
116 TRANSPORTATION RESEARCH RECORD 1408

Software for Advanced Traffic Controllers

DARCY BULLOCK AND CHRIS HENDRICKSON

A systematic approach to traffic engineering software develop­
ment could provide significant advantages with regard to software
capability, flexibility, and maintenance. Improved traffic con­
trollers will likely be essential for many proposed intelligent ve­
hicle highway system applications. A computable language called
TCBLKS (Traffic Control Blocks) that could provide the foun­
dation for constructing real-time traffic engineering software is
introduced. This computable language is designed to be config­
ured by a graphical user interface that does not require extensive
software engineering training to use yet provides more flexibility
and capability than is possible by simply changing program pa­
rameters. The model is based on the function block metaphor
commonly used for constructing robust and efficient real-time
industrial control systems. Adapting this model to the transpor­
tation sector permits traffic control applications to be pro­
grammed by (a) selecting preprogrammed function blocks from
a standard library, (b) configuring block parameters, and (c) con­
necting blocks to other blocks in the strategy. The software model
was implemented in C on an advanced traffic controller platform
and demonstrated in real time for applications such as signalized
intersection control and ramp metering. In addition, this same
software model was used to control the ramp meters along a
segment of westbound Highway 50 during a demonstration in
Sacramento, California, in November 1992.

Twenty years ago, traffic controllers underwent a technical
revolution in the switch from electromechanical systems to
solid-state microproc~ssor systems. With the computing tech­
nology available 2 decades ago, the most cost-effective ap­
proach for software development was to construct specialized,
embedded systems tailored to the traffic control industry.
Traffic control logic was programmed using assembly lan­
guage programs that could read and write bits associated with
external sensors and actuators. Initially, these microprocessor­
based controllers did little more than their mechanical pred­
ecessors. Over time, transportation engineers realized that
more and more features could be implemented on solid-state
controllers, and they upgraded their software accordingly.

Today there is another turning point in traffic control tech­
nology. The advances in microprocessor technology over the
past decade have dropped the average cost of computing by
roughly an order of magnitude every 5 years (J). In contrast,
the average cost of a Caltians Type 170 controller has de­
creased only 15 percent since 1987 and 27 percent since 1982
(California Department of Transportation, personal com­
munication, July 1992). Off-the-shelf, field-hardened, and af­
fordable equipment is available that rivals the computing power

D. Bullock, Department of Civil Engineering, Louisiana State Uni­
versity, Baton Rouge, La. 70803. C. Hendrickson, Carnegie Institute
of Technology and Department of Civil Engineering, Carnegie Mel­
lon University, Pittsburgh, Pa. 15213.

of mainframes from 20 years ago. If computing costs continue
to decline in this manner, it will no longer be cost-effective
for proprietary transportation computers to compete with mass­
produced industrial hardware. Migration to these more pow­
erful computers will allow traffic engineers to make a fun­
damental change in software development practices. Memory
capacity and processor limitations will not impose significant
constraints on applications. Instead, traffic engineers can fo­
cus on developing an efficient architecture for building sys­
tems that are more effective, easier to install, and easier to
maintain.

This change should have numerous benefits. Since the in­
ception of the microprocessor-based traffic controller, the
software engineering effort devoted ·to constructing traffic
control software has been less than ideal (2,3). In general,
the state of the practice with current microprocessor software
is to write software in assembly language without an operating
system, permanently install the software on a chip (i.e., burn
it into a ROM), and empirically test programs to see if they
work. Provided a suitable programming model can be. devel­
oped, it is now possible to engineer software for greater ca­
pability, flexibility, and usefulness. However, no substantial
model has been proposed. Such models are crucial for the
evolution of an engineering discipline from a solely craft­
based practice (4).

Selecting an appropriate software model is particularly im­
portant because the development of transportation control
systems is multidisciplinary, requiring the interaction of trans­
portation engineers, electrical engineers, software engineers,
and government officials. In the past, the coupling between
traffic engineering concepts and field implementation has been ·
weak. This paper presents a software model that is designed
to address professional communication gaps and the need for
more capable and maintainable software. It is based on the
"function block metaphor" that is widely used in industrial
control systems. This model provides the capability for non­
programmers to develop intuitive control software by drawing
graphic diagrams on a computer screen and filling in menus.
This model is based on a formal, real-time scheduling algo­
rithm that allows the correctness and feasibility of strategies
to be formally verified. It has been so successful in the in­
dustrial sector that many companies have imposed rules re­
stricting development of custom software and require appli­
cation developers to use "canned software" applications
consistent with the function block model.

