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Properties of Vehicle Routes with Variable 
Shipment Sizes in Euclidean Plane 
RANDOLPH w. HALL 

A fundamental limitation of the literature on continuous-space 
routin~ models is that vehicles are assumed to have a capacity 
for a fixed number of stops. In reality, the maximum number of 
stops on a route may be defined by how well shipments pack into 
av~ilable capacities. An exploratory study of the geometric prop
erties ?f ve?~cle ~outes that carry shipments of variable size (hence, 
~apac1ty utihzation and number of stops vary from route to route) 
is presented. Instead of taking a purely theoretical approach, the 
study relies on ~n empirical analysis of routing solutions to reveal 
the properties of near-optimal routes. Route geometry is then 
explained with a "theory of spokes," where a spoke is a line 
segment connecting the terminal to the most distant stop on a 
route. Because the number of spokes per unit circumference in
creases in the vicinity of the terminal, the incremental distance 
of serving a stop is a nonlinear function of distance to the terminal. 
Because of packing considerations, the incremental distance is 
also a nonlinear function of shipment size. 

The classic vehicle routing problem (VRP) entails creating a 
set of routes of minimum total length so that each available 
stop is visited and vehicle loads do not violate constraints on 
capacity or time. The VRP has a long research history, be
ginning with the work of Dantzig and Ramser in 1959 (1). 
Research on the VRP is summarized by Bodin et al. (2), 
LaPorte and Nobert (3), and Magnanti (4), along with the 
book edited by Golden and Assad (5). 

A number of researchers have used continuous-space models 
to study the theoretical behavior and geometric properties of 
VRP solutions. Most notable are the works by Daganzo (6,7) 
and Newell and Daganzo (8). These build from earlier models 
for the traveling salesman problem by Beardwood et al. (9), 
Few (10), Stein (11), and Verblunsky (12), and empirical work 
on the VRP by Christofides and Eilon (13). The accomplish
ment of Daganzo and Newell was to develop a theory of near
optimal route geometry and expected route length in Euclid
ean space. Haimovich and Rinnooy Kan (14); Haimovich, 
Rinnooy Kan, and Stougie (15); and Spaccamela, Rinnooy 
Kan, and Stougie (16) have also produced bounds on the 
length of VRP routes in Euclidean space as part of their effort 
to evaluate the asymptotic performance of routing heuristics. 

More recently, routes with mixed pickups and deliveries 
have been studied by Daganzo and Hall (17) and Hall (18). 
The latter identifies the optimal shape and orientation of routes 
that begin and end at different terminals. The former studies 
mixed pickup and delivery routes out of a single terminal. 
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The work by Daganzo and Hall (17) is significant in that it 
introduces the concept of line-haul spokes, which are used in 
this paper to explain the effects of capacity utilization on route 
length. Also, research has recently been completed on ·dy
namic routing, where the presence of stops or characteristics 
of shipments, or both, are not revealed until the vehicle is in 
motion (19-21). 

A fundamental limitation of the continuous-space literature 
is that vehicles are assumed to have a capacity for a fixed 
number of stops. In reality, the maximum number of stops 
may be defined by how well shipments pack into available 
capacities (e.g., weight of time). And because shipments do 
not have to be identical, the number of stops and the capacity 
utilization can vary from route to route. For instance, if split
ting shipments among routes is not allowed, then solving the 
VRP depends in part on the solution to a bin-packing prob
lem. However, unlike the classic bin-packing problem, the 
objective is not simply to minimize the number of bins, but 
is instead to minimize the product of the number of bins (i.e., 
routes) and the average length per route. The latter depends 
on the dispersion of stops on routes. 

As discussed by Hall et al. (22), the two goals of minimizing 
the number of routes and the average length per route conflict 
with each other because efficient packings may demand non
compact routes. This trade-off is most prominent when ship
ments tend to be large relative to vehicle capacity. 

