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Software for Advanced Traffic Controllers 

DARCY BULLOCK AND CHRIS HENDRICKSON 

A systematic approach to traffic engineering software develop­
ment could provide significant advantages with regard to software 
capability, flexibility, and maintenance. Improved traffic con­
trollers will likely be essential for many proposed intelligent ve­
hicle highway system applications. A computable language called 
TCBLKS (Traffic Control Blocks) that could provide the foun­
dation for constructing real-time traffic engineering software is 
introduced. This computable language is designed to be config­
ured by a graphical user interface that does not require extensive 
software engineering training to use yet provides more flexibility 
and capability than is possible by simply changing program pa­
rameters. The model is based on the function block metaphor 
commonly used for constructing robust and efficient real-time 
industrial control systems. Adapting this model to the transpor­
tation sector permits traffic control applications to be pro­
grammed by (a) selecting preprogrammed function blocks from 
a standard library, (b) configuring block parameters, and (c) con­
necting blocks to other blocks in the strategy. The software model 
was implemented in C on an advanced traffic controller platform 
and demonstrated in real time for applications such as signalized 
intersection control and ramp metering. In addition, this same 
software model was used to control the ramp meters along a 
segment of westbound Highway 50 during a demonstration in 
Sacramento, California, in November 1992. 

Twenty years ago, traffic controllers underwent a technical 
revolution in the switch from electromechanical systems to 
solid-state microproc~ssor systems. With the computing tech­
nology available 2 decades ago, the most cost-effective ap­
proach for software development was to construct specialized, 
embedded systems tailored to the traffic control industry. 
Traffic control logic was programmed using assembly lan­
guage programs that could read and write bits associated with 
external sensors and actuators. Initially, these microprocessor­
based controllers did little more than their mechanical pred­
ecessors. Over time, transportation engineers realized that 
more and more features could be implemented on solid-state 
controllers, and they upgraded their software accordingly. 

Today there is another turning point in traffic control tech­
nology. The advances in microprocessor technology over the 
past decade have dropped the average cost of computing by 
roughly an order of magnitude every 5 years (J). In contrast, 
the average cost of a Caltians Type 170 controller has de­
creased only 15 percent since 1987 and 27 percent since 1982 
(California Department of Transportation, personal com­
munication, July 1992). Off-the-shelf, field-hardened, and af­
fordable equipment is available that rivals the computing power 
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of mainframes from 20 years ago. If computing costs continue 
to decline in this manner, it will no longer be cost-effective 
for proprietary transportation computers to compete with mass­
produced industrial hardware. Migration to these more pow­
erful computers will allow traffic engineers to make a fun­
damental change in software development practices. Memory 
capacity and processor limitations will not impose significant 
constraints on applications. Instead, traffic engineers can fo­
cus on developing an efficient architecture for building sys­
tems that are more effective, easier to install, and easier to 
maintain. 

This change should have numerous benefits. Since the in­
ception of the microprocessor-based traffic controller, the 
software engineering effort devoted ·to constructing traffic 
control software has been less than ideal (2,3). In general, 
the state of the practice with current microprocessor software 
is to write software in assembly language without an operating 
system, permanently install the software on a chip (i.e., burn 
it into a ROM), and empirically test programs to see if they 
work. Provided a suitable programming model can be. devel­
oped, it is now possible to engineer software for greater ca­
pability, flexibility, and usefulness. However, no substantial 
model has been proposed. Such models are crucial for the 
evolution of an engineering discipline from a solely craft­
based practice ( 4). 

