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Nonresponse Bias and Trip Generation 
Models 

PIYUSHIMITA THAKURIAH, As:H1sH SEN, SnM S66T, AND 

EDWARD CHRISTOPHER 

There is serious concern over the fact that travel surveys often 
overrepresent smaller households with higher incomes and better 
education levels and, in general, that nonresponse is nonrandom. 
However, when the data are used to build linear models, such 
as trip generation models, and the model is correctly specified, 
estimates of parameters are unbiased regardless of the nature of 
the respondents, and the issues of how response rates and non
response bias are ameliorated. The more important task then is 
the complete specification of the model, without leaving out var
iables that have some effect on the variable to be predicted. The 
theoretical basis for this reasoning is given along with an example 
of how bias may be assessed in estimates of trip generation model 
parameters. Some of the methods used are quite standard, but 
the manner in which these and other more nonstandard methods 
have been systematically put together to assess bias in estimates 
shows that careful model building, not concern over bias in the 
data, becomes the key issue in developing trip generation and 
other models. 

Nonresponse bias is a well-recognized problem in sample sur
veys. In the field of transportation, where much of the plan
ning effort rests on estimates of parameters obtained from 
models, it becomes pertinent to discuss the manner and the 
extent to which nonresponse bias affects the quality of esti
mates. 

There are two types of nonresponse: 

1. Total nonresponse occurs if some individuals or house
holds simply do not respond to the survey. Then bias could 
occur if the preferences, values, or behavior of the nonre
spondents are different from those of the respondents on 
whom estimates are based. 

2. Item nonresponse occurs if parts of the survey instrument 
are not completed. A particularly unpleasant form of this in 
travel surveys occurs when respondents forget to record all 
trips. The result is that some individual households appear to 
have taken fewer .trips than they actually did. 

Trip generation models, whether they are cross-classification 
models or continuous models, are typically linear models, and 
estimates can be viewed as least-squares estimates. Since this 
is not entirely obvious for cross-classification models, a proof 
is given in a later section. It is well known that if certain 
conditions are satisfied, least-squares estimates are unbiased. 
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On the other hand, if the model does not satisfy these con
ditions, bias will occur even if there is a 100 percent response 
rate. These conditions are satisfied by the model if the func
tional form of the model is correct and all important explan
atory variables are included. 

Because categorical models do not have any problems with 
their functional form, and weighting and related issues are 
taken care of, the authors prefer categorical trip generation 
models. This preference is discussed in a later section. There
fore, the issue that remains when assessing bias in estimates 
from categorical trip generation models is whether the model 
includes all the relevant independent variables or at least all 
important predictors. 

Methods of assessing bias caused by omitting important 
variables are demonstrated on a trip generation model of trip 
circuits constructed from data that were collected by a survey 
in Lake County, Illinois, in the northern part of the Chicago 
metropolitan area. Two types of approaches are available for 
this: 

1. Try out different variables in addition to those included 
in the model. Since the variables chosen to include in the 
model were fairly standard, it should be expected that such 
analyses have been carried out by model builders in the past. 

2. Use various diagnostics for correct model specification. 
The kind of diagnostic methods used and the results are shown 
later. 

Yet another diagnostic tool is available in the case of cate
gorical models. Since the dependent variable is counted, it is 
reasonable to expect that its values are approximately Pois
son. This assumption is made explicitly or implicitly in nearly 
all contingency table (discrete multivariate) literature in sta
tistics-and cross-classification models are special cases of 
such models. An examination of the empirical distribution of 
the number of circuits revealed an unexpected phenomenon. 
It showed that in one-member households the distributions 
were very close to Poisson, whereas in larger households the 
distributions were different, and the difference appeared to 
indicate the presence of item nonresponse. 

A variable that has been used as a surrogate for the dif
ferences between respondents and nonrespondents is also ex
amined. This analysis does not lead to any results that could 
contradict the conclusions that the estimates obtained from 
the model are unbiased. 

The overall conclusion, with respect to the Lake County 
model that the authors built and examined, is that the model 
shows no signs of substantial bias due to variable omission 
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and that total nonresponse has no noticeable adverse effect. 
Yet item nonresponse remains a serious problem. This leads 
to a natural suggestion that individual household members, 
rather than households, should be asked about trip-making 
behavior. Clearly this is easier with mail-out/mail-back sur
veys than with telephone or perhaps even home interview 
surveys. 