Though the theoretical properties of bin-packing algorithms 
are well known (23) and the geometric properties of vehicle 
routes with a fixed number of stops are well known, little 
research had been completed on the geometric properties of 
vehicle routes with variable shipment sizes. (There is, how
ever, an extensive body of literature on algorithms for solving 
vehicle routing problems with variable shipment sizes.) Hall 
and Daganzo (24) examined route characteristics when ve
hicles are limited by weight and volume constraints with in
finitely divisible commodities. Hall (25) studied the trade-off 
between packing efficiency and average route length under a 
scheme whereby sets of vehicles are allowed to cove identical 
territories. However, this scheme is surely inferior to partially 
overlapped territories. 

The introduction of variable shipment sizes motivates changes 
in route structure as well as changes in the relationship be
tween route length and stop density. The objective of this 
paper is to develop an understanding of how variations in 
shipment size affect optimal route length and optimal route 
geometry. 

Although this research entails testing algorithms, algorithm 
development is not a primary goaL The intention is to begin 
the development of an empirically based theory of routing 
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with variable shipment sizes. The hope is that by understand
ing the geometric behavior of routes created by good heuris
tics, it will be possible in the future to develop approximation 
algorithms that quickly produce near-optimal solutions. These 
algorithms may identify heuristic solutions by optimizing an 
approximation to the true objective function. The benefits 
are twofold: (a) a good initial solution, produced by an ap
proximate algorithm, may preclude the need to apply fine
tuning algorithms or (b) if a fine-tuning algorithm is used, it 
may be possible to obtain a slightly better final solution or to 
find a good final solution in fewer iterations. 

Throughout this paper, the routing objective will be to 
minimize total length of all routes, which will be defined by 
the Euclidean metric. Stop locations will be independently 
distributed over a circle of radius R according to a uniform 
distribution. Routes will consist of either deliveries only or 
pickups only from or to a single terminal, or both, and all 
routes will be constructed simultaneously. Capacity and ship
ment sizes will be deterministic and defined by a single attri
bute, such as weight or volume. 

PREDICTED ROUTE LENGTH 

This section considers two formulations of the VRP with vari
able shipment sizes. The first formulation allows shipments 
to be split among vehicles. The second formulation assumes 
that each shipment is assigned to a single vehicle, as is cus
tomarily done in vehicle routing algorithms. To achieve an 
efficient use of vehicle capacity, some route districts must, 
consequently, overlap. (Conceptually, a routing district is the 
convex hull of the collection of stops on a vehicle tour, absent 
the terminal.) In practice, split assignments can enable effi
cient capacity utilization without much overlap (26). 

In contrast, the literature on continuous-space models con
siders neither the issue of overlapping districts nor split ship
ments. Because shipments are assumed to be identical in size, 
overlap and splitting is not needed to fill vehicles to capacity. 
Therefore, continuous-space models need to be adjusted to 
accurately account for the extra travel distance from overlap 
and splitting that are needed in practice. 

Split Routing 

To illustrate the fundamental difference between split and 
nonsplit routing, this section first casts the split routing prob
lem in the context of Fisher and J aikumar's (27) generalized 
assignment methodology. As with Fisher and Jaikumar's 
methodology, routing is viewed as a two-stage process: (a) 
an assignment of stops to vehicles and (b) the routing of 
individual vehicles. Let cii be an approximation for the incre
mental cost of serving stop ion route j (27). Let I be the total 
number of stops, and let J be the total number of routes. 
Then the assignment of stops to vehicles with split routing 
amounts to 

(1) 

such that 

l ;Xii = qi i = 1, . . . , I 

l;Xii ~Si j = 1, .. ., J 

(1 - Yi)Xii = 0 'V i,j 

Yii = 0 or 1 'V i ,j 

where 

qi = shipment quantity for stop i, 
si = size of vehicle j, 

c;i = incremental cost of assigning stop ! to vehicle j, 
X;i = quantity assigned from stop i to route j, and 