The following section introduces as background the ra­
tionale and characteristics of an advanced traffic controller
hardware platform. The subsequent sections describe the model
of traffic control software developed in this study. A final
section discusses the status of the proposed software model.

Bullock and Hendrickson

ADVANCED TRAFFIC CONTROLLER
HARDWARE

Most of the current generation of traffic controllers used in
the United States are based on two different families of con­
trollers. This section summarizes these competing efforts and
describes some hardware modernization efforts under way.

One family of controllers, referred to as NEMA units, are
built with connectors that conform to standard mechanical
and electrical connectors. The philosophy of this standard is
that manufacturers will compete on the basis of the hardware
and software they provide inside the controller. In theory, an
agency can migrate to another manufacturer's controller by
unplugging the old one and plugging in the new one using
standard connectors. Because of additional proprietary sock­
ets added to the NEMA TSl units and nonstandard com­
munication protocols, this interchangeability is not realized
in practice. The 1988 NEMA TSl standard recently has been
updated (NEMA TS2 Type 1 and NEMA TS2 Type 2) to
address deficiencies of the NEMA TSl standard and incor­
porate an alphanumeric display for interaction with the con­
troller. Because the software on all NEMA controllers remains
proprietary and cannot be ported by the customer, engineers
and technicians must still learn new software to reconstruct
timing and phasing plans on new NEMA controllers.

A second family of controllers, referred to as the Caltrans
Type 170 controllers, is built to provide both standard con­
nectors and portable software. The philosophy of this stan­
dard is to develop a very precise specification for a traffic
control microcomputer. Manufacturers are selected periodi­
cally on the basis of competitive bidding. This standard has
been successful for the past 20 years. Minor modifications
have been introduced over time, including a second serial
port, additional memory, and different ROM sizes, but the
essential features are unchanged. The distinguishing feature
of the 170 controller remains the program module-an in­
sertable card with a ROM that stores the traffic control pro­
gram. This module can be removed from one manufacturer's
170 controller and inserted into another manufacturer's con­
troller, and the software will run without modification. This
decoupling of the hardware and software procurement is very
desirable, particularly when equipment purchases are going
to be staged over several years. Instead of relying on embed­
ded user interfaces, as in the NEMA controllers, the 170s are
typically configured by connecting a small computer such as
a personal computer to a serial port and downloading the
strategy. Alternatively, binary configurations can be keyed in
on a hexadecimal keypad. A modernization of the Type 170
has been undertaken by New York state and is called the
Type 179. This controller provides more powerful computing
and employs a real-time operating system. However, it has
not been widely adopted. As a result, it has been difficult to
develop a pool of competitive vendors.

In view of the microprocessor and software engineering
developments in the past 2 decades, these standards are be­
ginning to age (3). First, the software is written entirely in
assembly language. The complex nature of assembly language
development precludes all but the largest cities and states from
maintaining a software staff for making software configuration
changes other than changing parameters in a given configu-

117

ration. Second, no operating system is employed (except for
some 179 software). Routine chores, such as task scheduling,
memory management, and semaphores, must be recoded.
The "home-grown" executives that have evolved preclude
sharing of new control strategies. Third, the hardware con­
straints (slow processors and limited memory) can only be
addressed by a revised standard that would require rewriting
large quantities of assembly language applications. Finally, it
is unclear how much longer it will be cost-effective for the trans­
portation community to manufacture specialized computers.

