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An IP-Norm Origin-Destination Estimation 
Method That Minimizes Site-Specific 
Data Requirements 

Yuro CHAN AND M. YuNus RAHi 

An efficient IP-approximation algorithm to estimate a likely ori
gin-destination (0-D) matrix while minimizing site-specific data
collection effort is presented. It was found that the trip-distribution 
curve is a useful supplement to site-specific link counts since it 
can be borrowed from a similar community, or that an outdated 
local curve can be employed without significant loss of accuracy. 
Imbedding such a generic trip-distribution curve within the al
gorithmic procedure gives a more accurate 0-D estimation and 
link-count reproduction in general, although the number of it
erations is increased. Test results from a medium-sized city sh9w 
that the extra computational effort is a small price to pay for the 
improvement in 0-D accuracy. The IP-approximation algorithm 
is shown to be theoretically related to familiar 0-D estimation 
techniques such as entropy maximization, information minimi
zation, and generalized inverse, yet it is more robust and theo
retically more satisfying. 

The fundamental and indispensable data required to opera
tionalize origin-destination (0-D) estimation algorithms are 
link counts. Additional data requirements differ depending 
on the specific methodology. Some require an old 0-D matrix, 
often referred to as a base (or target) 0-D matrix, whereas 
others require a control total on productions and attractions, 
but they can be labeled as site-specific information. Consistent 
with the resource-saving objective of this class of 0-D esti
mation techniques, the intention here is to minimize the col
lection of site-specific data, and to the extent possible, use 
generic information transferable from other cities of similar 
size and urban structure (1). The authors propose to use trip
distribution curves, also known as trip-length frequency curves, 
to supplement basic site-specific data, such as link counts, 
given the invariant nature of these curves, which has been 
attributed to travel-time budget theories (2,3). 

BASIC THEORIES 

The 0-D estimation problem can be thought of as solving the 
linear equation set 

AF =(af)F = V (1.1) 

where A is an mxn' assignment matrix consisting of entries 
a7 (4,5). Let us say that the entry a7 assumes a value 1 for 
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single-path assignment when an 0-D pair k uses a particular 
link i, and 0 otherwise. F is a variable vector of n' entries 
each of which is pk, where pk is the kth 0-D demand to b~ 
estimated. V is a vector of link counts, consisting of m ob
servations in the sample, each of which is V;, where V; is the 
ith link count. In the more general case of multipath assign
ment, af assumes a fractional value or 0. Thus for q-path 
traffic-assignment procedures, F will assume qn' = n entries, 
with each pk replicated q times for the q copies of the traffic 
assignment. Likewise, the A matrix is expanded tom by n in 
dimension, with each column replicated q times correspond
ing to the percentage of the 0-D demand that follows a par
ticular path. 

Viewed in this light, the estimation of 0-D demands be
comes a matrix-inversion problem: F = A +y, where A+ is 
the generalized inverse of A. For an mxnA matrix (m < n) 
of rank m the generalized inverse A+ is simply A T(AA T)- 1, 
where both (V - AF)T(V - AF) and FTF are minimized. 
Here, the first dot-product is the deviation between observed 
and estimated link counts, following a typical least-square 
approach (6). The second is the sum of squares of P. For a 
fixed sum of P's (or F, the total number of trips in the study 
area), the minimization of FTF yields P = Fin' or an equal
ized set of 0-Ds, which does not necessarily minimize the 
first dot product. 

It is interesting to note that the entropy-maximization for
mulation of the 0-D estimation problem (7), namely 

F! max w = _n __ _ (1.2) 
fl (pk)! 
k=l 

also yields the same solution for a given F. Both give rise to 
an equalized set of 0-D demands (8). This is an interesting 
finding inasmuch as the two approaches are among the most 
common methods of 0-D estimation. 

Between the generalized-inverse and entropy-maximization 
formulations, there has been some debates as to the best way 
to estimate 0-Ds. Even though the matrix-inversion method 
appears simple, it was found through extensive experimen
tation that round-off errors during the computational process 
can be large ( 9 ,10). Moreover, generalized inversion some
times yields negative solutions, which have no physical inean
ing in the context of the problem discussed here ( 8). The 
entropy-maximization method, on the other hand, has the 
conceptual appeal of obtaining the most likely 0-D pattern, 
yet the process to operationalize Equation 1.2, and the results 
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are far from perfect. For example, it has the tendency to "lock 
up" in the slightest presence of data inconsistency, which 
introduces infeasibility into the mathematical program. Chan 
et al. ( 4) and Xu and Chan (11,12) pointed out a more robust 
and more accurate algorithm for solving large scale 0-D es
timation problems. Maher (13) confirmed previous findings 
that both the maximum entropy model and its cousin, the 
information-minimization model, produce counterintuitive 
results. Hamerslag and Immers (14) pointed out some severe 
limitations of both entropy maximization and information 
minimization models. Yang et al. (15) showed that a con
strained least-square algorithm consistently yielded a more 
accurate and more reliable 0-D estimate. 

In choosing among 0-D estimation methods, it is important 
to keep in mind the versatility consideration. For example, 
can the technique be easily applied to a number of cities 
with minimal data collection beyond link counts? In this 
context, universal parameters embedded in the algorithm that 
are transferable between cities are soug.ht. Extensive
experimentation with graph-theoretic parameters suggests that 
there are few commonalities among the network taxonomy 
(as represented in assignment matrices A) between cities (8). 
A linear network representing a transportation corridor, for 
example, appears to yield more consistent total number of 
trips for external-external, internal-external, and external
internal movements as compared with internal-internal move
ments. However, no satisfactory explanation can be found to 
account for this. As another example, eigenvalues of the as
signment matrix A have the strong appeal of characterizing 
the natural frequency of the network structure. However, 
when the matrix is not square in dimension, which is the rule 
rather than the exception, eigenvalues are often not available. 

In view of travel-time budget theories, the authors identify 
the trip-distribution curve as one of the few transferable pa
rameters among cities of similar size and urban structure (2 ,3). 
If an 0-D estimation algorithm can take full advantage of this 
transferable parameter, it is a more serviceable technique 
inasmuch as it requires minimal site-specific data collection. 