{
1, xij > o 

Yii = 0, Xii = 0 
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(la) 

(lb) 

(le) 

(ld) 

(le) 

The primary difference between this formulation and the cus
tomary generalized assignment problem (GAP) formulation 
is that two decision variables are needed for each stop/vehicle 
pair: (a) the shipment quantity assigned and (b) Y;i, which 
indicates whether route j is used for stop i. The formulation 
also resembles the classic transportation problem. The pri
mary difference is that Equation 1 measures the circuitry cost 
of diverting a vehicle to a stop, which is independent of the 
quantity assigned to the vehcile, and therefore requires in
teger variables. 

Now, consider how the average route length can be esti
mated from a continuous space model. If vehicles are filled 
to 100 percent capacity (i.e., !,iqi = IfJ, there exists an 
optimal solution to Equation 1 such that the number of non
zero values of X;i does not exceed I + J, the sum of the 
number Type a and b constraints. (If vehicles are not filled 
to 100 percent of capacity, there will be fewer tight constraints 
and fewer nonzero values). Suppose that stops are partitioned 
into nonoverlapping districts, such that if a customer is split 
among routes, then it must fall on the boundary(ies) dividing 
the districts. 

Let 

d = average distance from terminal to stop, 
p = stop density, 
s = vehicle capacity (assumed to be identical), and 

N = number of stops per route (based on fixed shipment 
size). 

Daganzo's (6) approximation for route length (for uniformly 
and independently distributed stops over a large r~gion) is . 
composed of a line-haul component, dependent on d and N, 
and a local component dependent on p. A simple adjust
ment to Daganzo's approximation would be to estimate the 
line-haul cost from the number of routes (J) and the local cost 
from the maximum number of times stops are visited (I + 
J): 

Total length = 2dJ + .57(/ + J)/yp (2) 



124 

On a per stop basis, Equation 2 becomes 

D = mean route length per stop 

= 2d(J!J) + .57[(/ + J)!l]!yp (3) 

The substantive difference from Daganzo's result is the in
clusion of the multiplier (I + J)! I in the second term to account 
for stops that are visited more than once. This adjustment is 
negligible if N is large (i.e., I ~ J). J is interpreted as the 
minimum number of vehicles needed to accommodate the 
freight because of split shipments. 

Splitting Disallowed 

When split shipments are disallowed, each stop is visited ex
actly once. However, the optimal number of routes must cer
tainly exceed "'iq/s because vehicles cannot economically or 
feasibly be filled to 100 percent of capacity. If J is the actual 
number of routes employed, Daganzo's model could be in
terpreted as 

15 = 2d(J!J) + .57/yp (4) 

Unfortunately, for nonsplit shipments, J is itself a product of 
the optimization process, for it depends on the optimal ca
pacity utilization. Theref~re, the model is useful only if ca
pacity utilization can be predicted in advance. Equation 4 
may also underestimate local distance because it does not 
account for the fact that, for a given number of stops, over
lapping districts will be less compact than nonoverlapping 
districts. 

Validation 

The models were validated by comparing route length pre
dictions to actual routes constructed for a series of test prob
lems. Although the routing methods used are, by necessity, 
heuristic, they replicate the logic underlying the analytical 
model. Although this allows the route-length approximation 
to be validated, it does not allow validation of optimality. 
The basic structure of the heuristics is as follows: 

•Form an initial feasible solution with a heuristic based on 
continuous-space approximations and 

• Fine tune the initial solution with a heuristic that accounts 
for discrete stop locations. 

