this new al
gorithm. Set 1 consists of five random networks with a struc
ture similar to that of street networks and with the number 
of nodes ranging from 100 to 2,500. The number of time steps 
is held constant at 240. The travel times for each time step 
are generated in such a way that the FIFO property holds. 
Specifically, a randomly generated number is accepted as travel 
time for a given time step only if the absolute value of its 
difference from the travel time of the previous time step does 
not exceed the length of the interval between the two steps. 
Set 1 was designed to test the relation of the performance of 
the algorithm to the network size. 

Set 2 contains five different representations of the same 
random network consisting of 1,000 nodes, 2,500 arcs, and 
varying numbers of time steps that range from 120 to 640. In 
Set 3, the number of arcs ranges from 1,000to11,500, whereas 
the numbers of both nodes and time steps are kept constant 
at 1,000 and 240, respectively. This set is used to estimate the 



Ziliaskopoulos and Mahmassani 97 

Call Creation 

Call Insertion(N) 

Do 1, While (SE list is not Empty) 

Call Deletion(CurrentNode) 

Do 2, For (All nodes J that can directly reach CurrentNode) 

NextNode = J 

InsertlnSEList=F ALSE 

Do 3, For (t=l.M) 

CurrentTravelTime=TravelTime(NextNode, CurrentNode,t) 

NewLabel=LABEL(CurrentNode,t+CurrentTravelTime)+CurrentTravelTime 

If (LABEL(NextNode,t) ~ewLabel) Then 

LABEL(NextNode,t)=Newl..abel 

InsertlnSEList=TRUE 

PathPointer(NextNode,t, l)=NodeCurrent 

PalhPointer(NextNode,t,2)=t+CurrentTravelTime 

Endlf 

3 Continue 

If (lnsertlnSELisl) Call Insertion(NextNode) 

2 Continue 

FIGURE 1 Algorithm for program time-dependent shortest path. 
(continued on next page) 

relationship between the execution time and the average de
gree of a node in a network. 

Finally, Set 4 consists of one real street network-that of 
the core area of Austin, Texas-consisting of 625 nodes and 
1, 724 arcs. Time-dependent travel times for this network were 
produced from a simulation model called DYNASMART 
(Dynamic Network Assignment Simulation Model for Ad
vance Road Telematics), for a simulated peak period of 50.3 
min. This peak period is discretized into 503 intervals of 0.1 
min each, and the travel time for each interval is generated. 

Tables 1 through 4 present the computation times in CPU 
milliseconds for each set. All the runs were performed on a 
CRAYY-MP/8 supercomputer, using the CFf77 FORTRAN 
compiler. This computer has eight CPUs with vector pipeline 
architecture. The algorithm is coded to allow vectorization 
when applicable. Vectorization is especially well suited for 
Step 2 of the algorithm, in which M iterations are performed 
because no dependency exists between any two iterations, 
and the number M is usually larger than the number that 
CRAY considers the minimum number of iterations for maxi
mum speed-up. However, no attempt was made to exploit 
other hardware characteristics of the CRAY beyond vecto
rization. In addition, to smooth out the effect of the desti
nation node choice on the execution time, 30 runs were per
formed for 30 different destinations for every network, and 
the average computation time is reported. 

Tables 1 and 2 contain the results for Network Sets 1 and 
2, which indicate that the computation time increases almost 

linearly with the number of nodes and the number of time 
steps in the network. 

Table 3, on the other hand, suggests that a nonlinear re
lationship exists between the execution time and the average 
degree of a node in the network. An exponential model was 
calibrated from these data using regression, yielding the fol
lowing relationship: 

Computation time = 22.13 di. 4 

where dis the average indegree of a node in the network. 
Table 4 ·contains the averages and standard deviations of 

the computation time and the total number of scanned nodes 
for the real street network of the Austin, Texas, core area. 
The total number of scanned nodes is the main factor that 
affects the performance of the algorithm. The lower bound 
for this number is the number of nodes in the network (V), 
whereas an upper bound was found to be V 2 M in the previous 
section. Table 4 shows that for the tested network of 625 
nodes, the total number of scannings was 736, or l .18V, which 
is considerably less than the theoretical upper bound. More
over, from the low values of the standard deviations, it can 
be inferred that the algorithm is reasonably stable. 

Combining all the above results, we can conclude that as 
is common with shortest-path problems,, the actual compu
tational performance for the networks considered here is on 
the order of VMdt. 4 , which is far from the worst-case theo
retical complexity O(V3M2). In addition, as mentioned ear-



98 

Where: 

Continue 

Procedure Creation 

Do, F<r (Node= l, V-1) Deque(Node)=O 

Deque(N)=999999 

FIRST=N 

LAST=N 

Procedure Deletion(CurrentNode) 

CurrentNode=FIRST 

FIRST=Deque(CurrentNode) 

Deque(CurrentNode)=-1 

Procedure Insertion(Node) 

If (Deque(Node)=O) Then 

Deque(LAST)=Node 

LAST=Node 

Deque(Node.)=999999 

Else 

H (Deque(Node)=-1) Then 

Deque(Node)=FIRST 

FIRST=Node 

End If 

Endlf 

TRANSPORTATION RESEARCH RECORD 1408 

LABEL(Node,l) is a variable that holds the M-vector labels for every node. 