Selecting an appropriate software model is particularly im­
portant because the development of transportation control 
systems is multidisciplinary, requiring the interaction of trans­
portation engineers, electrical engineers, software engineers, 
and government officials. In the past, the coupling between 
traffic engineering concepts and field implementation has been · 
weak. This paper presents a software model that is designed 
to address professional communication gaps and the need for 
more capable and maintainable software. It is based on the 
"function block metaphor" that is widely used in industrial 
control systems. This model provides the capability for non­
programmers to develop intuitive control software by drawing 
graphic diagrams on a computer screen and filling in menus. 
This model is based on a formal, real-time scheduling algo­
rithm that allows the correctness and feasibility of strategies 
to be formally verified. It has been so successful in the in­
dustrial sector that many companies have imposed rules re­
stricting development of custom software and require appli­
cation developers to use "canned software" applications 
consistent with the function block model. 

The following section introduces as background the ra­
tionale and characteristics of an advanced traffic controller 
hardware platform. The subsequent sections describe the model 
of traffic control software developed in this study. A final 
section discusses the status of the proposed software model. 
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ADVANCED TRAFFIC CONTROLLER 
HARDWARE 

Most of the current generation of traffic controllers used in 
the United States are based on two different families of con­
trollers. This section summarizes these competing efforts and 
describes some hardware modernization efforts under way. 

One family of controllers, referred to as NEMA units, are 
built with connectors that conform to standard mechanical 
and electrical connectors. The philosophy of this standard is 
that manufacturers will compete on the basis of the hardware 
and software they provide inside the controller. In theory, an 
agency can migrate to another manufacturer's controller by 
unplugging the old one and plugging in the new one using 
standard connectors. Because of additional proprietary sock­
ets added to the NEMA TSl units and nonstandard com­
munication protocols, this interchangeability is not realized 
in practice. The 1988 NEMA TSl standard recently has been 
updated (NEMA TS2 Type 1 and NEMA TS2 Type 2) to 
address deficiencies of the NEMA TSl standard and incor­
porate an alphanumeric display for interaction with the con­
troller. Because the software on all NEMA controllers remains 
proprietary and cannot be ported by the customer, engineers 
and technicians must still learn new software to reconstruct 
timing and phasing plans on new NEMA controllers. 

A second family of controllers, referred to as the Caltrans 
Type 170 controllers, is built to provide both standard con­
nectors and portable software. The philosophy of this stan­
dard is to develop a very precise specification for a traffic 
control microcomputer. Manufacturers are selected periodi­
cally on the basis of competitive bidding. This standard has 
been successful for the past 20 years. Minor modifications 
have been introduced over time, including a second serial 
port, additional memory, and different ROM sizes, but the 
essential features are unchanged. The distinguishing feature 
of the 170 controller remains the program module-an in­
sertable card with a ROM that stores the traffic control pro­
gram. This module can be removed from one manufacturer's 
170 controller and inserted into another manufacturer's con­
troller, and the software will run without modification. This 
decoupling of the hardware and software procurement is very 
desirable, particularly when equipment purchases are going 
to be staged over several years. Instead of relying on embed­
ded user interfaces, as in the NEMA controllers, the 170s are 
typically configured by connecting a small computer such as 
a personal computer to a serial port and downloading the 
strategy. Alternatively, binary configurations can be keyed in 
on a hexadecimal keypad. A modernization of the Type 170 
has been undertaken by New York state and is called the 
Type 179. This controller provides more powerful computing 
and employs a real-time operating system. However, it has 
not been widely adopted. As a result, it has been difficult to 
develop a pool of competitive vendors. 

In view of the microprocessor and software engineering 
developments in the past 2 decades, these standards are be­
ginning to age (3). First, the software is written entirely in 
assembly language. The complex nature of assembly language 
development precludes all but the largest cities and states from 
maintaining a software staff for making software configuration 
changes other than changing parameters in a given configu-
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ration. Second, no operating system is employed (except for 
some 179 software). Routine chores, such as task scheduling, 
memory management, and semaphores, must be recoded. 
The "home-grown" executives that have evolved preclude 
sharing of new control strategies. Third, the hardware con­
straints (slow processors and limited memory) can only be 
addressed by a revised standard that would require rewriting 
large quantities of assembly language applications. Finally, it 
is unclear how much longer it will be cost-effective for the trans­
portation community to manufacture specialized computers. 