Routes were created for a series of 160 test problems found 
in work by Hall et al. (22), with 20 to 170 total stops. In each 
case, stops were randomly and independently located ac
cording to a uniform distribution over a circle of radius R 
with the terminal in the center. This radius increased as the 
numbe~ of stops increased to maintain a uniform density of 
approximately 1. Twenty problems were solved within each 
category, which was defined by the number of stops and the 
coefficient of variation of the shipment sizes (always a uniform 
random variable). In each case, the expected shipment size 
was one-third of the vehicle capacity (a constant value s). 
Large shipment sizes are used for two reasons: (a) to ensure 
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that vehicle packing is an important factor and (b) to ensure 
that larger problems generate multiple rings of routing districts. 

In the case of split-shipment routing, initial assignments 
were found with the continuous-space initialization heuristic 
of Hall et al. (22), which partitions the service region into 
districts with a combination of dynamic programming and a 
sweep algorithm (the dynamic program creates ring bound
aries by optimizing a continuous-space approximation). The 
sweep algorithm terminated a district as soon as vehicle ca
pacity was reached, which forced some stops to be split among 
adjacent districts. The initial assignment was then adjusted 
by applying the heuristic of Dror and Trudeau (26). This 
adjustment stage produced reductions over the initial solution 
on the order of 6 to 8 percent for 20 stop problems and 1 to 
2 percent for larger problems. 

In the case of nonsplit routing, an initial partition was found 
in the same manner as the split case, except that the sweep 
algorithm allowed partial overlap among districts (22). Initial 
assignments were updated by applying a generalized assign- · 
ment algorithm (22). Once final assignments were made, in
dividual vehicles were routed with Little et al. 's (28) traveling 
salesman optimization algorithm. 

Table 1 presents average results along with predictions for 
the split case. The predicted length/stop assumes that all routes 
are filled to 100 percent of capacity (hence J = "'id/s). These 
predictions tend to be slightly less than observed (up to 3 
percent). This discrepancy may be due to the heuristic nature 
of the solution. Perhaps more important, it may be due to 
the fact that actual aggregate capacity utilization was only 95 
to 98 percent, slightly less than the assumed 100 percent. With 
this in mind, the adjusted prediction factors actual capacity 
utilization into the line-haul cost (i.e., the line-haul distance 
was multiplied by the factor 100/ P, where P is the percentage 
capacity utilization). The latter accurately predicted route length 
for the large problems (/ = 115 and I = 170). Predictions 
are not as accurate for smaller problems, possibly because 
fewer than I + J total stops are made and possibly because 
Daganzo's model is an asymptotic result. In any case, there 
is no reason to doubt that simple adjustments to Daganzo's 
model produce reasonable predictions for route length when 
split shipments are allowed (Ideally, P would be determined 
endogenously. Later in the paper, insights will be provided 
into how this might eventually be accomplished.) 

Results for the nonsplit case are provided in Table 2. Pre
dictions are based on observed capacity utilizations. With the 
exception of the 20-stop case, predictions are also reasonably 
close to observed values. Furthermore, test results (22) show 

TABLE 1 Route Lengths with Split Shipments 

I =20 /R=2 . 45 
CV=.5 CV=1.0 

1=75/R=4. 90 
CV=.5 CV=1.0 

I=115/R=6.12 
CV=.5 CV=l.0 

1=170/R=7 .35 
CV=.5 CV=LO 

Average 36.8 "36.6 227 .o 228.0 414.8 414.2 708.2 707.6 

Average/ 1.84 1.83 3.03 3.04 3.61 3.60 4.16 4.16 
Stop 

Predicted/ 
Stop 

1.83 2.94 3.49 4.03 

Adjusted 2.07 3.08 3.61 4.17 
Predicted/ 

Stop 

Ea~h proble'!' cl~s contains 20. randomly ge~erated pr<?blems. J stops are 
uniformly distributed over a circle of radius R. Shipment size has uniform 
distribution with mean of 1/3 vehicle capacity and coefficient of variation 
(CV) indicated. 
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TABLE 2 Route Lengths Without Split Shipments 