Logit as well as gravity models are generalized linear models 
(J). However, it should be noted that in most estimation 
procedures for the gravity model, the dependent variable is 
effectively the number of trips going from one zone to an
other. The effect of total nonresponse at the household level 
is akin to item nonresponse at the zonal level. Thus the ar
guments in this paper do not apply to such gravity model 
parameter estimation procedures. However, a discussion par
alleling the one in this paper for trip generation models can 
be made for logit models. 

SOME THEORETICAL CONSIDERATIONS 

It is known that when linear least squares is used to estimate 
regression coefficients (and certain conditions are met), ran
domness in the independent variable values is not a necessity 
for unbiasedness. This fact has been exploited to combat bias 
in sample surveys (2). However, because of its importance 
for this argument and to make the paper more or less self
contained, this fact is demonstrated in following paragraphs. 

Cross-classification trip generation analysis is shown to yield 
least-squares estimates that are the same for a wide range of 
realistic weights. This leads to the reasons that the authors pre
fer cross-classification models for trip generation modeling. 

Condition for Unbiasedness 

A linear regression model can be written as 

y = X~ + E (1) 

Equation 1 implies that the linear relationship between the 
variables in the X-matrix (of independent variables) and y 
(number of trips) is the same for all households except for 
minor fluctuations (given by the error term, E). In the sequel 
weighted least squares shall be considered for its greater gen
erality and also because trip generation models are concerned 
with counted data, which typically render ordinary least squares 
inappropriate. 

The weighted least-squares estimate, b, of~, is 

b = (X'WX)- 1X'Wy (2) 

where w1 , ••• , wn are positive weights and Wis the diagonal 
matrix whose diagonal elements are w1 , ••• , wn [i.e., W = 
diag ( w 1 , • • • , w n)]. If b is to be an unbiased estimate of ~, 
then one of a set of three conditions, collectively called the 
Gauss-Markov conditions, must be met by Equation 1. This 
condition is 

E(E) = 0 (3) 
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where E equals ( E1, ••• , En)' and n is the number of house
holds. From Equation 2, 

b = (X'WX)- 1X'W(X~ + E) 

(X'WX)- 1X'WX~ + (X'WX)- 1X'WE 

~ + (X'WX)- 1X'WE 

Therefore, when 

E(E) = 0 (4) 

it follows that E(b) ~, showing that b is unbiased. Note 
that each component E; of E relates only to the ith observation 
and not to all observations. Thus, if each observation is be
lieved to be valid and the regression model chosen is valid, 
E(E;) = 0. Then, of course Equation 4 would hold. 

One way in which Equation 4 will fail to hold is if an 
explanatory variable is omitted from the analysis. The con
dition will also be violated if the algebraic form of the model 
is incorrect or does not apply to all the observations. No other 
condition is required for the unbiasedness of regression coef
ficients (3,4). In particular, the values of independent vari
ables do not need to be random. The problem then is to 
develop the model without leaving out any important ex
planatory variable and by specifying the correct form of the 
model. 

Categorical and Continuous Trip Generation Models 

As mentioned earlier, two kinds of trip generation models 
are in common use. One kind is the so-called categorical or 
cross-classification model. An example of such a model is a 
table in which the rows correspond to, say, several levels of 
household size and the columns correspond to different levels 
of income. The entries themselves are average number of trips 
(or trip circuits) made by households in that category (the 
trip rates). Such models are equivalent to regression models 
with dummy variables but without an intercept term, as will 
be shown. In the categorical model presented later, household 
size and number of workers per household are called factors 
that have several levels. The other kind of trip generation 
model is in the form of a single equation containing mainly 
continuous independent variables. They will be called con
tinuous regression models. 

Typical categorical trip generation models are also linear 
regression models. There are two ways in which this can be 
seen: 

• Approach 1: 
Let Y; be the number of trips taken by the ith household, and 
let 

if ith household is in category j 
otherwise (5) 

Here category means a cell of the cross-classification table. 
Then a regression using y/s as dependent values and x;/s as 
independent values and using no intercept gives exactly the 
table entries. 
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•Approach 2: 
Alternatively, let Y; be the number of trips in category j and 

x .. = {number of households in category i 
'' 0 otherwise 

if i = j 

(6) 

The only difference between Approaches 1 and 2 is that Ap
proach 1 is a disaggregate version of Approach 2. In the first 
approach, there is one Y; for each i, whereas in the latter 
approach, Yi is a summation over all i's in category j. 