These shortcomings and requirements for improved soft­
ware development tools, faster processors, expandable I/O, 
and more memory have led the California Department of 
Transportation to investigate the use of modular industrial 
computers for applications ill suited to the Cal trans 170s (5). 
This proposed platform, called advanced traffic controller 
(ATC), is based on a 3U VME bus, a 680x0 processor, and 
an OS-9 operating system. This computer is used extensively 
in the military and commercial sectors and provides an eco­
nomical, off-the-shelf hardware platform for the ATC. Al­
though a rich set of development tools, including operating 
systems, compilers, and debuggers, are available for this plat­
form, the low-level nature of the tools renders them inap­
propriate for everyday use by traffic engineers. This is anal­
ogous to a desktop computer that has only a language compiler. 
For a desktop computer to be truly useful to an engineer, 
application software such as a spreadsheet or CAD package 
must be available. Because of this ATC software void, a general­
purpose application program (software model) is required to 
enable traffic engineers to develop real-time traffic control 
strategies. 

COMPUTABLE LANGUAGE FOR TRAFFIC 
ENGINEERING 

The motivation for developing a computable language is to 
provide a high-level configuration tool that does not require 
extensive software engineering training to use, yet provides 
more flexibility than just changing program parameters. The 
model underlying the language proposed in this paper is based 
on function block programming in which the function blocks 
specialized to traffic engineering are graphically assembled 
and downloaded to a field controller. In the function block 
programming paradigm, a user develops applications by se­
lecting and connecting predefined software modules called 
blocks. The blocks represent parameterized programs pre­
pared in a uniform manner, which permits them to be inter­
connected with other blocks. Connections between blocks 
serve as communication links for particular variables such as 
detector states, approach volumes, or phase timing. Selection 
of blocks may require definition of parameters, such as exe­
cution frequency, minimum and maximum green extensions, 
and filter times. Function block programming lends itself readily 
to graphical displays in which blocks are represented picto­
rially as a box with a title, indicating the program associated 
with a particular block, and a name, providing a symbolic 
means of referring to elements of a specific block. Figure 1 
shows an example of a simplified semiactuated signal with 
presence detectors on the east and west approaches. Con-
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FIGURE 1 Semiactuated intersection control strategy using five 
function block types. 

nections, or data flows, are shown as link connections between 
the boxes. A typical function block program resembles an 
activity-on-node (PERT) project management scheduling 
network. 

Function block programming is different from the modular 
design taught in introductory programming classes because 
the end user never encounters any procedural code. All in­
teraction with hardware devices, protocol conversions, buff­
ers, timing demands, and error recovery are embedded in a 
parameterized function block graphical icon. that can be con­
figured by a traffic engineer using a function block editor. 
The blocks available within the function block editor are pre­
pared by software engineers in a standardized manner, which 
permits seamless interconnection and implementation. This 
set of blocks is called TCBLKS, an acronym for traffic control 
blocks. 

TRAFFIC ENGINEERING FUNCTION BLOCK 
PROGRAMMING MODEL 

The previous section introduced the function block program­
ming model. This section addresses three areas: (a) traffic 
engineering task vocabulary, (b) configuration of function 
block strategies, and (c) function block language structure. 

Traffic Engineering Task Vocabulary 

The set of building blocks available in the block library con­
stitutes the "vocabulary" for users to assemble applications. 
Table 1 summarizes the 40 blocks that have been developed. 
This library includes signal sequencing blocks, signal filters, 
logic functions, interfaces to external sensors and actuators, 
archival functions, and various algorithmic blocks. The intent 
of establishing a definition of these control blocks is to provide 
a vocabulary that can be assembled by a traffic engineer (in 
a sketch or diagram) to define the required software. This 

concept is used extensively in the chemical and process en­
gineering fields so that there is an almost one-to-one corre­
spondence between the process and instrumentation diagram 
(P&ID) developed by the chemical engineer and a function 
block strategy constructed by the control system contractor. 
The same continuity is sought for traffic engineering. 