In reviewing Equations 1.1 and 1.2, one can see that there 
is no obvious relationship between the trip-distribution curve 
and generalized inverse of the assignment matrix because ma
trix inversion is simple an algebraic computational procedure. 
On the other hand, previous research by Chan et al. ( 4) in
dicates that there may be links between entropy maximization 
and trip-distribution curves. Trip-distribution curves-either 
borrowed or locally collected-can serve as another set of 
input data for this estimation approach. The payoff for imbed
ding the trip-distribution curve within entropy maximization 
appears high. 

ENTROPY MAXIMIZATION APPROACH 

If W is the entropy function as shown in Equation 1.2, it is 
typical to take its logarithm W' as a first step of maximization: 

n 

W' = log F! - L log P! (2.1) 
k=l 

Using Stirling's approximation and after simplification, the 
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maximum entropy formulation can be expressed as 

n 

max Z = - L (P log P - P) (2.2) 
k=l 

subject to the link counts V;: 

n 

L a7P = V; 'Vi (2.3) 
k=l 

and the trip-frequence distributions Fe: 

n 

L p~pk = Pk(C)F = Fe 'V c (2.4) 
k=l 

where 

{
1 If Fk is of duration C (C - AC s Cs C + AC) 

p~ = 
0 otherwise 

(2.5) 

Fe represents the total trips of duration C; and Pk( C) is the 
probability of a trip k being C min long. 

In this light, (P~) = P can be thought of as a pxn matrix 
similar to the mxnA matrix, with p being the number of travel
cost intervals defined for the trip-distribution curve. To all 
these is added the nonnegativity constraint, P ::::: 0 'V k. 
Notice the given F in Equation 2.5 can either be supplied 
exogenously (collected locally) or generated endogenously 
(from local link counts and borrowed trip distribution). This 
will be discussed further when the algorithm is explained in 
detail. 

The Lagrangian for this constrained optimizati<;m problem 
is 

L ~ - X,, (F' log F' - F') - .t, A.(X,, af F' - v,) 
(2.6) 

The symmetry between the second and third terms above 
clearly shows the suitability of trip-distribution data as sup
plement to link counts. A typical calculus solution to this 
Lagrangian yields. 

exp(- L Ac) exp(- L A;) 
cEH iEK 

(2.7) 

where the summation is carried over all links i that carry flow 
between the 0-D pair k, denoted here as the set Kand all 
trip durations C that pertain to 0-D pair k, H. 

Now setting 

exp(-A;) 
V; 'Vi EK 

V; 

exp(-Ac) 
Uc 'V c EH (2.8) 

Fe 
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results in 

pk = (r1 v;V;) n ufc 
iEK cEH 

(2.9) 

Obviously, in the case of all-or-nothing single-path assign
ment, the set H has a membership of one. This method of 
estimating 0-D demands yields the conventional multipro
portional product-form solution, except that the explanatory 
variables include trip-frequency parameters-specifically the 
Lagrange multiplier Ac defined for each trip duration C. 

To arrive at a satisfactory solution to Fk is no easy task, as 
many researchers have labored continuously during the last 
2 decades on this problem. First, the objective function of 
the mathematical program as formulated in Equations 2.1-
2.5 is nonlinear, and it is not strictly concave in P. Therefore, 
it does not necessarily have a unique solution in terms of the 
0-D variables P's (16). Besides, multiple optima in terms of 
nonunique 0-D specific link volumes and path routings exist. 
This nonuniqueness is well known among researchers because 
the underlying problem, that of finding an 0-D matrix that 
produces the observed link flows and trip distribution, is un
derspecified. In other words, numerous 0-D matrices can 
produce a given set of observed link counts and a specified 
trip-distribution curve. The choice between these alternative 
matrices has to be based on additional criteria. Finally, nu
merical intricacies are involved in solving a nonlinear pro
gramming problem as formulated by Equations 2.1-2.5. Most 
hill-climbing algorithms are sensitive to the redundancies and 
inconsistencies within and between constraints shown in 
Equations 2.3 and 2.4. (14). 

MATHEMATICAL PROGRAM BASED ON 
Ip-APPROXIMATION 

To overcome the shortcomings of traditional approaches such 
as entropy-maximization, the comprehensive set of criteria 
that the estimated 0-D solution is to satisfy, including the 
additional criteria that may guarantee convergence and so
lution uniqueness, are reviewed. The authors have already 
mentioned that the 0-D estimation problem has to minimize 
the deviations between the observed link volumes and the 
estimated values. This can be related to the IP-approximation 
methods (p = 1, 2, ... oo), in which deviations (between 
observed and estimated values) are minimized according to 
some predefined representation of norm vectors. Ip-norms 
represent one of the most general ways to measure deviation 
of the estimates from the observed values. For example, the 
/ 1-approximation will minimize the sum of the absolute de
viations (16,17): 

I,: minllV - AFll, = min,~ Iv, - kt, a~F'I (3.1) 

The /2-approximation, on the other hand, minimizes the ab
solute value of the sum of the squares of the deviation (i.e., 
the traditional least square solution): 

12: minllV - AFllz 

[ 

m ( n )2]112 
= min ~ V; - L af P 

1=1 k=l 
(3.2) 
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Finally, the loo-approximation, also known as the Chebyshev 
approximation, minimizes the maximum of the absolute de
viations (18): 

Any one of the IP-norms may be viewed as an objective func
tion. By setting the maximum allowable deviation for link
volume replication, bounds are placed on the accuracy of the 
estimation-a desirable feature of a solution algorithm of this 
kind. 

A Chebyshev approximation similar to Equation 3.3 may 
be written for trip-distribution replication: 

/~: minllFc - PFlloo = min max I Fe - i P~PI (3.4) 
l:Sc:sp k = 1 

The same applies to 11 and 12 norms as well. The properties 
of Chebyshev approximation, are demonstrated in the fol
lowing simple nonnetwork case: 

/':,: min maxlP - F~I 

n' 

s.t. 2: P = F 
k=l 

Vk (3.5) 

All F~s are further assumed to be equal. It can be shown quite 
easily that the solution is P = Fin' (i.e., all estimates are 
equalized as observed in both the entropy model and the 
generalized inverse model). It can be seen, therefore, that 
the loo-approximation plays a similar role as entropy and in
verse models, but it does much more. Suppose f!s are not 
equal. The estimates P = F~ as long as "i,kF~ = F. 