These shortcomings and requirements for improved soft­
ware development tools, faster processors, expandable I/O,
and more memory have led the California Department of
Transportation to investigate the use of modular industrial
computers for applications ill suited to the Cal trans 170s (5).
This proposed platform, called advanced traffic controller
(ATC), is based on a 3U VME bus, a 680x0 processor, and
an OS-9 operating system. This computer is used extensively
in the military and commercial sectors and provides an eco­
nomical, off-the-shelf hardware platform for the ATC. Al­
though a rich set of development tools, including operating
systems, compilers, and debuggers, are available for this plat­
form, the low-level nature of the tools renders them inap­
propriate for everyday use by traffic engineers. This is anal­
ogous to a desktop computer that has only a language compiler.
For a desktop computer to be truly useful to an engineer,
application software such as a spreadsheet or CAD package
must be available. Because of this ATC software void, a general­
purpose application program (software model) is required to
enable traffic engineers to develop real-time traffic control
strategies.

COMPUTABLE LANGUAGE FOR TRAFFIC
ENGINEERING

The motivation for developing a computable language is to
provide a high-level configuration tool that does not require
extensive software engineering training to use, yet provides
more flexibility than just changing program parameters. The
model underlying the language proposed in this paper is based
on function block programming in which the function blocks
specialized to traffic engineering are graphically assembled
and downloaded to a field controller. In the function block
programming paradigm, a user develops applications by se­
lecting and connecting predefined software modules called
blocks. The blocks represent parameterized programs pre­
pared in a uniform manner, which permits them to be inter­
connected with other blocks. Connections between blocks
serve as communication links for particular variables such as
detector states, approach volumes, or phase timing. Selection
of blocks may require definition of parameters, such as exe­
cution frequency, minimum and maximum green extensions,
and filter times. Function block programming lends itself readily
to graphical displays in which blocks are represented picto­
rially as a box with a title, indicating the program associated
with a particular block, and a name, providing a symbolic
means of referring to elements of a specific block. Figure 1
shows an example of a simplified semiactuated signal with
presence detectors on the east and west approaches. Con-

118

VO
EB_PRS

110
WB_PRS

OR
EW_PRS

DRUM
SEQNCR

1/0
SB_RED

1/0
SB_YLW

1/0
SB_GRN

1/0
WB_GRN

1/0
WB_YLW

1/0
WB_RED

TRANSPORTATION RESEARCH RECORD 1408

VO
NB_RED

VO
NB_YLW

VO
NB_GRN

VO
EB_GRN

1/0
EB_YLW

VO
EB_RED

FIGURE 1 Semiactuated intersection control strategy using five
function block types.

nections, or data flows, are shown as link connections between
the boxes. A typical function block program resembles an
activity-on-node (PERT) project management scheduling
network.

Function block programming is different from the modular
design taught in introductory programming classes because
the end user never encounters any procedural code. All in­
teraction with hardware devices, protocol conversions, buff­
ers, timing demands, and error recovery are embedded in a
parameterized function block graphical icon. that can be con­
figured by a traffic engineer using a function block editor.
The blocks available within the function block editor are pre­
pared by software engineers in a standardized manner, which
permits seamless interconnection and implementation. This
set of blocks is called TCBLKS, an acronym for traffic control
blocks.

TRAFFIC ENGINEERING FUNCTION BLOCK
PROGRAMMING MODEL

The previous section introduced the function block program­
ming model. This section addresses three areas: (a) traffic
engineering task vocabulary, (b) configuration of function
block strategies, and (c) function block language structure.

Traffic Engineering Task Vocabulary

The set of building blocks available in the block library con­
stitutes the "vocabulary" for users to assemble applications.
Table 1 summarizes the 40 blocks that have been developed.
This library includes signal sequencing blocks, signal filters,
logic functions, interfaces to external sensors and actuators,
archival functions, and various algorithmic blocks. The intent
of establishing a definition of these control blocks is to provide
a vocabulary that can be assembled by a traffic engineer (in
a sketch or diagram) to define the required software. This

concept is used extensively in the chemical and process en­
gineering fields so that there is an almost one-to-one corre­
spondence between the process and instrumentation diagram
(P&ID) developed by the chemical engineer and a function
block strategy constructed by the control system contractor.
The same continuity is sought for traffic engineering.