Because this model is only in the prototype stage, the 
blocks described in Table 1 currently fall short of providing 
a comprehensive set of building blocks. To support the growth 
of this model, new blocks can be created and included in the 
block library as long as the new blocks conform to standard 
block definition and operation practices. Thus, applications 
such as a dynamic signal control algorithm such as OPAC (6) 
could be included in a single-function block. In general, this 
model supports blocks of varying execution complexity rang­
ing from simple logic gates to complex blocks supervising 
several ramp meters. For example, the simple blocks, such 
as mathematical computations and digital logic, are necessary 
for incorporating minor operational changes typically re­
quired by peculiar geometric or policy constraints. In contrast, 
the complex blocks such as ramp metering or intersection 
control algorithms can provide rapid and reliable task-level 
programming. 

Configuration of Function Block Strategies 

An advantage afforded by the function block programming 
model and advocated in this paper is the ability to easily 
"program" or configure robust traffic control software with­
out an extensive software engineering background. A typical 
configuration tool can operate like a simple vector drawing 
package commonly found on desktop or notebook computers. 
Instead of manipulating shapes and lines, it manipulates func­
tion blocks. A block program is developed by assembling a 
strategy composed of predefined blocks that provide common 
traffic engineering operations. The mechanics of constructing 
such a strategy can be viewed in three steps. 
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TABLE 1 Function Block Summary 

AND, OR, XOR, NOT: These blocks perform the essential 
boolean logic operations on their input(s). 
DlyOn, DlyOff, OneShot: These digital blocks perform 
digital logic timing operations. The DlyOn block delays a 
transition from low to high for a specified time. 
Alternatively, the DlyOff block delays a high to low transition 
for a specified time period. The OneShot provides a pulse 
generating mechanism for transitions from low to high. 

D-Shlft: provides a 16 bit shift register for transient storage 
of digital states. 

D-UI: provides an operator with simple on/off and pulse 
operations for user interfaces. 

Match: provides basic decoding fimctionality. 

Timer: measures the duration of digital events. 

Counter: can be used for counting lo-high transitions. 

FF-RS, FF-D, FF-JK: These blocks provide discrete 
implementations of clocked RS, D, and JK flip flops. A T flip 
flop can be constructed from the JK flip flop. 

Drum: provides state sequencing subject to minimum and 
maximum durations with the capability of back stepping. 

Rate: calculates the filtered rate of an incoming digital pulse 
train. 

Add, Molt, Div: These block provide basic mathematical 
operations. 

Mavg, A-Shft: Both blocks implement a circular queue. The 
Mavg block uses the queue to compute the moving average of 
a time series. The A-Shft block provides a mechanism for 
introducing a time delay Oag). 

A-Latch: latches an analog value when a digital pulse is 
received. 

1. Select: Blocks providing the requisite device interfaces, 
signal processing, control computations, cycle phasings, or 
data collection features are selected and placed on the drawing 
area. 

2. Configure: Parameters defining a program block's op­
eration, such as the number of phases or a loop detector's 
I/O port, are configured for each block. This procedure is 
performed by selecting a block with the mouse and choosing 
the "configure parameters" option. Of course, each block is 
instantiated with a full set of default values that may be ac­
ceptable, in which case this operation can be omitted for many 
blocks. 

3. Connect: The blocks are connected by clicking on a block, 
selecting a particular block output connection, clicking on 
another block, and selecting a particular block input connec­
tion. Basic error checking is performed to prevent sockets 
with various data types from being connected. For example, 
it would be invalid to connect the state of a loop detector to 
the socket determining the cycle length for a traffic light drum 
sequencer. 

These steps are intended only to give the reader an idea of 
how the function block model could be configured. In prac­
tice, these steps will likely be intertwined as a strategy is 
developed and edited incrementally. Past strategies would 
typically serve as templates for new applications. Also, a num­
ber of diagnostic, reporting, drawing, scaling, and annotating 
tools are necessary to round out the features of the config­
uration tool. 