Average 

Average/ 
Stop 

Predicted/ 
Stop 

I=20/R=2.45 l=75/R=4.90 I=170/R=7.35 
CV=.5 CV=l.0 CV=.5 CV=l.0 CV=.5 CV=l.0 

36.8 

1.84 

1.94 

36.8 228.8 230.2 728.2 726.0 

1.84 3.05 3.07 4.28 4.27 

3.08 4.15 

Ea~h proDie~ cll!-ss contains 20. randomly ge~erated problems. J stops are 
uniformly distributed over a circle of radius R. Shipment size has uniform 
distribution with mean of 1/3 vehicle capacity and coefficient of variation 
(CV) indicated. 

close agreement when stop density is a slowly varying function 
of the distance from the terminal. So, again, there seems to 
be no reason to doubt that simple adjustments to Daganzo's 
model produce reasonable predictions for route length. 

There remains the possibility that the heuristics produce 
nonoptimal solutions, in which case the approximation would 
overestimate the true optimal route length. 

PREDICTED ROUTE GEOMETRY FOR NONSPLIT 
ROUTING 

Just because route length conforms to model predictions, it 
does not follow that route geometry conforms to model pre
dictions. This is especially true for the nonsplit shipment case, 
which must contain some overlap among districts. With this 
in mind, this section examines the observed geometry of routes 
that prohibit split shipments. The hope is that a better under
standing of optimal route geometry will enable the develop
ment of better approximation based heuristics, which may 
reduce the need for fine-tuning algorithms. 

Number of Rings 

Daganzo (6) and Newell and Daganzo (8) represent optimal 
route geometry with a series of circular rings centered at the 
terminal and split into routing districts by line segments ra-
diating from the terminal. , 

Ring depth is defined as the depth of a ring that partitions 
the service region into districts. (The depth is the radial sep
aration between the two concentric circles that bound the 
ring.) District length is defined as the radial distance between 
the closest stop to the terminal within a district and the fur
thest stop to the terminal within the district. 

Asymptotically, as the number of stops per district becomes 
large, the optimal ring depth and the optimal district length 
are both approximated by f* = Nl'\/6:!P, where N is the 
number of stops per route ( 6). 

Within the initialization algorithm of Hall et al. (22), the 
optimal ring depth is approximated by solving a dynamic pro
gram that incorporates a ring-radial continuous-space ap
proximation. The author's concern is whether the solutions 
produced from this approximation are similar to the near
optimal solutions found at termination after the algorithm has 
been applied. 

To address this issue, 20 problems were solved within each 
of the three classes of test problems: 

• Class 1: 170 stops, mean shipment size = % capacity, 
shipment size coefficient of variation (CV) = O; 
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•Class 2: 170 stops, mean shipment size 
shipment size CV = .5; and 

% capacity, 

•Class 3: 170 stops, mean shipment size 
shipment size CV = 1.0. 

% capacity, 

In all cases, stops were uniformly and independently distrib
uted over a circle of radius 7.35. For each problem, the VRP 
was solved approximately using the following algorithm: 

1. Initialization: Set n = desired number of rings (n 
2, 3, 4, 5, 6, or 7). 

2. Divide service region into exactly n rings. Determine 
boundaries between annuli with dynamic program in Hall (18) 
1991, which optimizes continuous-space approximation. 

3. Partition each ring into routing districts. Perform par
tition with modified sweep algorithm in Hall (18) 1991. 

4. For each district, find the optimal traveling salesman 
route with the branch-and-bound algorithm of Little et al. (28). 

This algorithm is analogous to the initialization steps of (22) 
(i.e., the solution is not adjusted with a GAP algorithm), 
except that n is constrained rather than optimized. 

Table 3 provides the average route length as determined 
from the actual routes. Table 3 also provides the estimated 
route length as derived from the ring-radial continuous-space 
approximation imbedded in the dynamic program. There are 
two surprising results: 

• The number of rings that minimizes actual route length 
is consistently less than the optimum determined by the 
approximation. 