On the other hand, if "i,kF~ -=#= F 

p =IF~ - ~Fl (3.6) 

where ~F = (lln')IF0 Fl." It can be seen, therefore, that 
the loo-approximation tracks the observed 0-D values instead 
of simply equalizing the grand sum F, which is a highly de
sirable property. 

At this point, it appears desirable to use Equation 3.5 as a 
criterion for measuring the performance of the model. How
ever, the base 0-D's F\s are often not available. Even if they 
are, it is not clear whether the base 0-D should be mimicked. 
For these reasons, it is not an operational objective function. 
A more practicable approach is to look at link and trip
distribution reproduction. Thus with Equations 3.3 and 3.4 
as the major solution criteria, an optimization model can be 
set up with this additional constraint beyond Equations 2.3 
and 2.4 if desired: 

n 

LIP - F~I ~ x (3.7) 
k=l 

This constraint ensures that the estimated 0-Ds are not very 
different from the base 0-Ds, F~. Specifically, one limits the 
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·maximum total deviation to be X. Similarly, a second con
straint can be set .up to limit the deviation between the user
optimizing link travel-cost at V; and the estimated total travel 
costs to Y. 

(3.8) 

Notice that in this constraint, C;(x) stands for the link travel
cost function and Ck stands for the estimated multipath travel
cost between the 0-D pair k (19). In order to operationalize 
this constraint, link counts will have to be collected for the 
entire network on all m links. 

Constraint Equation 3.7 may or may not be effective de
pending on whether a base 0-D trip demand matrix is avail
able. Equation 3.8, while more readily enforceable and well 
correlated to 0-D reproduction (4), is often too aggregate a 
measure of solution accuracy in the judgment of the authors, 
since many different 0-D matrices can give rise to the same 
deviation Y. For all practical purposes, link count reproduc
tion accuracy (or!,,, in Equation 3.3) and trip-frequency rep
lication (Equation 3.4) are the only tangible measures of al
gorithmic convergence. 

A new mathematical program is proposed with the objec
tive functions 3.3 and 3.4. The program's first order condi
tions-which require (among others, such as Equations 3.7 

· and 3.8) that the link counts and trip-distribution curves be 
reproduced-are to be met within some convergence toler
ance, rather than exactly. Thus, Equations 2.3 and 2.4 in the 
entropy maximization formulation effectively turned into ob
jective functions. Furthermore, an iterative descent-gradient 
method is proposed for the solution of these objective func
tions-rather than an ascent method for 2.1. 

To show how the solution to the surrogate mathematical 
program actually yields a solution to the original 0-D esti
mation problem is no easy task. For that matter, researchers 
have been struggling with this problem, including those who 
work with the traditional entropy approach. Many of the ar
guments would have to be less than rigorous. First, to the 
extent that some of the widely disseminated formulations 
such as matrix inversion yields a least square solution 
(V - AF)T(V - AF), objective function 3.2 and its gener
alization 3.3 are plausible surrogates, following the arguments 
made in Equations 3.5 and 3.6. It is a simple extension to 
cover the minimization of (Fe - PF)T(Fc - PF) as well. If 
desirable, one can view this as a disaggregation of the entropy 
objective function shown as Equation 2.6, wherein the second 
and third terms are taken as the two objective functions to 
be minimized; the first term may be taken care of implicitly 
by constraint 3. 7 and the general properties of l°"-norm as 
shown in Equation 3.5. 

Second, the multiproportional product solution of Equation 
2. 7 strongly suggests gradient algorithms, in which the Lan
guage multipliers Ai and Ac serve as weights placed on the 
relative importance of link count reproduction or trip fre
quency reproduction during optimization in Equation 2.6. 
Lagrange multipliers are interpreted in this case as the extent 
to which Equations 23 and 2.4 are satisfied, just as the mul
tiobjective optimization algorithm involving Equations 3.3 and 
3.4 tries to trace the noninferior solutions. 

In summary, the mathematical program proposed to solve 
includes Equations 3.3, 3.4 and 1.1 of the original problem. 
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To the extent that the entropy-maximization and matrix
inversion paradigm is a widely disseminated description of the 
original 0-D estimation problem, the authors have tried to 
show the relationship between their formulation, the matrix 
inversion, and the entropy formulations. No attempt has been 
made to show that the formulation will yield a solution such 
as Equation 2.9 which by itself is an approximation. The 
authors' approach is much more fundamental, in that the 
original 0-D estimation problem is stated in terms of lP
approximation, where the quantifiables such as link counts 
and frequency distributions are to be replicated. After some 
lengthy discussion, the authors finally recommended p = oo, 

which echoes the intuitive requirement to minimize the worst 
deviations from the observed and the most likely estimate 
interpretation of entropy models, subject to the network ge
ometry constraint on flow (Equation 1.1). In the following 
section, it will be shown that aside from a regular multi
objective linear programming package, a more efficient gra
dient algorithm can be readily put forth to solve this minimax 
programming problem consisting of two objective functions 
(3.3 and 3.4) and a linear constraint (1.1). Also the optimi
zation criteria in the algorithm are equivalent to and more 
encompassing than the generalized inversion and entropy 
approaches. 

ALGORITHM 

Learning from the computational experiences of existing so
lution algorithms (4,11,12,14,20-22), the following iterative 
gradient algorithm is suggested for the loo-norm minimization 
model: 

Initialization 

The iterative algorithm can be started by setting the iteration 
counters to zero (s = 0). Then the following is defined. 