A-SWITCH: selects between two analog signals based on the 
state of a digital input. 
A-UI: provides an operator with a mechanism to enter an 
analog value for a user interface. 

Filter: provides a simple discrete approximation for a first 
order analog filter. 

Test: compares an input against a set of absolute Hi and Lo 
bounds or relative to another signal. The results of these 
comparisons are digital points other blocks can connect to. It 
is useful for implementing conditional logic. 

Sel-H, Sel-L, Sel-M: High. low and middle selector blocks. 
The first two blocks have two inputs, the middle selector 
requires 3 inputs. 

RMSB: provides supervisory rate selection of a ramp 
metering rate based upon one upstream volume sensor and up 
to six downstream occupancy values. 

LOOKUP: provides an interpolated lookup table for defining 
non-linear transformations 
D-Coll, A-Coll: monitors up to eight inputs (Analog or 
Digital) and records their state to a file. A backgrmmd 
spooler is set up so this file can reside on any OS-9 file 
device. These devices include hard disks, floppy disks, RAM 
disks and non volatile disks. 

RMDI, RMDO: used to read digital inputs (DI) or write 
digital outputs (DO) on a 170 nmning ramp metering 
software. 

RMRI, RMRO: used to read register inputs (RI) and write 
register outputs (RO) on a 170 running ramp metering 
software. 
VMS: contains up to 8 prioritiz.ed ASCII messages that can be 
displayed on a variable message sign by a digital event 

Language Structure 
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Table 1 provides a summary of some preprogrammed blocks 
that can used to develop block strategies. This section details 
the basic architecture of those blocks and how they can be 
assembled. Abstractly, a function block is a vector consisting 
of the following elements (Figure 2): 

• Input sockets are used either to retrieve data from other 
blocks or are assigned constant values. Input sockets are ac­
tually references to memory locations from which the block 
reads values. The values stored in those locations can be 
changed either by another block's output socket or by an 
operator manually inserting a value. These sockets represent 
the destination half of a data flow connection. 

• Local storage stores block parameters and interim cal­
culations. 

• Output sockets are used to store block output values and 
can be connected to other blocks. Output sockets are actually 
references to memory locations to which the block will write 
output data. The values written to those locations can be read 
by another block's input socket or by an operator examining 
sockets. These sockets represent the source half of a data flow 
connection. 

• A block algorithm periodically reads the values associated 
with the input sockets, performs calculations, manipulates 
local storage, and then updates the output sockets. 

Although blocks may have several input or output sockets, 
it is not required that they all be connected. In fact, input 
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FIGURE 2 Function block components. 

sockets can be assigned either constant values (Figure 3, Socket 
3) or connected to another block's output socket (Figure 3, 
Socket 2) during configuration. Similarly, output sockets can 
be left dangling (Figure 3, Socket 1) or connected to input 
sockets (Figure 3, Socket 2) on other blocks. The only re­
striction on connecting blocks is that one input cannot be 
connected to more than one output socket (Figure 4). 

B 

E 

FIGURE 3 Example of valid socket connections. 

A 

B 

FIGURE 4 Example of invalid socket 
connection. 

IMPLEMENTATION OF TCBLKS 

Traffic engineers are likely to be most concerned with the 
block vocabulary, configuration concepts, and language struc­
ture of this traffic control software model. To round out the 
description of this function block model, a few important 
implementation concepts are addressed: (a) internal data model 
for the function blocks, (b) real-time scheduling, ( c) capacity 
considerations, and ( d) on-line user interfaces. Our purpose 
is not to formally define the model but to demonstrate an 
efficient real-time implementation and to give further insight 
into the software model. A more extended discussion appears 
in a previous paper (7). 