• The actual route length is insensitive to the number of 
rings. 

Both results raise doubt as to the validity of the continuous
space theory for predicting optimal route geometry with small 
N. But there is an important caveat: ring depth (Rln) and 
district length are identical only when the number of stops/ 
route is large. When N is small, the average length of a district 
should be less than the depth of a ring. Therefore, it may be 
that the continuous-space theory accurately predicts optimal 
district length but not optimal ring depth. 

TABLE 3 Route Lengths with Variable Rings, Without Split 
Shipments (Total Length Among All Routes) 

RINGS 
3 4 5 6 7 

=() 

Estimated* 738 705 693 690 691 693 
Actual 665 654 655 659 663 665 

CV=.5 
Estimated* 740 706 694 690 690 692 
Actual 750 744 750 757 761 767 

CV=t.0 
Estimated* 741 706 694 690 690 692 
Actual 753 760 771 778 785 790 

• Estimated based on ring-radial metric with 1007. capacity utilization. 
Actual is based on initial ~artition of stops into routes, with 
ap~lication of Little et al s (1983) algorithm. 

t Each problem class contains 20 randomly generated problems. 170 stops are 
uniformly distributed over a circle of radius 7.35. Shipment size has 
uniform distribution with mean of 1/3 vehicle capacity and coefficient of 
variation (CV) indicated. 
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District Length 

To investigate district length, the complete algorithm of Hall 
et al. (22) was applied to the problems in Classes 1 and 2. 
Based on the final routes obtained, the following functions 
were derived: 

• F0 (r) = proportion of routes whose furthest stop is within 
a distance r of terminal, 

• F;(r) = proportion of routes whose closest stop is within 
a distance r of terminal, and 

• F(r) = proportion of stops that are located within a dis
tance r of terminal. 

F
0
(r) and F;(r) are plotted for shipment size CVs of 0 and 0.5 

in Figure 1. From F0 (r) and F;(r), the following statistics were 
derived: 

o = mean distance to furthest stop 

= r[l -Fo(r)]dr 

l. = mean distance to closest stop 

= r[l -F;(r)]dr 

d = mean radial distance to stop 

= r[l -F(r)]dr 

e = mean district length = 0 - i 

Daganzo ( 6) predicts that (o + z)/2 equals the mean radial 
distance to a stop, or (2/3)R (R = radius of region). The 
model also predicts that f = Nl\/6Tp. The following table 
compares the predictions to the observations. 

Identical CV= 0.5 Theory 

.9 5.35 5.36 5.48 
i 4.41 4.10 4.22 
0 + i 

4.88 4.73 4.9 
2 e 0.93 1.25 1.16 (N = 3) 

Unlike ring depth, the continuous-space model appears to 
overestimate, not underestimate, district length when ship
ment sizes are identical. As illustrated by Figure 1, F0 (r) and 

1.0 

0.8 

::-
0.6 

:.0 
c 

..c 
0 0.4 Q: 

0.2 

0 
.o 2 4 6 

Distance to Stop from Terminal 

FIGURE 1 Probability distributions for location of 
inside stop and outside stop (variable and identical 
shipment sizes). 
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F;(r) do not exhibit a staircase pattern, which would be ex
pected if districts neatly fit within rings. Instead, F0 (r) and 
F;(r) are smooth functions, indicating that district boundaries 
are randomly (but not uniformly) scattered over the service 
region. Nevertheless, route characteristics are similar to the 
theory in two important respects: (a) when the CV = 0, 
(o + z)/2 (an approximation for the mean location of district 
centroids) is almost identical to (2/3 )R, and (b) mean district 
length is comparable to (though less than) f for small N. 

Results are different for nonidentical shipment sizes. Al
though o is nearly the same for the CV = 0 and the CV = 
0.5 cases, l. is not. The inner edges of districts are drawn closer 
to the terminal when CV = 0.5. 