P(O) = F~ (4.1) 

where the base 0-Ds (such as an old 0-D matrix) are avail
able. Alternatively, 

P(O) 

m 

"' a~P L.J ' ' i=l 
m 

2: af 
i=l 

(4.2) 

for the situation where link counts are the only information 
available. Here Ff = VJ ~k'= 1 af Vi E K. Finally, 

m m 

L a~P 
' ' L af PWi 

Fk(Q) i=l i=l (4.3) m m 

2: af 2: af 
i=l i=l 

where the trip-distribution curve Fe is available in addition to 
link counts. In Equation 4.3, Pf = af Pk(C)/2.,'k= 1 

af Pk(C), and Pk(C) stands for the probability that trip k has 
the same travel cost C as read from the trip-frequency dis-
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tribution Fe Extensive computations by Chan et al. ( 4) and 
Xu and Chan (11,12) show that of all three initialization pro
cedures, the last one (Equation 4.3) is the most effective. 

This result is not surprising since Equation 4.2 is nothing 
more than the inverse of· a regular assignment according to 
Equation 1.1. Its fundamental structure is related to entropy 
maximization, which yields P = Fin' when af = 1 for all i 
and k. In other words, imagine a network in which sampled 
links carry flows from every 0-D pair, then Equation 4.2 
reduces to P = Fln 1

• This applies, for example, to F traffic 
counts on a freeway section, from which the pertinent en
trance and exit ramps of the traffic are to be inferred. The 
result is an equal amount of traffic for each entrance and exit 
ramps. Another way of saying this is that when network ge
ometry is totally set aside, equal 0-Ds would be the most 
likely inference from entropy maximization. When network 
geometry is taken into account, Equation 4.2 will result. 

In Equation 4.3, 0-D inference is assisted by the knowledge 
of the trip-distribution curve. Thus, not only does network 
information get used, but trip-distribution information is taken 
into account as well. To see this more clearly, consider the 
close cousin of entropy maximization: the information mini
mizing model ( 14): 

(4.4) 

such that 

(4.5) 

where bj can assume the form of af or P~, and di can assume 
the form of V; or Fe, as shown in Equations 2.3 and 2.4. 
(Setting P = 1 for all k, or when there is no prior information, 
results in the familiar entropy maximization model.) 

Solution of this model yields 

(4.6) 

where_R0 = exp( -1) and 

(4.7) 

where 

(4.8) 

Notice this is the same as Equation 2. 7 in the case of single
path assignment, except for the sign which simply reflects the 
difference between information minimization and entropy 
maximization. Most important, rearranging the multiproduct 
form of Equation 4.6 into P = F!RoRcR; shows that just 
like a base 0-D matrix F! (Equation 4.1), Re is simply 
another piece of prior information that can assist in more 
accurate determination of P. Although links between models 
are established, this formulation further accentuates some 
of the shortcomings of information/entropy formulations. 
First, Equation 4.5 is not defined for F! = 0. Second, incon
sistencies in specifying Equation 4.5 will "derail" any solution 
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algorithms for the nonlinear program, as mentioned previ
ously. This will be demonstrated in an example. The /00-

approximation algorithm advanced here is rid of these problems. 

lte~ation 

After initialization, algorithmic steps can be written for the 
remaining iterations of the algorithm. In the following steps, 
the iteration index s is set to one to start the gradient algorithm. 

Step 1. The various link volume estimates V;(s) are deter
mined from a traffic assignment in accordance with Equation 
2.3 (or 1.1 of the original formulation): 

n 

L af P(s) = V;(s) i = 1, 2, ... , m 
k=1 

Step 2. Modify trip-probability Equation 2.4 to compute 
the total number of trips of duration C, Fc(s), from a given 
trip distribution: 

n 

2: P~P(s) = Pk(C)F(s) = Fc(s) c = 1, 2, ... 'p 
k=1 

where F(s) is the sum of estimated trips during the current 
sth iteration, and Fc{s) is the sum of all P(s) that belong to 
interval c. Instead of an extogenously determined Fin Equa
tions 1.2 and 3.5, this algorithm has the option to make F 
self-adjusting. The result is that P has as much a tendency 
to "track" the F! as to equalize among themselves. 

Step 3. The link volume estimates V;(s) are compared with 
the observed volumes in the form of an error ratio: 

Rk( ) - _!j__ k ; s - V;(s) a; i = 1, 2, ... , m 

Likewise, for the trip distribution Fc{s). 

k()-~Pk RC s - Fc(s) c c = 1, 2, ... 'p 

(4.9) 

(4.10) 

A single composite error ratio can be obtained for all links 
carrying flows between 0-D pair kif desired: 

[ ~ afRf(s) + ~ ~R~(s)] 

(~a7+p~) 
Vk (4.11) 

Step 4. The composite error ratio is then used as an ad
justment factor to the pertinent 0-D estimate F/ from the 
previous iteration: 

vi, k (4.12) 

where th~ iteration index s is now incremented by 1. 
These four steps are applied to all links with an observed · 

flow and repeated successively for convergence. The iterative 
steps yield a new set of estimates each tim~e not only for the 
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link volumes, but also for the corresponding 0-D estimates, 
P(s), according to Equation 4.3 (whens> 0). Convergence 
is obtained when the 0-Ds, on assignment on the network, 
reproduce the observed link volumes and trip-distribution curve 
faithfully (among other measures specified here). 

Step 5. Algorithmic convergence is gauged by observing 
whether an error limit is kept, as indicated by a subset of 
Equations 3.3 through 3.8, whichever apply. Representative 
of such limits is the operational measure of "a specified num
ber of links and trip-probability equations that exceed the 
maximum error of 5 percent." Ten percent of the links or 
trip frequency in violation is a typical specification. If a suf
ficiently small error limit is specified for both link count and 
trip distribXit\:m, the min-max objective functions of Equa
tion'S3.3 a 3.4 are realized. Although used here, an alter
native algo ithm is to rewrite Equation 4.11 "in series" instead 
of "in parallel~" 

Qk(s) = R7(s)R~(s) 'V k i = 1, 2, ... , m; 

c = 1, 2, ... 'p (4.13) 

which, aside from the symmetry, has a product form consistent 
with the analytical solution shown as Equation 2.9. This ver
sion of the algorithm accentuates the multiproportional in
formation update emphasis. In a disaggregate fashion, for 
each link i, each trip-duration interval c, and each 0-D pair 
k, an adjustment based on the most recent information is 
applied, as shown in Equations 4.9 and 4.10, similar to Equa
tions 2.7 and 2.9. This update is performed in such a way that 
it involves the prior-information of Equation 4.3 in each it
eration as well. 