Consider the example strategy shown in Figure 1. This 
strategy is composed of 16 blocks that describe which sensors 
should be read, which internal algorithms should be used, and 
which actuators should be manipulated. Without regard to 
how often the blocks must be run, this strategy can be de­
scribed as a topologically sorted list of blocks to be run 
{EB_PRS, WB_PRS, EW_PRS, SEQNCR, SB_RED, 
. . . } . Each of these blocks must be represented internally as 
a data structure with local storage, input sockets, and output 
sockets. These data structures are different for each block 
type. For example, the DRUM block has 16 digital output 
sockets, but the OR block has only one digital output. To 
provide a structured method for interacting with the various 
data structures, a master list of blocks called the block table 
(Figure 5) maintains a list of all the symbolic block names 
and a code representing the class of blocks. For example, all 
OR blocks would have a class code of 11 and all I/O blocks 
would have a class code of 19. This code is used by the soft­
ware model to determine which table to search to retrieve 
the data structure defining a block. For example, the table 
for OR blocks (Figure 5) would contain the data structures 
defining the EW_PRS block. 

Connections between blocks are very important for this 
model because they provide the mechanism for communica­
tion. The connection table (Figure 5) provides a list of all 
data connections and includes the following information: 

• Source socket is a symbolic name identifying the source 
of a data connection. 
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FIGURE 5 Internal model for function blocks. 

• Destination socket is a symbolic name identifying the 
destination of a data connection. 

• Socket type indicates which table to look in for the socket. 
For the data model shown in Figure 5, this could be a reference 
to the digital, analog, or text socket tables. 

• Socket index is used to locate the particular socket in a 
socket table (digital, analog, or text) identified by the socket 
type field. 

In preceding sections, sockets have been conceptually dia­
grammed as tightly coupled with the block. However, to im­
prove implementation efficiency, all sockets are stored out­
side the block and referenced via the connection and socket 
tables (Figure 5). There is a socket table for each possible 
data connection type. For example, digital states, analog val­
ues, or text messages are stored in the tables shown in Figure 
5. When a block is executed, it references its input socket 
indexes (Figure 5) and retrieves the appropriate information 
from the socket table. Similarly, after the computations have 
been performed, it uses the output socket indexes to update 
the respective output sockets. 

Real-Time Scheduling of Function Blocks 

Because block processing is not instantaneous, the blocks 
must be scheduled such that all blocks have an opportunity 
to run often enough to meet their application requirements. 
One possible approach would be a round-robin scheduler. 
The problem with this type of scheduling is that when blocks 
are added or subtracted the timing characteristics change. This 
kind of side effect is unacceptable, particularly if interaction 
with a particular device or evaluation of a traffic signal phase 
change at regular intervals is necessary. A more sophisticated 
approach would be to run all the blocks at their fastest re­
quired rate (a least-common-denominator approach). This 
technique would be adequate if sufficient CPU cycles were 
available for executing all blocks at the fastest required rate. 
However, in practice, only a few blocks require very frequent 
service (say 50 Hz) and other blocks require service far less 
often (say 0.1 or 0.01 Hz). 

Because of the varying timing requirements for different 
portions of a block strategy, it is desirable to be able to assign 
a processing period to a group of blocks. To provide this 
capability and introduce a hierarchical level of abstraction, 
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blocks can be grouped and assigned a name and_ periodic 
execution rate (Figure 6). Two additional internal tables are 
constructed to maintain this information: the group table and 
the task table (Figure 7). An additional status field in the 
group table is used to turn on and off the processing for an 
entire group of blocks. From the user's perspective, a collec­
tion of groups assigned to periodic tasks constitutes an ap­
plication program (Figure 8). In the application shown in 
Figure 8, the blocks in Groups A, B, and C would be run 
every T1 sec. Similarly, the blocks in Groups D and E would 
be run every T4 sec. Within each of these groups, the blocks, 
their type, and their configuration define the semantics of the 
application program. 