To show that least squares would give exactly the same 
estimates as cross-classification would, consider Approach 1. 
Let xj be the jth column of the matrix X of elements xij· Each 
such column contains only O's and l's, the l's in column xj 
being only in those rows for which the observation belongs 
to the jth category. Note that there is no intercept term. 

Since the number of trips taken in each household is ob
tained by counting, it is also called a counted variable. When 
the dependent variable is counted, it typically has a Poisson 
distribution and weighted regression is usually called for to 
avoid a violation of the second of the Gauss-Markov condition 
given by 

(7) 

where i = 1, 2, .. , n and u is a positive constant. For a 
categorical model, these weights wi and wj would be constant 
for each category j. Indeed, the condition of constancy of 
weights within each category is about as general a condition 
as the authors could require. The authors assume this con
dition in the sequel. 

If j ·-=1= e, xj will contain. a 1 only in those rows where Xe has 
a 0, since a household belongs to one category. Therefore 
xjW Xe = 0. The number of l's in each xj is the number nj of 
households in category j. Therefore, x; Wis a vector consisting 
of nj nonzero terms, each of which is wj and xjWxj = n,.wj. 
The matrix X'WX is, therefore, diagonal, diag (n1w1 , 

nkwk) with diagonal elements njwk. Consequently, 

(8) 

If Yi is the number of trips taken by the ith household, xjWy 
is the total number, tj, of trips taken by household i in category 
j, times wj. Consequently, X' Wy is a vector whose jth element 
is tjwj. Hence, b = (X' WX)- 1 X' Wy is a vector, the jth element 
of which is w//wpi = t/nj, the trip rate for the jth category. 
Thus least squares using Model 5 gives exactly the same es
timates one gets from categorical analysis-regardless of 
weighting so long as the weights are constant within a cate
gory. Approach 2 can be handled in a similar way. 

When adequate data are available, the authors prefer cat
egorical trip generation models over continuous models for 
the following reasons: 

•No explicit weighting is required for categorical models. 
•Nonlinearity of the model is usually not an issue for such 

models. 

The only major shortcoming of categorical models is that, 
since each factor has several levels, the number of independ-
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ent variables is large and, consequently, large numbers of 
observations are required. However, this is not a problem in 
transportation studies. Thus, categorical models would usu
ally be more reliable. 

EXAMPLE 

A categorical trip generation model was developed. A brief 
description of the data is given, the model is presented, and 
the adequacy of this model to give unbiased trip generation 
estimates is checked. 

The data used in the project were obtained by the Chicago 
Area Transportation Study in October 1989 from a mail-out/ 
mail-back survey of Lake County in northeastern Illinois (Chi
cago Area Transportation Study, unpublished data, Aug. 1990). 
Lake County is a rapidly growing region of approximately 
half a million residents in north suburban Chicago, bordering 
Wisconsin, Lake Michigan, and Cook County. The county is 
a low-density suburban area encompassing large estates as 
well as sizable low-income areas. 

The data set includes information on two types of variable: 
transportation-related variables, including the origin and desti
nation of every trip, its purpose, travel time, mode used, auto
mobile occupancy (for automobile trips) and walking distance 
if transit modes are involved, and census-related variables, 
such as number of persons per household, age, vehicle avail
ability, gender, employment status, occupation,· and income. 

Respondents to the Lake County household travel behavior 
survey reported their household travel information for one of 
two days. The first travel date was October 12, 1989. Sub
sequently, reminder letters were mailed to those households 
that had not yet returned filled-in questionnaires and whose 
mail had not been returned by the post office as undeliverable. 
Two substitutes for the first travel day that had passed (Thurs
day, October 19 or October 26, 1989) were suggested to these 
households. A total of 9,143 questionnaires were sent out and 
2,480 households returned usable questionnaires (a return 
rate of 27.1 percent). 