Both the "parallel" and "series" algorithms are simple (with 
Equation 4.13 being disaggregate and more "elegant"). It will 
be shown that the computational simplicity also results in a 
fairly efficient algorithm, except in situations in which data 
are inconsistent. The computational complexity of this algo
rithm is 0 (mnp), which is far more efficient than regular 
multiobjective linear programming codes. Furthermore, it is 
robust enough to converge in spite of any inconsistencies that 
may be in Equations 2.3 and 2.4-something that cannot be 
claimed by other mathematical programming packages. In 
effect, this algorithm is specifically designed to exploit the 
sparsity of the A matrix of 0-ls, which is prevalent in the 
authors' model. All the summations over i and c in Equations 
4.3 through 4.11 have very few nonzero entries, thus affording 
a compact data structure and efficient calculations. 

Of the two ways to handle the multiple objectives of min
imizing link-error and trip-distribution-error, "in-series" al
gorithms give sequential weights in each iteration to both "link 
error" and "trip-distribution error," whereas "in-parallel" al
gorithms apply an aggregate weight to each 0-D reflecting 
the relative number of observations in link counts vis-a-vis 
trip-distribution frequencies. For example, a balanced gra
dient is applied in the special case when a7 = P~ = 1 for all 
i, c, and k. This is the reason for the choice of "in parallel" 
over the "in series" version, namely in its capacity to adap
tively adjust the gradient. The weights among the two objec
tive functions as shown in Equations 4.11 and 4.13 can be 
related to the Lagrange multipliers of Equation 2.6. Perhaps 
the best way to see this is through a comparison between 
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Equations 2.7 and 4.12, in which the 0-D's are shaped in
crementally over all observation of V; and Fc-

In summary, a gradient algorithm to solve the multiobjec
tive minimax program has been outlined. It represents, in the 
opinion of the authors, a modest step forward. Not only is 
the 0-D estimation problem viewed in a different light by a 
unifying IP-approximation framework, but an operational 
algorithm is designed to perform the computation required 
of such a multicriteria optimization problem. Such an algo
rithm is versatile enough to examine the whole family of /P
approximations of more than one figure-of-merit, from the 
familiar p = 1 and 2 cases to the intuitively satisfying p = oo 

case. Recently, Schneider and Zenios (23) related an 0-D 
estimation algorithm such as the one above to the general 
problem of "matrix balancing" and elaborated on the effi
ciency of the algorithmic variety employed here. 

EXAMPLE 

An illustration of the algorithm using a hypothetical five-zone 
network (Figure 1 and Table 1) is helpful. Without loss of 
generality, let us say that all of the 16 links in the figure are 
bidirectional and uncapacitated ( q = 1). The probability method 
of initialization (Equation 4.3) was used. A target 0-D matrix, 
the minimum-time paths, the trip-frequency probabilities, the 
seven observed link counts, and two turning movements are 
shown. There are 10 0-D pairs (one-way) and 9 observed
flow data (not all of which are independent, notably the two 
turning movements are the same as link flows. For that rea
son, the turning movements are simply redundant informa
tion.) As an illustration only, this first case is a "determinate" 
system where m = n. The initial step of the algorithm is the 
conversion of various trip-duration probabilities into nor
malized 0-D share allocations for each link volume (Equation 
4.3). This is conducted in Table 2, where the initial allocation 

KEY: 0 ZONE CENTROIDS 

<x·x> LINK TRAVEL TIMES (BOTH WAYS) 

~ OBSERVED LINK LOADING AND TURNING MOVEMENTS 

FIGURE 1 Five-zone example network. 



I 

136 

TABLE 1 Data for Five-Zone Network 

Zone Pair 
k 

1 
2 
3 

4 
5 
6 

7 
8 
9 
10 

0-D Zones* 

1 - 2 
1 - 3 
1 - 4 

1 - 5 
2-3 
2-4 

2-5 
3 - 4 
3 - 5 
4-5 

0-D Path 
k 

19,18,17 
19,20,16,10 
19,20,15,11, 
12 
19,20,14 
17,16,10 
17,16,15,11, 
12 
17,18,14 
10, 11, 12 
10, 16,20, 14 
12, 13, 14 

Skim Tree 
C' 

5 
8 
8 

5 
7 
11 

6 
6 
11 
6 
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Trip Freq. 
P% 

27 
15 
15 

27 
15 
14 

29 
29 
14 
29 

Target 
0-D,P 

1,100 
1,000 
500 

1,600 
1,500 
900 

1,200 
800 
500 
900 

Final Est. 
0-D, P(7) 

1,139 
848 
653 

1,575 
1,488 
804 

1, 179 
806 
674 
907 

* A symmetric 0-D matrix is assumed. Thus an 0-D pair p-q (p <q) stands for both zone pairs p-q and q-p. 

of link volumes is made to arrive at Ff. Notice that there is 
more than one estimate of each 0-D volume, as pointed out 
earlier in the description of the algorithm. According to Equa
tion 4.3, these different estimates from the different link vol
umes are averaged, yielding P(O)'. The algorithm proceeds 
to the iteration phase .in which the five-step procedure is ex
ecuted. Such a procedure is shown in Table 3, where the 

TABLE 2 /"'-Norm Algorithm 

Link Obs. Zonal Trip Vol. Avg. 
Link in Vol. Pair Freq. Normal Alloc. 0-D 

Fig. 1° V; k pk% P;k % F80) f'<(O) 

10-11· 800 8(3-4) 29 100.0 800 800 

2 10-16b 3000 2(1-3) 15 34.1 1023 919 
5(2-3) 15 34.1 1023 1023 
9(3-5) 14 31.8 954 954 

3 11-15 1400 3(1-4) 15 51.7 724 770 
6(2-4) 14 48.3 676 788 

4 13-14 900 10(4-5) 29 100.0 900 900 

5 15-16 900 6(2-4) 14 100.0 900 788 

6 17-18 2300 1(1-2) 27 48.2 1109 1109 
7(2-5) 29 51.8 1191 1191 

7 19-20 3100 2(1-3) 15 26.3 816 919 
3(1-4) 15 26.3 816 770 
4(1-5) 27 47.4 1469 1469 