PathPointer(Node,t,1) is a pointer that points to previous node while PathPointer(Node,t,2) 

points to the corresponding time of arrival at the previous node of the shonest path from 

this node to the destination node N. 

InsertlnSEList is a logical variable which is used to determine if a label of a node was 

changed. 

New Label is an auxiliary variable· that temporarily holds the new label of the next node. 

FIGURE 1 (continued) 

lier, the algorithm was vectorized efficiently. The algorithm 
was tested on the Austin core street network with the vec
torization feature disabled for the same destination nodes as 
above, and the average execution time was found to be 728.02 
msec. This means that the vectorization in this case yielded 
a speed-up of 6. 74 (speed-up is defined as the ratio of the 

total computation time of the algorithm without vectorization 
to the corresponding computation time with vectorization). 

Next, we compare our approach with the expanded static 
case proposed by Dreyfus (5). We implemented that scheme 
as efficiently as we could and achieved an execution time of 
2.2 msec to find the time-dependent shortest path between 



Ziliaskopoulos and Mahmassani 99 

TABLE 1 Computation Times (msec) for Various Network Sizes 

Network Nodes Arcs Time intervals Come. time 

1 100 250 240 5.97 
2 500 1250 240 35.73 
3 1000 2500 240 73.28 
4 1500 5000 240 141.42 
5 2500 8000 240 235.04 

TABLE 2 Computation Times (msec) for Various Numbers of Intervals 

Network Nodes Arcs Time intervals Come. time 

1 1000 2500 120 37.95 
2 1000 2500 240 73.28 
3 1000 2500 360 102.46 
4 1000 2500 480 131.56 
5 1000 2500 640 158.54 

TABLE 3 Computation Times (msec) for Various Numbers of Arcs 

Network Nodes Arcs Time intervals Come. time 

1 1000 2000 240 . 55.89 
2 1000 3000 240 91.88 
3 1000 6000 240 253.95 
4 1000 9000 240 448.19 
5 1000 11500 240 624.86 

TABLE 4 Performance of the Algorithm on Part of Austin's Core Street 
Network Consisting of 625 No~es a"-d 1,7-24 Arcs for 503 Inte~val.~ -· 

Computation time in 

milliseconds 

Total number of scanned 

nodes 
Mean 

Standard Deviation 
107.41 

11.82 

one origin and one destination for one time step on the Austin 
core network. To compare it with our proposed algorithm, 
the time-dependent shortest paths must be calculated from 
all 625 nodes of the network to one destination and for 503 
time steps for each node. This calculation would require a 
total time of 0.0022625503 = 691.25 sec. However, the cal
culation of one path for one node and one time step produces 
at the same time the paths to the destination from every node 
along the path for one time step. The maximum number of 
nodes in a path for the real street network was 72. Therefore, 
we can estimate a lower bound on the total execution time 
by assuming that every time one path is computed, 72 other 
not previously calculated paths are obtained at the same time. 
This lower bound is 9.6 sec, which greatly exceeds the 0.107 
sec achieved with the proposed algorithm. 

The proposed algorithm takes advantage of two main char
acteristics of networks with time-dependent arcs. One is that 
only a few paths between a given OD pair become best paths 
at any point in time. Usually, three or four paths are inter
changed as best paths at different time steps, with one path 
often maintaining its best path status for most of the time. 
For example, the maximum number of paths observed during 
the testing of the real street network was 17 (out of a possible 
503). 

The second characteristic of dynamic networks is that even 
if various paths were best at different times between a given 
OD, these paths would be likely to share the same next-to
the-origin node (i.e., second node in the path). This means 

736 

81 

that most of the best paths from a given node result from the 
scanning of just one of the neighboring nodes. The effective
ness of our algorithm is attributed to these two reasons. Spe
cifically, the fewer the paths that are best at different times, 
the closer is the behavior of the algorithm to that of static 
label correcting algorithms. In the extreme case that the same 
path remained best between a given OD pair for all the time 
steps, the corresponding origin node would contribute to the 
total computation time of the algorithm as if the network were 
static. Even if more than one path were best for a given OD 
pair, these paths could be calculated in just one scanning of 
a neighbor node. From Table 4, we can see that for the real 
street network of Austin, Texas, only 111 (736 - 625) nodes 
were scanned for a second time, although in general different 
paths were best at different times for a given origin node. 