Because this model is only in the prototype stage, the
blocks described in Table 1 currently fall short of providing
a comprehensive set of building blocks. To support the growth
of this model, new blocks can be created and included in the
block library as long as the new blocks conform to standard
block definition and operation practices. Thus, applications
such as a dynamic signal control algorithm such as OPAC (6)
could be included in a single-function block. In general, this
model supports blocks of varying execution complexity rang­
ing from simple logic gates to complex blocks supervising
several ramp meters. For example, the simple blocks, such
as mathematical computations and digital logic, are necessary
for incorporating minor operational changes typically re­
quired by peculiar geometric or policy constraints. In contrast,
the complex blocks such as ramp metering or intersection
control algorithms can provide rapid and reliable task-level
programming.

Configuration of Function Block Strategies

An advantage afforded by the function block programming
model and advocated in this paper is the ability to easily
"program" or configure robust traffic control software with­
out an extensive software engineering background. A typical
configuration tool can operate like a simple vector drawing
package commonly found on desktop or notebook computers.
Instead of manipulating shapes and lines, it manipulates func­
tion blocks. A block program is developed by assembling a
strategy composed of predefined blocks that provide common
traffic engineering operations. The mechanics of constructing
such a strategy can be viewed in three steps.

Bullock and Hendrickson

TABLE 1 Function Block Summary

AND, OR, XOR, NOT: These blocks perform the essential
boolean logic operations on their input(s).
DlyOn, DlyOff, OneShot: These digital blocks perform
digital logic timing operations. The DlyOn block delays a
transition from low to high for a specified time.
Alternatively, the DlyOff block delays a high to low transition
for a specified time period. The OneShot provides a pulse
generating mechanism for transitions from low to high.

D-Shlft: provides a 16 bit shift register for transient storage
of digital states.

D-UI: provides an operator with simple on/off and pulse
operations for user interfaces.

Match: provides basic decoding fimctionality.

Timer: measures the duration of digital events.

Counter: can be used for counting lo-high transitions.

FF-RS, FF-D, FF-JK: These blocks provide discrete
implementations of clocked RS, D, and JK flip flops. A T flip
flop can be constructed from the JK flip flop.

Drum: provides state sequencing subject to minimum and
maximum durations with the capability of back stepping.

Rate: calculates the filtered rate of an incoming digital pulse
train.

Add, Molt, Div: These block provide basic mathematical
operations.

Mavg, A-Shft: Both blocks implement a circular queue. The
Mavg block uses the queue to compute the moving average of
a time series. The A-Shft block provides a mechanism for
introducing a time delay Oag).

A-Latch: latches an analog value when a digital pulse is
received.

1. Select: Blocks providing the requisite device interfaces,
signal processing, control computations, cycle phasings, or
data collection features are selected and placed on the drawing
area.

2. Configure: Parameters defining a program block's op­
eration, such as the number of phases or a loop detector's
I/O port, are configured for each block. This procedure is
performed by selecting a block with the mouse and choosing
the "configure parameters" option. Of course, each block is
instantiated with a full set of default values that may be ac­
ceptable, in which case this operation can be omitted for many
blocks.

3. Connect: The blocks are connected by clicking on a block,
selecting a particular block output connection, clicking on
another block, and selecting a particular block input connec­
tion. Basic error checking is performed to prevent sockets
with various data types from being connected. For example,
it would be invalid to connect the state of a loop detector to
the socket determining the cycle length for a traffic light drum
sequencer.

These steps are intended only to give the reader an idea of
how the function block model could be configured. In prac­
tice, these steps will likely be intertwined as a strategy is
developed and edited incrementally. Past strategies would
typically serve as templates for new applications. Also, a num­
ber of diagnostic, reporting, drawing, scaling, and annotating
tools are necessary to round out the features of the config­
uration tool.

A-SWITCH: selects between two analog signals based on the
state of a digital input.
A-UI: provides an operator with a mechanism to enter an
analog value for a user interface.

Filter: provides a simple discrete approximation for a first
order analog filter.

Test: compares an input against a set of absolute Hi and Lo
bounds or relative to another signal. The results of these
comparisons are digital points other blocks can connect to. It
is useful for implementing conditional logic.

Sel-H, Sel-L, Sel-M: High. low and middle selector blocks.
The first two blocks have two inputs, the middle selector
requires 3 inputs.

RMSB: provides supervisory rate selection of a ramp
metering rate based upon one upstream volume sensor and up
to six downstream occupancy values.