TRIP GENERATION MODEL 

A categorical household trip generation model was developed 
on the basis of two commonly used household socioeconomic 
variables, household size and number of employees per house
hold. These variables are essentially traditional, having with
stood the test of numerous studies. However, since such trip 
generation models have existed for a while and presumably 
are extensively investigated, it is unlikely that an important 
variable has not been considered at some stage. The purpose 
of this paper is not to indicate which socioeconomic variables 
in the trip generation model are more useful predictors of 
household travel but to examine such a model in the light of 
the earlier discussion to see if the estimates are biased. 

To illustrate the earlier discussion, the cross-classification 
trip generation model has been presented both in cross-tabular 
form (in Table 1) and in the form of a regression model with 
no intercept and with dummy variables (in Equation 9, as in 
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Approach 1). In this trip generation model, the base house
hold trip generation rates have been defined in terms of trip 
circuits. Trip circuits may be defined as the round-trip move
ments by household members that begin and end at home. 
Trip circuits, rather than trips, were the focus of this study 
because the trip generation models of the Chicago Area 
Transportation Study are in terms of trip circuits, and some 
consistency with those models was seen to be desirable. Trip 
generation calculations were obtained after developing cross 
tabulations of households stratified by occupants and em
ployees. (Trip circuits have also been referred to in the lit
erature as primary trips and trip chains.) The model obtained 
is 

Trip circuits; = 0.81x;co.t) + l.90x;co.2) + 2.08x;co.3) + 3.00xi(0.4) 

+ 2.00x;co.s) + l.04xi(Ul + l.89x;c1.2> + 2.29xi(t,J) 

+ 2.61X;c1.4> + 3.26x;(l,S) + 2.33x;ci.6> + 2.llx;c2•2> 

+ 2.45x;c2•3> + 2.85x;c2.4l + 3.84x;(2.s> + 4.19x;c2•6> 

+ 3.24x;(3,J) + 4.12x;p.4) + 4.38x;(3,S) + 5.12x;p,6) 

+ 4.47x;c4•4> + 5. 75x;(4 .s) + 6.83x;c4•6> + 6.67x;cs.s) 

+ E; R2 = .669, s = 3.12 (9) 

where the dependent variable is the trip circuit rates in the 
ith household and the subscript within parenthesis for each x 
indicates the number of occupants and the number of workers 
in the ith household [for instance, X;(l,O) is the dummy Variable 
that takes the value 1 if the ith household has one member 
who is not employed, and 0 otherwise]. 

The estimate bi of 13i for each of the j = 1, 2, ... , J 
categories in the trip generation model (Equation 9), then, is 
exactly equal to the mean trip circuit rate of that category (as 
in Table 1). In Table 1, there are 36 categories, whereas in 
Equation 9, there are 24 independent variables. Therefore, 

TABLE 1 Categorical Trip Generation Model 

Summary Household Size 
Workers Statistic 1 2 3 4 5 6 

Mean: 0.81 1.90 2.08 3.00 2.00 
0 Var: 0.75 2.45 2.63 9.00 12.00 -

N: 128 189 12 3 3 
Mean: 1.04 1.89 2.30 2.61 3.26 2.33 

1 Var: 0.67 2.29 3.44 3.01 3.76 6.52 
N: 248 228 107 123 61 15 
Mean: 2.11 2.45 2.85 3.84 4.19 

2 Var: - 2.01 3.40 4.52 4.41 12.16 
N: 461 217 240 66 16 
Mean: 3.24 4.12 4.38 5.12 

3 Var: - - 3.61 8.66 6.17 8.93 
N: 99 56 26 12 
Mean: 4.47 5.75 6.83 

4 Var: - - - 9.03 11.11 0.80 
N: 32 12 5 
Mean: 6.67 

5 Var: - - - - 15.47 -

N: 6 

The '-' indica.t.es that there are no entries in that category. 
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Equation 9 is estimating the trip rate in only some of the 
categories. The independent variables that were deleted had 
columns of only O's in the X matrix (there were no households 
in these cells), and the columns of the matrix were, conse
quently, linearly related. Omitting these independent varia
bles to avoid singularity also had the intuitive reasoning that 
there is no sense in estimating trip rates where there are no 
household entries at all. 

Statistical Assessment of Bias 

The issue in this section is how one decides if substantial bias 
is present in the estimates. As mentioned, there are two ways 
in which bias can occur: 

1. If a nonlinear situation is represented with a linear model, 
or 

2. If an important variable is left out of the model. 

Because the present model is categorical, where the estimated 
number of trips in the category is the mean number of trips 
in each category, no difficulty occurs because of Reason 1. 