To facilitate the orderly start-up and shutdown of a func­
tion block strategy, the software starts up in a single threaded 
mode. It reads the function block strategy, creates all the 
necessary data structures for execution, initializes all I/O de­
vices, runs all blocks once to initialize them, spawns periodic 
tasks, and commences the periodic execution shown in Figure 
8. The periodic tasks are created according to the period and 
priorities in the task table (Figure 7). Groups are assigned to 
these tasks according to the task field in the group table (Fig­
ure 7). When the software receives a signal to shut down, it 
allows the periodic tasks to complete their current cycle (only 
if block processing was in progress before the shutdown signal 
was received), returns to single-threaded operation, runs all 
blocks once (permits files to be closed and I/O to be left in 
a safe state), and then terminates. The state diagram for this 
behavior is shown in Figure 9. 

Capacity Considerations 

The periodic tasks shown in Figure 8 represent only one-half 
of the software model. In practice, interactions with I/O de-
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FIGURE 10 Task interaction. 

vices such as serial ports, user interfaces, and disk drives have 
inherent time delays. To permit the processors to work on 
other duties, the periodic tasks do not directly interact with 
these devices. Instead, they communicate with asynchronous 
tasks using internal buffers. Conceptually, this software ar­
chitecture looks like that shown in Figure 10. The periodic 
tasks that run the function blocks are shown on the left and 
the aperiodic tasks interacting with 1/0 devices are shown on 
the right. A complex set of tasks is shown in Figure 10. By 
inspection, it is not obvious whether the software model can 
respond to all the computational and 1/0 demands in a timely 
manner. For example, when monitoring loop detectors it is 
important that "passage pulses" not be missed. To guarantee 
that such events are not missed, it is necessary to determine 
whether the computational demand of the software (Figure 
10) exceeds the capability of the processors. This evaluation 
can be performed using rate monotonic analysis techniques , 
documented previously (8-10). 

On-Line User Interfaces 

The user interface for configuring the block strategy has been 
described in previous sections. The user interface for instru­
mentation and monitoring is also very important for devel­
opment and diagnostic purposes. An interface such as the hex 
keypad and LED display found on the 170 or the alphanu­
meric display now being built into NEMA controllers could 
be used to interact with the ATC software. However, the 
function block model proposed in this paper provides a more 
intuitive method for interacting with the run-time control soft­
ware. The basic concept for developing these "run-time user 
interfaces" is based on a client-server model in which the 
client is an operator interface program and the server is the 
function block processing program. Quite likely, the operator 

· interface would be implemented on a notebook computer that 
could be plugged into a serial port on the A TC (Figure 11). 
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FIGURE 11 Use of a notebook computer to configure and 
monitor an ATC. 
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The client operator interface would interact with a strategy via 
the connection table and the various socket tables (Figure 5). 

Interfacing with the controller in this fashion provides two 
important features. First, the client can symbolically reference 
any socket. So instead of the current practices on 170 con­
trollers of looking at the word located at a particular hex 
offset, a symbolic name such as "Main&4th;NB_ 
CNT.AOUT" could be used to read the volume counter on 
the northbound counter at Main and 4th. Second, the "State" 
field in the connection table restricts the ability of an operator 
interface program to write to a socket to only those input 
sockets not connected to other blocks (Figure 3, Socket 3). 
Of course, any point could be read by an operator interface, 
but unpredictable operation would result if an operator was 
trying to change an output socket that was also being changed 
by a function block (Figure 3, Sockets 1 or 2). 

IMPLEMENTATION 

The software model described in this paper has been imple­
mented and tested in real time under simulated conditions for 
applications such as signalized intersections, ramp metering, 
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and communication with existing traffic control devices. This 
software has also been used to implement a bottleneck sur­
pervisory control strategy that was field tested along Highway 
50 in Sacramento, California. The software communicated 
with Type 170 ramp meters over leased telephone lines and 
adjusted metering rates in response conditions at a down­
stream bottleneck. This demonstration was performed on the 
proposed Caltrans ATC platform configured with a 16-MHZ 
68020 with 4 MB of RAM in November 1992. 
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