9923 
• same as turning movement from 3-10 to 10-11 
b same as turning movement from 3-10 to 10-16 
0 Link (i,j), where i <j, is bi-directional. It stands for both (i,j) and G ,i). 

allocated link volumes P(s) are revised according to both the 
link-error ratio (Equation 4.9) and the trip-distribution error 
ratio (Equation 4.10). The adjustment using the error ratios 
results in a revised set of 0-D allocations from link counts, 
hence revised average 0-D estimates P(s), in each iteration. 
When the 5 percent error/10 percent violation convergence 
criteria are met (Step 5 of the algorithm), the average 0-D 

Iteration One Iteration Two 
Est. 
Trips Adj. Adj. Avg. Adj. Adj. Avg. 
of Dur. ratio ratio est. ratio ratio est. 
C, F 0 (0) R81) Rck(l) F;k(l) FcO) R8.2) R/(2) F;"(2) 

2876 1.000 0.995 798 2880 1.002 0.999 799 

1488 1.036 0.881 869 1490 0.994 0.929 849 
1488 1.455 1274 1490 1.170 1378 
1389 0.797 874 q90 0.874 817 

1488 0.899 0.881 701 1490 0.988 0.949 684 
1388 0.797 716 1390 0.874 715 

2876 1.000 0.995 898 2880 1.002 0.999 898 

1388 1.142 0.797 716 1390 1.256 0.874 715 

2678 1.000 1.039 1130 2682 0.992 1.026 1140 
2876 0.995 1188 2880 0.999 1183 

1488 0.982 0.881 869 1490 1.015 0.949 849 
1488 0.881 701 1490 0.949 684 
2678 1.039 1484 2682 1.026 1515 

9932 9978 
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TABLE 3 Results for 42-District York Network 

Borrowed Trip Probabilities Site-specific Trip Probabilities 

Violation Trip-probability Trip-probability equation used Trip-probability Trip-probability equation used 
Limit Criteria equation not used* 0-D sum known* 0-D sum unknown* equation not used* 0-D sum known* 0-D sum unknown* 

20% Z1 0. 707 (0.577) 0.661 (0.668) 0.577 (0.671) 0.629 (0.607) 0.555 (0.560) 0.539 (0.543) 
link Zi 0.027 (0.026) 0.011 (0.021) 0.019 (0.018) 0.023 (0.032) O.Ql8 (0.018) 0.017 (0.017) 
violations 2, 0.066 (0.128) 0.004 (0.182) 0.091 (0.175) 0.092 (O. I06) 0.122 (O.I09) 0.139 (0.134) 

D -0.123 (-0.040) -0.021 (0.019) -O. I09 (0.028) -O.Q78 (-0.091) -0.013 (-0.026) -0.034 (-0.057) 
Std. dev.** 166 (222) 188 (316) 168 (320) 185 (192) 243 (223) 237 (214) 
No. of iterations 6 (3) 33 (12) IO (11) 5 (3) IO (9) 11 (9) 

IO% Z1 0. 708 (0.577) 0.658 (0.678) 0.584 (0.690) 0.630 (0.606) 0.573 (0.590) 0.549 (0.551) 
link Zi 0.019 (0.026) 0.005 (0.015) 0.006 (0.007) 0.015 (0.018) 0.004 (0.005) 0.006 (0.007) 
violations 2, 0.065 (0.128) 0.020 (0.189) 0.084 (0.173) 0.092 (0. I04) 0. I08 (0.089) 0.137 (0.130) 

D -0.117 (-0.040) -0.008 (0.014) -O. I09 (0.033) -0.072 (-0.085) -0.035 (-0.008) -0.036 (-0.053) 
Std. dev.** 170 (222) 191 (315) 168 (322) 190 (199) 243 (223) 235 (215) 
No. of iterations 8 (3) 51 (27) 38 (27) 7 (5) 49 (41) 56 (27) 

* The first entry values correspond to smaller-city data set (curve borrowed from slightly larger city); 
the values in parentheses correspond to larger-city data set (curve borrowed from slightly smaller city). 

** Standard deviation for observed 0-D's is 284 (305). 

estimates from that iteration are the final 0-Ds, as shown in 
the last column of Table 1. 

The same problem was solved by removing some of the 
link count and trip-frequency observations. Including only the 
strategically located link flows (17,18), (11,12) and (13,14) 
provided an underdetermined system in which m < n. The 
/"'-approximation algorithm converged to similar solutions as 
the full rank example above (24,25). 

Using both the full rank and an underdetermined input 
data, consisting of links (10,11), (11,15), (13,14), (15,16), 
(17 ,18) and selected trip-frequency distributions, the entropy 
formulation was again solved by a regular nonlinear program
ming package. The solution was consistent with the previous 
one by /00-approximation (24,26), although full-rank input and 
extraneous constraints tend to cause convergence problems 
(24,25). In view of these convergence problems, the objective 
function of the nonlinear programming problem was linear
ized and both separable programming (25) and the Frank
Wolfe algorithm (27) were used to solve the problem. In the. 
case of separable programming, the algorithm was robust 
enough to yield fairly consistent solutions for both an under
determined and full-rank input. In the case of Frank-Wolfe, 
including only seven link-count information yielded the same 
solution as previous algorithms. Adding trip-distribution in
formation tended to cause nonconvergence, apparently due 
to inconsistency with the link-count equations. 

These computational experiences, conducted in a control 
environment in a small network, confirm previous findings 
regarding the fragility of the entropy/information-based models, 
particularly with regard to input data. It further supports 
the serviceability of the IP-approximation (particularly la,,-

approximation) algorithm in terms of its robustness and ef
ficiency. This, together with similar findings elsewhere 
(4,14,15,23), point toward the focus of this paper: the role of 
additional trip-distribution information and the IP -approximation 
algorithm. A set of experiments using a large-scale data set 
were carefully designed to address this in further detail. 

EXPERIMENTS 

The above algorithm was used to conduct a set of experiments. 
The experiments were intended to resolve three computa
tional issues: 

1. Between the use of the link-count-adjustment factor 
(Rf) and the trip-distribution-adjustment factor (R~), does the 
latter enhance solution accuracy and algorithmic efficiency? 