To detect whether a variable has been left out is always 
difficult. The statistical literature suggests two ways to check 
for omitted variables: 

1. Examine outliers (which often show the need for addi
tional variables), and 

2. Examine if there is a relationship between the predicteds 
and the residuals of the model (because the orthogonality of 
the predicteds and the residuals require the unbiasedness of 
model estimates). 

To look for outliers, the authors examined plots of residuals 
and the Studentized residuals against the predicteds, which 
indicated a few data points as possible outliers. These points 
had Studentized residuals of 2.78, 4.06, and 4.58 and DFFITS 
of 1.96, 1.01, and 1.02. [See works by Sen and Srivastava (3) 
and Helsley et al. ( 4) for a definition of Studentized residuals 
and DFFITS, the latter being a statistic commonly used to 
identify influential points.] The cutoff for DFFITS of 0.20, 
which is a consequence of typically suggested formulae, was 
not used because it drew attention to 5 percent of the 2,480 
data points. Each of these three outliers represented house
holds with large number of household members and no trip 
circuits. There were no working members in the first two and 
only one worker in the third. The outliers appear to be due 
to "natural causes." We found no compelling reason to sus
pect that the model in Equation 9 did not include all important 
variables. 

As mentioned, it is also useful to see if there is a relationship 
between the resiquals and the predicteds because the deletion 
of an important variable can cause the residuals of the model 
to have nonzero expectations. The plots did not reveal any 
systematic relationship. To corroborate this further, a second 
regression model was developed in which the dependent var
iable was the predicteds (9;) and the independent variable was 
the residuals (e;) from Equation 9. The R2 of .0003 indicated 
close to no fit between the predicteds and the residual. But, 
as pointed out elsewhere (3), the lack of a relationship be-
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tween J; and e; does not conclusively lead to the decision that bilities were computed for each category with means from the 
the model is unbiased, because patterns between residuals trip generation model (Equation 9) as the Poisson parameter. 
and the predicteds are not always apparent. The comparison of the theoretical Poisson distribution for 

each category with the actual data points revealed the pos-
sibility of item nonresponse (see Table 2; the first set of num-

Poisson and Item Nonresponse bers for each category is the theoretical distribution for that 
category, the second set is the empirical distribution). In 

Another check for bias that is available for categorical models households with one member, no matter whether that mem-
also did not suggest bias, but it did yield unexpected results. ber is a worker or a nonworker, the distribution of actual trip 
Variables whose values are obtained by counting something circuits conforms approximately to that of the theoretical Pois-
are known to have a Poisson distribution if the items that are son distribution of trip circuits and in fact underestimates the 
counted are statistically independent. Although trips are not theoretical frequency of no trip circuits. As household size 
exactly independent, it is usually conjectured that the Poisson increased, the number of households reporting zero trip cir-
distribution approximately holds. Moreover, this assumption cuits was far greater than what the theoretical distribution for 
is consistent with the customary assumption made in traffic that category predicted. This finding indicates an important 
engineering that flows on links are Poisson-something that way in which the data collected by sample surveys may bias 
has been observed to be approximately true. A· Poisson as- trip generation information-that when one person in the 
sumption underlies nearly all contingency table (discrete mul- household fills out the survey questionnaire, he or she might 
ti variate) analyses in statistics. miss recording trips made by other members in the household. 

From Table 1 it can be seen that the mean-to-variance ratio The statistical techniques used reveal that although the data 
deviates from 1 without any clearly discernible pattern, al- from which the trip generation model was developed showed 
though the deviation is more marked for categories with a some item nonresponse, there is no reason to suspect that the 
small sample size. To get a clearer idea of why the deviation estimates from the model are biased (in the sense of total 
from Poisson was occurring, the theoretical Poisson proba- nonresponse). The authors, therefore, do not believe that any 

TABLE 2 Comparison of Theoretical Poisson and Empirical Distributions of Trip Circuits by Category 

Household Workers Number of Trip Circuits 
Size 0 1 2 3 4 5 6 7 8 9 10+ 
1 0 56.80 46.15 18.75 5.08 1.03 