Theory of Spokes 

This section provides a preliminary way to measure the effects 
of excess vehicle capacity due to imperfect packings and ex
plains the previous finding that the inner edges of districts 
are drawn closer to the terminal. It borrows from a theory of 
spokes, introduced by Daganzo and Hall (17) in a paper on 
routing with pickups and deliveries. For each route, a spoke 
can be envisioned as the line segment connecting the terminal 
to the most distant stop on the route. The angular position 
of spokes will be ignored, but radial length and the assigned 
load size will be incorporated. 

Let 

oj = radial distance to most distant stop from terminal on 
route j (denoted outside stop), 

ij = radial distance to closest stop to terminal on route j (de
noted inside stop), 

O(r) = number of spokes that end outside circle of radius r 
centered on depot, 

= number of routes for which oj ~ r, and 
I(r) = number of spokes whose inside stop is outside r, 

= number of routes for which ij ~ r. 

According to Daganzo (6), districts are rectangular (with di
mensions that are independent of location relative to the ter
minal), and districts do not overlap. Consequently, district 
width, denoted w, is invariant to r: 

W= 2'TI"r 
O(r) - I(r) 

(5) 

where O(r) - I(r) is a constant multiple of r. When shipment 
sizes are not identical, districts must overlap to attain an ef
ficient packing, and a 100-percent capacity utilization is nei
ther optimal nor (usually) feasible. Hence, the question is: 
What is the optimal pattern for overlapping routes? 

Overlap Within Rings 

In the work by Hall et al. (22), the service region was par
titioned into rings exactly as though stops were identical in 
size, but districts were allowed to overlap within rings. Though 
reasonable as a first-cut analysis, observed values of l. indicate 
that the inside edges of routes are pulled toward the terminal, 
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which suggests that districts should overlap in the radial 
direction. 

Overlap Between Rings 

To understand the process by which routes overlap, the in
cremental distance for serving a stop with a shipment of size 
v located at a distance r from the terminal is discussed. 

Let 

S(v,r) number of spokes that cross circle with radius r 
and carry a load size less than or equal to s - v. 

S(v,r), which will be called the number of surplus spokes, is 
a nonincreasing function with respect to v and r. 

The author's hypothesis is that the incremental distance of 
inserting a stop in an existing route is approximately propor
tional to the inverse of the ratio (number of surplus spokes 
per unit circumference): 

d'(v,r) = incremental distance for stop of size v located at r 

=k·~ (6) 
2S(v,r) 

The coefficient 2 in the denominator accounts for both the 
vehicle's forward and reverse trips (in essence, each route 
creates two spokes). The coefficient k reflects the spatial dis
tribution of spokes. If spokes serve equal sized and nonov
erlapping arcs and stops are served by ring-radial paths, then 
k would equal Y3. However, because new spokes are contin
uously introduced, it is unrealistic to maintain nonoverlapping 
arcs. Alternatively, the polar positions of spokes might be 
independent uniform [0,2'TT] random variables. 

Then 

F(x) = probability nearest spoke is 
ring distance of x or greater 

[ ]

2·S(v,r) 
2'7Tr - 2x 

2'7Tr 

dx _ 1; ( 2'7Tr ) 
-

2 2S(v,r) + 1 
(7) 

An important feature of Equations 6 and 7 is that d'(v,r) is 
nonlinear. The incremental distance to retrieve a shipment 
located close to the terminal is quite small, both because r is 
small and because the number of surplus spokes is large. And 
because S(v,r) is nonincreasing, d'(v,r) increases at an in
creasing rate as r increases. 