LOOKUP: provides an interpolated lookup table for defining
non-linear transformations
D-Coll, A-Coll: monitors up to eight inputs (Analog or
Digital) and records their state to a file. A backgrmmd
spooler is set up so this file can reside on any OS-9 file
device. These devices include hard disks, floppy disks, RAM
disks and non volatile disks.

RMDI, RMDO: used to read digital inputs (DI) or write
digital outputs (DO) on a 170 nmning ramp metering
software.

RMRI, RMRO: used to read register inputs (RI) and write
register outputs (RO) on a 170 running ramp metering
software.
VMS: contains up to 8 prioritiz.ed ASCII messages that can be
displayed on a variable message sign by a digital event

Language Structure

119

Table 1 provides a summary of some preprogrammed blocks
that can used to develop block strategies. This section details
the basic architecture of those blocks and how they can be
assembled. Abstractly, a function block is a vector consisting
of the following elements (Figure 2):

• Input sockets are used either to retrieve data from other
blocks or are assigned constant values. Input sockets are ac­
tually references to memory locations from which the block
reads values. The values stored in those locations can be
changed either by another block's output socket or by an
operator manually inserting a value. These sockets represent
the destination half of a data flow connection.

• Local storage stores block parameters and interim cal­
culations.

• Output sockets are used to store block output values and
can be connected to other blocks. Output sockets are actually
references to memory locations to which the block will write
output data. The values written to those locations can be read
by another block's input socket or by an operator examining
sockets. These sockets represent the source half of a data flow
connection.

• A block algorithm periodically reads the values associated
with the input sockets, performs calculations, manipulates
local storage, and then updates the output sockets.

Although blocks may have several input or output sockets,
it is not required that they all be connected. In fact, input

120 TRANSPORTATION RESEARCH RECORD 1408

ENABLE HOLD01

HOLD08

Input
Sockets

blk_alg()

Algorithm Output
Sockets

STEP01 ,

STEP02

DOUT12

FIGURE 2 Function block components.

sockets can be assigned either constant values (Figure 3, Socket
3) or connected to another block's output socket (Figure 3,
Socket 2) during configuration. Similarly, output sockets can
be left dangling (Figure 3, Socket 1) or connected to input
sockets (Figure 3, Socket 2) on other blocks. The only re­
striction on connecting blocks is that one input cannot be
connected to more than one output socket (Figure 4).

B

E

FIGURE 3 Example of valid socket connections.

A

B

FIGURE 4 Example of invalid socket
connection.

IMPLEMENTATION OF TCBLKS

Traffic engineers are likely to be most concerned with the
block vocabulary, configuration concepts, and language struc­
ture of this traffic control software model. To round out the
description of this function block model, a few important
implementation concepts are addressed: (a) internal data model
for the function blocks, (b) real-time scheduling, (c) capacity
considerations, and (d) on-line user interfaces. Our purpose
is not to formally define the model but to demonstrate an
efficient real-time implementation and to give further insight
into the software model. A more extended discussion appears
in a previous paper (7).

Consider the example strategy shown in Figure 1. This
strategy is composed of 16 blocks that describe which sensors
should be read, which internal algorithms should be used, and
which actuators should be manipulated. Without regard to
how often the blocks must be run, this strategy can be de­
scribed as a topologically sorted list of blocks to be run
{EB_PRS, WB_PRS, EW_PRS, SEQNCR, SB_RED,
. . . } . Each of these blocks must be represented internally as
a data structure with local storage, input sockets, and output
sockets. These data structures are different for each block
type. For example, the DRUM block has 16 digital output
sockets, but the OR block has only one digital output. To
provide a structured method for interacting with the various
data structures, a master list of blocks called the block table
(Figure 5) maintains a list of all the symbolic block names
and a code representing the class of blocks. For example, all
OR blocks would have a class code of 11 and all I/O blocks
would have a class code of 19. This code is used by the soft­
ware model to determine which table to search to retrieve
the data structure defining a block. For example, the table
for OR blocks (Figure 5) would contain the data structures
defining the EW_PRS block.