54 50 20 2 2 
1 100.86 104.42 54.05 18.66 4.83 1.00 

77 130 69 7 0 1 
2 0 28.28 53.72 51.03 32.30 15.34 5.83 1.85 

53 21 54 27 22 11 
2 34.43 65.09 61.52 38.77 18.32 6.93 2.18 0.59 

54 40 63 34 27 5 5 
2 2 55.73 117.76 124.40 87.61 46.27 19.55 6:89 2.08 0.55 0.13 0.11 

89 33 173 95 52 16 2 0 0 0 1 
3 0 1.49 3.11 3.24 2.25 1.17 0.49 

2 3 3 1 2 1 
3 7.20 19.43 26.21 23.59 15.92 8.60 3.87 1.49 o. 50 

25 12 22 25 10 7 3 2 1 
3 2 18.69 45.84 56.18 45.91 28.14 13.79 5.63 1.97 0.60 0.16 

48 14 52 43 34 15 7 1 2 1 
3 3 3.87 12.54 20.33 21.98 17.81 11.55 6.24 2.89 1.17 0.42 

16 2 4 34 21 13 6 1 1 1 
4 9.05 23.61 30.81 26.80 17.49 9.13 1.48 

20 12 24 32 20 7 6 2 
4 2 13.94 39.68 56.45 53.55 38.10 21.68 10.28 4.18 1.49 0.47 

51 4 51 48 46 16 13 2 2 2 
4 3 0.91 3.73 7.70 10.59 10.92 9.01 6.19 3.65 1.89 0.86 0.45 

12 1 3 7 7 9 3 5 5 3 1 
4 4 0.34 1.64 3.66 5.46 6.09 5.44 4.06 2.59 1.45 0.72 

8 0 0 3 2 4 4 7 3 1 
5 2.34 7.62 12.43 13.52 11.03 7.19 3.91 1.82 0.74 

9 0 9 16 15 4 4 3 1 
5 2 2.02 7.05 12.29 14.27 12.43 8.67 5.03 2.51 1.09 0.42 

10 2 5 13 19 6 7 2 1 1 
6 1.45 3.39 3.95 3.09 1.78 0.84 0.33 0.11 0.03 0.008 

8 0 2 3 4 5 0 0 0 9 
6 2 0.24 1.02 2.13 2.97 3.11 2.61 1.82 1.09 0.57 0.26 0.19 

4 0 1 2 5 4 1 2 0 0 1 
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important predictor of trip rates is missing from the model. 
However, work on an additional variable is described in the 
next section. 

Analysis of La_te Responses 

The variable that was explicitly examined is response itself, 
if it is assumed that late respondents represent a point on the 
continuum between respondents and nonrespondents. Under 
this assumption, those independent variables that would be 
important in distinguishing between early and late respond
ents to the survey would also be useful predictors of the dif
ference between respondents and nonrespondents. 

The approach presented in this section is based on the 
premise that individuals who respond late to a survey, and 
from whom a response is elicited only after a reminder letter 
had been sent or a follow-up telephone call had been made, 
are "closer" to nonrespondents than to respondents because 
of the prodding needed to get the response from them. This 
is a fairly standard assumption. In a landmark study by Filion 
using this technique ( 6), nonrespondents were considered as 
persons who resist the initial waves of the questionnaire. All 
respondents form a continuum from highly motivated to un
motivated individuals. Each wave probes deeper into the core 
of the nonrespondents, and the continuum is indicative of the 
direction and extent of total nonresponse bias. Consequently, 
Filion claims that extrapolation over successive waves will 
reflect the characteristics of the hard core of the nonrespon
dents ( 6) [see also work by Armstrong and Overton (7) and 
Finn et al. (8)]. 

The data gathering design by Chicago Area Transportation 
Study led most naturally to this part of th~ analysis. House
holds that responded to the Lake County household travel 
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behavior survey were divided into two groups, early and late, 
on the basis of the date on which they reported their travel 
information. Households that filled the survey form using 
October 12 or an earlier Thursday (October 5, 1989) as the 
travel day, were termed as the early respondents. Households 
that responded using Thursdays after October 12 were termed 
late respondents. The number of early respondents according 
to this definition was 1,907 households, and the number of 
late respondents was 573 households. 