The relationship between d'(v,r) and weight is also nonlin
ear. Because optimally routed vehicles tend to be filled close, 
but not completely, to capacity, S(v,r) will be large for small 
values of v. Hence, the incremental distance of serving a small 
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shipment can be negligible. On the other hand, for large 
values of v, S(v,r) may be as small as 0, in which case it may 
be impossible to serve the shipment without reassigning stops 
or introducing a new route. In either case, the incremental 
distance is large. Overall, the relationship between incre
mental distance and shipment size is unlikely to be a smooth 
linear function, but instead something more akin to a thresh
old function with a low cost below the threshold and a high 
cost above (25). 

As illustrations, Figures 2 and 3 show examples of S(v,r) 
and d'(v,r) (Equation 7) as averaged from the twenty 170-
stop problems with a shipment size CV of 0.5 and a vehicle 
capacity of s = 1,000. For example, Figure 2 shows that 
approximately 50 of the total 63 spokes terminate outside the 
circle of radius 4. Of these 50 spokes, 30 are filled to no more 
than 90 percent of capacity [the remaining space equals or 
exceeds shipment size ( v) of 100], 11 are filled to no more 
than 60 percent of capacity [the remaining space equals or 
exceeds shipment size ( v) of 400], and so on. Figure 3 uses 
Equation 6 (with k = 0.5) and the data in Figure 2 to estimate 
incremental distance. The figure demonstrates the nonlinear 
relationship between incremental distance and shipment size 
and distance, as discussed earlier. 

The incremental distances predicted by Equation 7 have 
not been verified, an effort that would entail a massive com
putational effort and repeated solution of VRPs with and 
without stops inserted into routes. Nevertheless, the impli
cation that incremental cost is a nonlinear function of ship
ment size and shipment distance, with increasing marginal 
cost, appears highly plausible. 

The theory of spokes may also explain why route-length 
predictions are accurate even when districts are known to 
overlap each other. The existence of surplus capacity effec
tively reduces the local distance serving a stop. It may be that 
this reduction is adequate to compensate for the increased 
separation between stops when districts overlap (and by 
necessity cover larger areas per stop). 

CONCLUSIONS 

This paper presented an exploratory study of vehicle routing 
with shipments of variable size, where shipment size is large 
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relative to vehicle capacity. Empirical results suggest that sim
ple modifications to Daganzo's model lead to reasonable pre
dictions for average route length, when split shipments are 
allowed and disallowed. Despite the accuracy of the route length 
predictions, route geometry does not match continuous-space 
theory. It differs in the important respect that districts do not 
neatly fit within rings-whether or not shipment sizes are 
identical. Instead, routes seem to be randomly scattered across 
the service region according to a continuous probability 
distribution. 

This said, district characteristics-such as the location of 
centroids-are still similar to model predictions, especially 
when shipment sizes are identical. However, when shipment 
sizes are not identical, the location of the "inner stop" is 
pulled toward the terminal. This phenomenon is explained in 
terms of a theory of spokes, which also serves to explain why 
the existence of surplus capacity reduces the incremental cost 
of serving small stops and stops located close to the terminal. 
As of yet, the theory of spokes has not been developed to 
the point where it can be used to predict optimal route length 
or capacity utilization. This is the subject of future research. 

The author of this paper hopes that an improved under
standing of route geometry will lead to better approximation
based heuristics. The GAP algorithm is computationally ex
pensive in both memory and time. It would be highly desirable 
to obtain good solutions without resorting to repeated appli
cation of GAP. One idea that the author has examined is to 
use a random sample of stops as a collection of seed points 

and approximate the assignment cost by the incremental dis
tance function of Fisher and Jaikumar (27). Unlike Fisher and 
J aikumar, the author proposes that seed points be based on 
the empirically derived function F0 (r). Specifically, randomly 
select J seed points without replacement from the set of I 
stops, with the probability of selecting stop i given by 

P, = [ dFJ~r'V[ d~~,) }• (8) 

where a is a normalizing constant. The author's tests of this 
and other approaches have not yet produced substantial im
provements over prior methods. As of yet, it remains an open 
research question whether empirically derived results can be 
the basis for effective routing heuristics. 
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