2. Between an outdated or borrowed trip distribution curve 
and a locally collected one, which will perform better? 

3. How much is compromised should one minimize site
specific data collection? 

Experimental Design 

To answer these questions, a complete evaluation and sen
sitivity analysis was performed on a real-world network of 
Xork, Pennsylvania. These controlled experiments were sci
entifically designed to evaluate the performance of the al
gorithm, particularly its ability to compute an entire family 
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of IP-norms over several criteria. One of the evaluation mea
sures is the normalized deviation between the observed and 
estimated 0-Ds following the constraint defined in Equation 
3.7, where the observed 0-Ds are available (since it is a 
controlled experiment): 

n 

L IP - F!I 
k=l (5.1) 

Another evaluation measure is the normalized deviation 
between estimated and observed link volumes, following the 
objective function defined in Equation 3.1: 

m (5.2) 
L V; 
i=l 

Although not used here, a similar criterion can be defined for 
the compliance with a local trip-distribution function (but not 
necessarily with a borrowed curve). 

A third measure, related to Equation 3.8, documents the 
difference between the observed versus estimated total costs 
(in vehicle-hours of travel). The following is a special single
path case of constraint 3. 8 when af assumes 0-1 values (instead 
of fractional values). 

m n 

L c;V; - L CkP 
i=l k=l (5.3) 

The controlled nature of the experiment allows Z3 to be 
computed even though not all link counts are used for 0-D 
estimation. 

The fourth is a measure of the difference between sums of 
the estimated 0-Ds and the observed 0-Ds. This allows one 
to assess whether the algorithm overestimates or underesti
mates the total number of 0-Ds: 

n n 

L pk - L F! 
D k=l k=l (5.4) n 

L F! 
k=l 

The spread of the estimated 0-Ds is compared with the 
observed via the standard deviation (CJ) statistic. This allows 
one to gauge the uniformity of the 0-D estimates inasmuch 
as both the generalized-inverse and entropy-maximization 
procedures tend to equalize £k's. A small value of CJ, for 
example, shows uniformity among 0-D estimates for the /P
approximation algorithm and vice versa. 

Finally, all experiments are eval~ated by the rate of con
vergence, defined as the number of iterations required to 
reach a specific error limit. An example of such a limit is the 
percentage of links that are outside the error tolerable for 
link volume estimates. We will recall that this termination 
criterion realizes the /""-approximation as shown in Equations 
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3.3 and 3.4-particularly the two first order conditions of this 
gradient algorithm. 

As mentioned previously, each experiment is designed 
to compare the proposed algorithm with the version where 
the trip-probability equation is not used. When the trip
probability equations are used, two cases need to be tested: 
either the sum of the 0-Ds is known or that it is not. In the 
former case, the equalizing property, as shown in Equation 
3.5, is tested. In t~e latter case, the absence of such property 
is expected-all through the use of the standard deviation 
(CJ) statistic. In the case of a site-specific trip-distribution curve 
being available, it is more likely than not that the 0-D sum 
is also available. On the other hand, when a borrowed trip 
distribution curve is used, it is unlikely that such a sum is 
known. 

The above experimental design is best illustrated by the 
five-zone example, where a locally collected trip-distribution 
curve is assumed available. To make the example interesting, 
it is assumed also that the total number of trips is not known 
a priori. The algorithm is iterated until no more than 10 per
cent of the link volumes and trip-probability equations exceed 
the 5 percent error. The thrust of comprehensive tests were 
performed in the York network, which consists of 42 districts, 
101 nodes, and 861 symmetrical 0-D pairs-a considerably 
large network for such experimentation. Although the vio
lation limit is 10 percent for the five-zone example, both 10 
percent and 20 percent are tested for the 42-district network. 

To support the theme of the research, the authors exper
imented with trip-distribution transferability. Two curves are 
identified in York, the first representing an outdated distri
bution, the second, the current distribution: 

15.82 C exp( -0.379C) R2 = 0.975 (5.5) 

12.85 C exp(-0.353C) R2 = 0.927 (5.6) 

Since the York metropolitan area has grown in population 
and development during the last 2 decades, the authors refer 
to the outdated curve as from the "smaller city data set," 
whereas the current curve is from the "larger city data set." 
Experiments were then performed on the current data set 
consisting of network geometry, base matrix, and sample counts 
using an outdated trip-distribution curve. Conversely, exper
iments were performed on the outdated data set (or smaller
city data), borrowing the current trip-distribution curve. Al
though the former set of experiments represents the common 
practice, the latter is also valid from an experimental design 
standpoint, in that both cases represent borrowing a distri
bution curve from a "similar" city. 

Notice a trip-distribution curve is involved in the initiali
zation phase (Equation 4.3), even though it may not be in
cluded in the iterative phase. For this reason, there are two 
columns again under the heading "trip probability equation 
not used" in Table 3, corresponding to the smaller-city and 
larger-,city curve, respectively, being used to initialize the 
algorithm. 

Empirical Results 

Notice in Table 3 that the proposed algorithm consistently 
gives an equally accurate and often a more accurate 0-D and 
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link-count reproduction (Z1 and Z2 ) when the 0-D sum is not 
known a priori. This is gratifying in that the objective of 
minimizing site-specific data requirement is achieved, where 
the additional local information on the total-number-of-trips 
is not necessary to obtain quality algorithmic performance. 
Not only is the information superfluous, but its absence gives 
rise to more accurate 0-D estimation than when it is collected. 
Instead of merely equalizing the estimated values (as in the 

. case of matrix inversion and entropy maximization), the es
timated 0-Ds are now allowed to approximate the variability 
of the target 0-Ds better. 

Along this line, the results from experiments where a bor
rowed curve is used (Table 3) are comparable in accuracy to 
those where a curve is available locally. As long as a trip
distribution curve is employed, a 33 percent link-sampling rate 
as used in the experiments in Table 3 does not significantly 
compromise the 0-D estimation accuracies when compared 
with the 100 percent sample. The 100 percent sample is not 
included here due to space limitations. The interested reader 
may consult work by Rahi (8) for this information. As it turns 
out, the algorithm becomes more efficient and converges faster 
with the 33 percent sampling rate because there are fewer 
inconsistencies to resolve. This finding reinforces the com
puter runs on the five-zone example and further supports the 
authors' claim that although the algorithm is robust enough 
to handle redundant data, it is much less data-hungry for the 
same degree of accuracy. 