Connections between blocks are very important for this
model because they provide the mechanism for communica­
tion. The connection table (Figure 5) provides a list of all
data connections and includes the following information:

• Source socket is a symbolic name identifying the source
of a data connection.

Bullock and Hendrickson

Block Table Connection Table

I Group j Block Class I Source I Destin I Type j 1ndex

OR, Class Code = 11 Digital Socket Table

Group Block Local Input Output j 1ndex I ddata I State
Storage Sockets Sockets

1/0, Class Code = 19 Analog Socket Table

Group Block Local Input Output I Index I adata I State
Storage Sockets Sockets

DRUM, Class Code = 26 Text Socket Table

Group Block Local Input Output I Index tdata State
Storage Sockets Sockets

FIGURE 5 Internal model for function blocks.

• Destination socket is a symbolic name identifying the
destination of a data connection.

• Socket type indicates which table to look in for the socket.
For the data model shown in Figure 5, this could be a reference
to the digital, analog, or text socket tables.

• Socket index is used to locate the particular socket in a
socket table (digital, analog, or text) identified by the socket
type field.

In preceding sections, sockets have been conceptually dia­
grammed as tightly coupled with the block. However, to im­
prove implementation efficiency, all sockets are stored out­
side the block and referenced via the connection and socket
tables (Figure 5). There is a socket table for each possible
data connection type. For example, digital states, analog val­
ues, or text messages are stored in the tables shown in Figure
5. When a block is executed, it references its input socket
indexes (Figure 5) and retrieves the appropriate information
from the socket table. Similarly, after the computations have
been performed, it uses the output socket indexes to update
the respective output sockets.

Real-Time Scheduling of Function Blocks

Because block processing is not instantaneous, the blocks
must be scheduled such that all blocks have an opportunity
to run often enough to meet their application requirements.
One possible approach would be a round-robin scheduler.
The problem with this type of scheduling is that when blocks
are added or subtracted the timing characteristics change. This
kind of side effect is unacceptable, particularly if interaction
with a particular device or evaluation of a traffic signal phase
change at regular intervals is necessary. A more sophisticated
approach would be to run all the blocks at their fastest re­
quired rate (a least-common-denominator approach). This
technique would be adequate if sufficient CPU cycles were
available for executing all blocks at the fastest required rate.
However, in practice, only a few blocks require very frequent
service (say 50 Hz) and other blocks require service far less
often (say 0.1 or 0.01 Hz).

Because of the varying timing requirements for different
portions of a block strategy, it is desirable to be able to assign
a processing period to a group of blocks. To provide this
capability and introduce a hierarchical level of abstraction,

121

blocks can be grouped and assigned a name and_ periodic
execution rate (Figure 6). Two additional internal tables are
constructed to maintain this information: the group table and
the task table (Figure 7). An additional status field in the
group table is used to turn on and off the processing for an
entire group of blocks. From the user's perspective, a collec­
tion of groups assigned to periodic tasks constitutes an ap­
plication program (Figure 8). In the application shown in
Figure 8, the blocks in Groups A, B, and C would be run
every T1 sec. Similarly, the blocks in Groups D and E would
be run every T4 sec. Within each of these groups, the blocks,
their type, and their configuration define the semantics of the
application program.

To facilitate the orderly start-up and shutdown of a func­
tion block strategy, the software starts up in a single threaded
mode. It reads the function block strategy, creates all the
necessary data structures for execution, initializes all I/O de­
vices, runs all blocks once to initialize them, spawns periodic
tasks, and commences the periodic execution shown in Figure
8. The periodic tasks are created according to the period and
priorities in the task table (Figure 7). Groups are assigned to
these tasks according to the task field in the group table (Fig­
ure 7). When the software receives a signal to shut down, it
allows the periodic tasks to complete their current cycle (only
if block processing was in progress before the shutdown signal
was received), returns to single-threaded operation, runs all
blocks once (permits files to be closed and I/O to be left in
a safe state), and then terminates. The state diagram for this
behavior is shown in Figure 9.

Capacity Considerations

The periodic tasks shown in Figure 8 represent only one-half
of the software model. In practice, interactions with I/O de-

\\ SPEED

\. STAT7

.......

SP.fi.ED
STAT.._~

··

SUBTRACT TEST

FIGURE 6 Block grouping illustration.