Finally, the proposed algorithm does not require the FIFO 
that the Dreyfus approach requires because it operates in a 
label correcting fashion. That makes the algorithm applicable 
to networks with time-dependent arc costs that arise in a 
variety of areas, not just transportation networks. Examples 
include equipment replacement policy, vehicle routing and 
scheduling, capacity planning, and communication networks. 

SUMMARY 

In this paper, a new time-dependent shortest-path algorithm 
was introduced. It calculates simultaneously all the shortest 



100 

paths from all nodes to a given destination node and for every 
discrete time step in a network with time-dependent arc costs. 
The algorithm is based on Bellman's general principle of op
timality and can be applied to any network with time-dependent 
arc costs. The correctness of the algorithm was analytically 
established. 

An implementation scl).eme for the algorithm was pro
posed, coded, and run on a CRAY Y-MP/8 supercomputer. 
The coded scheme was tested on a set of random networks 
and one real street network. The computational results dem
onstrated the efficient performance of the proposed algorithm 
for a broad range of network structures. This efficiency is 
attributed to the fact that the algorithm is not just an extension 
of a static algorithm but is designed to take advantage of the 
specific characteristics of networks with time-dependent arc 
costs. 

ACKNOWLEDGMENTS 

This paper was based on work funded by FHWA, U.S. De
partment of Transportation, through a contract entitled Traffic 
Modeling to Support Advanced Driver Information Systems. 
The computing time and the technical support provided from 
the Center for High Performance Computing at the University 
of Texas at Austin are also gratefully acknowledged. 

The authors appreciate the discussions with the other proj
ect researchers, especially Ta-Yin Hu, Srinivas Peeta, and 
Richard Rothery. 

REFERENCES 

1. H. S. Mahmassani, G. L. Chang, S. Peeta, and T. Junchaya. A 
Review of Dynamic Assignment and Traffic Simulation Models 
for ATISIATMS Applications. Technical Report DTFH61-90-R-
00074-l. CTR, The University of Texas at Austin, 1992. 

TRANSPORTATION RESEARCH RECORD 1408 

2. D. E. Kaufman and R. L. Smith. Minimum Travel Time Paths 
in Dynamic Networks with Application to Intelligent Vehicle/ 
Highway Systems. !VHS Journal, in press. 

3. K. L. Cooke and E. Halsey. The Shortest Route Through a 
Network with Time-Dependent Internodal Transit Times. Jour
nal of Math. Anal. Appl., Vol. 14, 1966. pp. 492-498. 

4. R. Bellman. On a Routing Problem. Quart. Appl. Mathematics, 
Vol. 16, 1958, pp. 87-90. 

5. S. E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. 
Operations Research, Vol. 17, 1969, pp. 395-412. 

6. E. W. Dijkstra. A Note on Two Problems in Connexion with 
Graphs. Numer. Mathematics, Vol. 1, 1959, pp. 269-271. 

7. J. Halpern and I. Priess. Shortest Path with Time Constraints on 
Movement and Parking. Networks, Vol.4, 1974, pp. 241-253. 

8. C. Malandraki. Time Dependent Vehicle Routing Problems: For-· 
mulations, Solution Algorithms and Computational Experiments. 
Ph.D. dissertation, Northwestern University, Evanston, Ill., 1989. 

9. A. Orda and R. Rom. Shortest-Path and Minimum-Delay Al
gorithms in Networks with Time-Dependent Edge-Length. Jour
nal of the ACM, Vol. 37, 1990, pp. 607-625. 

10. A. K. Ziliaskopoulos and H. S. Mahmassani. Design and Im
plementation of a Shortest Path Algorithm with Time-Dependent 
Arc Costs. Proc., of 5th Advanced Technology Conference, 
Washington, D.C., 1992, pp. 1072-1093. 

11. R. B. Dial, F. Glover, D. Karney, and D. Klingman. A Com
putational Analysis of Alternative Algorithms and Labeling 
Techniques for Finding Shortest Path Trees. Networks, Vol. 9, 
1979, pp. 215-248. 

12. U. Pape. Implementation and Efficiency of Moore-Algorithms 
for the Shortest Route Problem. Mathematical Programming, 
Vol. 7, 1974, pp. 212-222. 

13. F. Glover, R. Glover, and D. Klingman. The Threshold Shortest 
Path Algorithm. Networks, Vol. 14, 1986, pp. 132-145. 

14. S. Pallotino. Shortest-Path Methods: Complexity, Interrelations, 
and New Propositions. Networks, Vol. 14, 1984, pp. 257-267. 

15. Parallel Processing Guide. CF77, Vol. 4. Cray Research Inc., 
Mendota Heights, Minn., 1991. 

The contents of the paper are the sole responsibility of the authors. 

Publication of this paper sponsored by Committee on Transportation 
Supply Analysis. 