The new independent variable introduced to serve this pur
pose was a dummy variable zj for each j, which takes the value 
1 if the ith household in j responded early to the survey and 
0 if the household responded late. A single dummy could 
have been used for each of the households for which trip 
circuits are predicted. However, a dummy variable for each 
j allows greater flexibility. The regression needs to be weighted, 
but earlier results- that estimates from cross-classification 
models are weighted least-squares estimates for a wide class 
of weights-are true only for estimates themselves, not for 
their standard errors. Thus, for testing purposes specific weights 
need to be specified. 

For simplicity, the authors decided to proceed in a different 
way. Since the estimates of regression coefficients are trip 
rates, it was decided to simply compare trip rates using as 
variance estimates the usual sample variances. That is, a 
st~ndard t-test was used to compare trip rates for early and 
late respondents in each category. The results are given in 
Table 3. A theoretical justification of this approach would 
follow the lines. given by Sen and Srivastava (3). 

Only one of the differences in Table 3 was significant at a 
5 percent level (although in that case the significance was at 
a substantially lower level). Given 21 separate t-tests, getting 
one significance at a 5 percent level is about what should be 
expected if there is no relationship. Although the early re-

TABLE 3 Trip Circuit Rates (TCR) for Early and Late Respondents for 
Complete Model 

Respondent Household Size 
Workers Type 1 2 3 4 5 6 

Early TCR: 0.83 1.97 1.75 
Late TCR: 0.73 1.51 2.75 

0 Obsns. [102, 22] [158, 31] [8, 4] [2, l] [2, l] -

t value: 0.59 1.59 -0.98 
Early TCR: 1.06 1.89 2.40 2.68 3.28 2.22 
Late TCR: 0.95 1.88 1.92 2.40 3.22 2.50 

1 Obsns. [228, 56] [180, 48] [83, 24] [91, 32] [43, 18] [9, 6] 
t value: 0.29 0.08 1.16 0.78 0.10 -0.21 
Early TCR: 2.19 2.65 2.93 3.67 4.46 
Late TCR: 1.90 1.89 2.51 3.05 3.00 

2 Obsns: - [331, 130] [160, 57] [193, 4 7) (46, 20] [13,3] 
t value: - 1.86 3.12* 1.06 0.99 0.73 
Early TCR: 3.25 4.56 4.59 
Late TCR: 3.22 2.36 4.00 

3 Obsns. - - [76, 23] [45, 11] [17, 9) [11, l] 
t value: 0.06 1.98 0.56 
Early TCR: 4.54 6.50 7.00 
Late TCR: 4.17 4.25 8.00 

4 Obsns: - - - [26, 6) (8, 4] [3, 2] 
t value: 0.25 1.32 -1.73 
Early TCR: 7.50 
Late TCR: 6.25 

5 Obsns: - - - - [2, 4] 
t value: 0.37 



70 

spondents, in most cells, indicated higher trip rates than late 
respondents, a reasonable conclusion still is that this variable 
is not too important. 

An examination of the empirical distribution of trip circuits 
made by early and late respondents in each category also 
showed that the two groups essentially had the same pattern 
in the household trip circuits. This corroborates the conclusion 
that (assuming late respondents are closer to nonrespondents 
than to early respondents the model is reasonably unbiased 
and that there is no significant difference between the re
spondents and the nonrespondents. 

CONCLUSION 

Estimates from categorical trip generation models are un
biased if certain conditions are met by the model. The focus 
of developing trip generation models, therefore, shifts from 
being concerned about overrepresentation or underrepresen
tation in the data of households possessing certain socioeco
nomic characteristics to checking the model to see if these 
conditions are met. A cluster of checks is suggested to verify 
whether the model gives unbiased estimates of household trip 
generation parameters. 

An empirical analysis was done to illustrate how this bias 
assessment may be done in practice. A series of statistical 
diagnostic tools was used, including outlier analysis and ex
amination of the residuals and the predicteds from the model. 
These tools indicated that the model does not have substantial 
total nonresponse bias. However, the empirical distribution 
of only one-member households closely followed the theo
retical distribution for such categories of households. This 
indicated that there is possible item nonresponse in house-
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holds in which one person records trip information for the 
other household members. Finally, on the premise that late 
respondents are closer to nonrespondents than early respond
ents on a continuum of respondents to nonrespondents, an 
analysis was done to check if the two groups of respondents 
are sufficiently different. The results agreed with the earlier 
analysis that the model is reasonably free of total nonresponse 
bias .. 
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