Task Table

I Index I Period Priority

Group Table

I Group I Task Status

FIGURE 7 Scheduling tables.

I
11

PROCESS 1

I "t.

GROUP A

GROUPB

GROUPC

GROUPD

GROUPE

BLOCK 1

BLOCK2

BLOCKn

BLOCK 1 C1

BLOCK2

BLOCKn

BLOCK 1

BLOCK2

BLOCKn

BLOCK 1

BLOCK2

BLOCKn

BLOCK 1

BLOCK2 C4

BLOCKn

FIGURE 8 Processing of group and block structures by periodic
task.

T
Single
threaded

Real time
multitasking

+
Single
threaded.

FIGURE 9 Software state diagram.

Read configuration into
parsing data structure

Create executable
data structures

Run VO Initialize

Run blocks once with
initialize flag set

Initiate real time
block execution

Run blocks once with
terminate flag set

Shutdown VO

Halt

Foreground control .
task

Signal tasks to pause
when cycle is completed

Bullock and Hendrickson

PROCESS 1

~PROCESS5

FIGURE 10 Task interaction.

vices such as serial ports, user interfaces, and disk drives have
inherent time delays. To permit the processors to work on
other duties, the periodic tasks do not directly interact with
these devices. Instead, they communicate with asynchronous
tasks using internal buffers. Conceptually, this software ar­
chitecture looks like that shown in Figure 10. The periodic
tasks that run the function blocks are shown on the left and
the aperiodic tasks interacting with 1/0 devices are shown on
the right. A complex set of tasks is shown in Figure 10. By
inspection, it is not obvious whether the software model can
respond to all the computational and 1/0 demands in a timely
manner. For example, when monitoring loop detectors it is
important that "passage pulses" not be missed. To guarantee
that such events are not missed, it is necessary to determine
whether the computational demand of the software (Figure
10) exceeds the capability of the processors. This evaluation
can be performed using rate monotonic analysis techniques ,
documented previously (8-10).

On-Line User Interfaces

The user interface for configuring the block strategy has been
described in previous sections. The user interface for instru­
mentation and monitoring is also very important for devel­
opment and diagnostic purposes. An interface such as the hex
keypad and LED display found on the 170 or the alphanu­
meric display now being built into NEMA controllers could
be used to interact with the ATC software. However, the
function block model proposed in this paper provides a more
intuitive method for interacting with the run-time control soft­
ware. The basic concept for developing these "run-time user
interfaces" is based on a client-server model in which the
client is an operator interface program and the server is the
function block processing program. Quite likely, the operator

· interface would be implemented on a notebook computer that
could be plugged into a serial port on the A TC (Figure 11).

DEVICE
DRIVER

Notebook Computer

DEVICE
DRIVER

CHANGEABLE

MESSAGE

SIGN

VMEbusOATC

FIGURE 11 Use of a notebook computer to configure and
monitor an ATC.

123

The client operator interface would interact with a strategy via
the connection table and the various socket tables (Figure 5).

Interfacing with the controller in this fashion provides two
important features. First, the client can symbolically reference
any socket. So instead of the current practices on 170 con­
trollers of looking at the word located at a particular hex
offset, a symbolic name such as "Main&4th;NB_
CNT.AOUT" could be used to read the volume counter on
the northbound counter at Main and 4th. Second, the "State"
field in the connection table restricts the ability of an operator
interface program to write to a socket to only those input
sockets not connected to other blocks (Figure 3, Socket 3).
Of course, any point could be read by an operator interface,
but unpredictable operation would result if an operator was
trying to change an output socket that was also being changed
by a function block (Figure 3, Sockets 1 or 2).

IMPLEMENTATION

The software model described in this paper has been imple­
mented and tested in real time under simulated conditions for
applications such as signalized intersections, ramp metering,

124

and communication with existing traffic control devices. This
software has also been used to implement a bottleneck sur­
pervisory control strategy that was field tested along Highway
50 in Sacramento, California. The software communicated
with Type 170 ramp meters over leased telephone lines and
adjusted metering rates in response conditions at a down­
stream bottleneck. This demonstration was performed on the
proposed Caltrans ATC platform configured with a 16-MHZ
68020 with 4 MB of RAM in November 1992.