As suggested previously there is little advantage, if any, to 
gathering site-specific data, such as the total number of 0-D 
trips. First, it introduces inaccuracy to the solution by equal
izing 0-Ds, as mentioned previously. Also, it tends to prolong 
the number of iterations before convergence is obtained in 
all cases. This is again a gratifying finding, saying that col
lecting irrelevant data does not only waste resources, it also 
harms the technical performance of the algorithm. 

Because the 0-D estimates are required to conform to a 
prescribed trip distribution, more prior information is im
posed on the estimation process than other traditional algo
rithms and hence results in more heterogeneous 0-D esti
mates that better approximate the base 0-Ds. This is illustrated 
by Equation 4.3 and most particularly by Equation 4.5. The 
authors' claim, however, is highly predicated upon the shape 
of the trip-distribution curve. For example, a more peaked 
distribution curve from a smaller city tends to result in a much 
less uniform set of 0-Ds (Equations 5.5 and 5.6, and Table 
3). A more peaked curve also tends to result in a large 0-D 
sum in general. 

One point about the use of trip-distribution curves is quite 
clear. Should it be employed in 0-D estimation, an accurate 
specification of the probability values is advisable for better 
overall algorithmic performance. This is true for all cases
whether the trip-distribution curve is borrowed, and irre
spective of the violation limit set in the convergence criteria. 
Numerical round-odd errors in trip-distribution input tend to 
prolong algorithmic convergence because there are more in
consistencies to reconcile. 

For the same reason, including trip-probability constraints 
typically prolongs the number of iterations required when 
compared with using link counts alone. It was found that the 
lower the error limit set, or the minimax objective functions 
are to be better achieved, the larger the number of iterations 
required to resolve these inconsistencies-as one would ex-
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pect. For example, lowering from a 20 percent link violation 
rate to 10 percent dramatically increases the number of it
erations by a factor of five. This is the price one pays for 
saving site-specific data-collection efforts. Irrespective of the 
increase, computation time is no more than a few minutes on 
an Amdahl V-816 because the computational complexity of 
such an algorithm is polynomial. 

SUMMARY AND CONCLUSION 

On the basis of the plethora of research on origin-destination 
estimation during the last 2 decades, the authors synthesize 
here an improved theory and algorithm that is a general ver
sion of entropy maximization, information minimization and 
matrix-inverse models. The objective is to estimate 0-Ds with 
the least amount of site-specific data collection. Beyond the 
site-specific link counts, the authors wish to rely exclusively 
on generic data (i.e., data that can be borrowed from other 
communities of similar size and development structure or from 
data collected for the same community in a previous survey). 
Specifically, the trip-frequency or trip-length distribution curve 
is identified as the most promising piece of "transferable" 
information to supplement site-specific link counts. 

An /00-approximation algorithm is synthesized on the basis 
of experiences with the widely disseminated generalized
inversion and entropy-maximization theories. The authors' 
approach takes advantage of their strengths, such as the an
alytical property of entropy-maximization, which readily al
lows for the inclusion of generic information such as trip
frequency curves in a multiproduct form. IP-approximation 
methods p = 1, 2, ... , oo represent a more fundamental 
approach to modeling the original 0-D estimation problem 
than the least-square assumption (p = 2) of generalized in
verse. The result is a flexible, successive-approximation al- . 
gorithm, assuming the multiproportional product form. In this 
multiobjective optimization model, adjustments to 0-D es
timates are made not only through link-count reproduction, 
but also trip-frequency reproduction. The latter represents 
the unique feature of the algorithm presented in this paper. 

Care was exercised in the design of experiments, where the 
algorithm was compared with a version in which the trip
frequency information was not fully used. On the basis of 
testing of the 42-district York, Pennsylvania, network, it was 
found that the algorithm generally gives more accurate 0-D 
and link-count reproductions. Furthermore, the use of bor
rowed trip-distribution curves yields equally accurate esti
mates as when a site-specific curve is available. Although one 
pays for this in terms of computer time, it is a gratifying result 
because site-specific data-collection effort, judged to by far 
be the much more expensive and onerous task, is in fact 
minimized. Inclusion of trip-distribution information in the 
0-D estimation algorithm and the relaxed requirement on O
D sum also tend to ameliorate commonly observed tendency 
for many algorithms to equalize the estimated 0-Ds. 

In formulating the IP-approximation problem as a multi
objective optimization algorithm in which the link-counts and 
trip-distribution are to be replicated, the relative weights placed 
among these two objective functions are shown to be related 
to the Lagrange multipliers of the entropy formulation. Thus 
both the weight or Lagrange multiplier reflect the extent to 
which replication has been achieved. The loo-approximation 
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algorithm was also shown to have similar optimality conditions 
as the familiar entropy-maximization and information
minimization models in that equalized 0-Ds constitute the 
most likely estimates for a given 0-D sum. In designing the 
experiments here, however, comparison with an entropy
maximization algorithm was considered in illustrative com
putation only. Extensive experimentation was performed and 
published in an earlier phase of this research effort ( 4), in 
which the serviceability of the present approach (with only 
link counts as input data) has been established. Also short
comings of the entropy, information and inverse models
such as the tendency for the algorithm to "lock up" at the 
slightest trace of data inconsistency-have been adequately 
reported elsewhere in the literature. 

It is obvious that more empirical work can be performed 
to fine tune the results reported here. The /"'-approximation 
techniques should be further investigated as a way to solve 
the 0-D estimation problem because the theoretical structure 
of such an approach is related to general multiobjective pro
gramming, with its many analytical properties. Furthermore, 
the authors' network problem will invariably result in a sparse 
tableau consisting of 0-1 entries. One should be prepared to 
exploit this data structure by clever solution algorithms, of 
which the one presented here may be a modest beginning. 
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