ACKNOWLEDGMENTS

This work was supported in part by the California Department
of Transportation under subcontract to the University of Cal­
ifornia Institute of. Transportation Studies at Irvine.

REFERENCES

1. A. Rappaport and S. Haleri. The Computerless Computer Com­
pany. Harvard Business Review, Vol. 69, No. 4, July 1991, pp.
69-80.

2. M. J. Chase and R. J. Hensen. Traffic Control Syste~s-Past,
Present and Future. In Applications of Advanced Technologies
in Transportation Engineering, ASCE, Feb. 1989, pp. 257-262.

3. D. Bullock and C. Hendrickson. Advanced Software Design and
Standards for Traffic Signal Control. Journal of Transportation
Engineering, ASCE, Vol. 118, No. 3, May 1992, pp. 430-438.

TRANSPORTATION RESEARCH RECORD 1408

4. M. Shaw. Prospects for an Engineering Discipline of Software.
Technical Report CMU-CS-90-165. Carnegie Mellon University,
Pittsburgh, Pa., Sept. 1990.

5. Quinlan, T. Evaluation of Computer Hardware and High-Level
Language Software for Field Traffic Control. Technical Report.
California Department of Transportation, Sacramento, Dec. 1989.

6. N. G. Gartner. OP AC: A Demand-Responsive Strategy for Traffic
Signal Control. In Transportation Research Record 906, TRB,
National Research Council, Washington, D.C., 1983, pp. 75-81.

7. D. Bullock and C. Hendrickson. A Model for Roadway Traffic
Control Software. Technical Report. Carnegie Mellon University,
Pittsburgh, Pa., Dec. 1992.

8. J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Sched­
uling Algorithm: Exact Characterization and Average Case Be­
havior. In Real Time Systems Symposium, IEEE Computing So­
ciety, Dec. 1989, pp. 166-171.

9. J. Lehoczky, L. Sha, and J. Strosnider. Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments. In Real Time
Systems Symposium, IEEE Computing Society, 1987, pp. 261-
270.

10. C. L. Liu and J. W. Layland. Scheduling Algorithms for Mul­
tiprogramming in a Hard-Real-Time Environment. Journal of
the Association for Computing Machinery, Vol. 20, No. 1, Jan.
1973, pp. 46-61.

The views expressed by the authors do not necessarily reflect the in­
dividual views or policies of either the California Department of Trans­
portation or the University of California.

Publication of this paper sponsored by Committee on Traffic Signal
Systems.

	00001987
	00001988
	00001989
	00001990
	00001991
	00001992
	00001993
	00001994
	00001995
	00001996
	00001997
	00001998
	00001999
	00002000
	00002001
	00002002
	00002003
	00002004
	00002005
	00002006
	00002007
	00002008
	00002009
	00002010
	00002011
	00002012
	00002013
	00002014
	00002015
	00002016
	00002017
	00002018
	00002019
	00002020
	00002021
	00002022
	00002023
	00002024
	00002025
	00002026
	00002027
	00002028
	00002029
	00002030
	00002031
	00002032
	00002033
	00002034
	00002035
	00002036
	00002037
	00002038
	00002039
	00002040
	00002041
	00002042
	00002043
	00002044
	00002045
	00002046
	00002047
	00002048
	00002049
	00002050
	00002051
	00002052
	00002053
	00002054
	00002055
	00002056
	00002057
	00002058
	00002059
	00002060
	00002061
	00002062
	00002063
	00002064
	00002065
	00002066
	00002067
	00002068
	00002069
	00002070
	00002071
	00002072
	00002073
	00002074
	00002075
	00002076
	00002077
	00002078
	00002079
	00002080
	00002081
	00002082
	00002083
	00002084
	00002085
	00002086
	00002087
	00002088
	00002089
	00002090
	00002091
	00002092
	00002093
	00002094
	00002095
	00002096
	00002097
	00002098
	00002099
	00002100
	00002101
	00002102
	00002103
	00002104
	00002105
	00002106
	00002107
	00002108
	00002109
	00002110
	00002111
	00002112
	00002113
	00002114
	00002115
	00002116

