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Integrated Structure of Long-Distance 
Travel Behavior Models in Sweden 

STAFFAN ALGERS 

In Sweden, large investment plans are being considered for rail 
and road infrastructure. At the same time,· changes are taking 
place that either directly affect ridership (such as imposing a 
value-added tax on transportation) or indirectly (such as dereg
ulation of air traffic). Clearly, there is a great need to be able to 
analyze how changes in price and level of service influence rider
ship. An overview of the models involved in a new model system 
for long-distance trips developed for Swedish national authorities 
is presented. The model system consists of nested logit models, 
partly estimated by the use of simultaneous estimation tech
niques. The trip data source is a national travel study conducted 
in 1984-1985. The choice structure of the model system spans 
from choice of access and egress mode over mode and destination 
choice to trip generation. There are different models for business 
and private trip purposes. The models contain cost parameters 
and mode-specific time parameters. The integrated structure im
plies that all variables affect all choice levels. The parameter 
values are reported elsewhere. 

In Sweden, as in many other countries, large investment plans 
are being considered for rail and road infrastructure. At the 
same time, changes are taking place that either directly affect 
ridership [such as imposing a value-added tax (VAT) on trans
portation] or indirectly (such as deregulation of air traffic and 
the separation of the railway company from the authority 
responsible for the rail infrastructure). Clearly, there is a great 
need to be able to analyze how changes in price and level of 
service influence ridership as well as expected changes in the 
economic activities over a forecasting period. 

Forecasting of such changes has typically been based on a 
linked model system that includes trip generation, trip dis
tribution, and mode choice. In 1987, the model system was 
updated with a mode choice model that was estimated ·on 
disaggregate data, giving a much more policy relevant mode
choice model. 

It was decided to try to further use the advantages of dis
aggregate modeling by using it for all steps in an integrated 
structure. Such a project was completed in 1991, and this 
paper provides an overview of the models involved in the new 
model system. 

The term "long-distance travel" is frequently used, al
though is not well defined. The term refers to a specific cat
egory of trips for which there are various criteria, such as trip 
length. Though trip length is not necessarily the most ade
quate criterion for modeling, it was used in the 1984-1985 
National Travel Survey in Sweden. In this survey, trips longer 
than 100 km (one direction) were identified as long-distance 
trips. 

Royal Institute of Technology, Department of Traffic and Transport 
Planning, S-100 44 Stockholm, Sweden. 

ANALYSIS OF LONG-DISTANCE TRAVEL 
BEHAVIOR: ANALYSIS OF DISCRETE CHOICE 

As indicated earlier, the purpose of the modeling effort was 
to produce a system of forecasting models including mode 
split, trip (spatial) distribution, and trip generation. In the 
previous analysis, mode split was analyzed using probabilistic 
discrete choice models, specifically the well-known logit model 
(1). This approach was adhered to also when extending the 
model system to trip distribution and trip generation. Discrete 
choice analysis has also been applied to long-distance travel 
in other studies, but the use of disaggregate data, as suggested 
by Stopher and Prashker (2), has been rare. Applications of 
disaggregate data may be found in other work (3--6), but, to 
the knowledge of the author, no study so far has excluded 
access and egress mode choice, main mode choice, destination 
choice, and frequency choice in an integrated structure. 

Logit Model 

The limited space of this paper allows only a brief presentation 
of the logit model. The reader is otherwise referred to liter
ature (J). A basic assumption in discre.te choice analysis is 
that each alternative in the choice set of a decision maker is 
associated with a utility and that the decision maker chooses 
the alternative with the highest utility. The utility is assumed 
to consist one part observable and one part not observable 
by the analyst. Thus, 

where 

U; = total utility for alternative i, 
V; = observable part, and 
E; = unobservable part. 

(1) 

The unobservable part is assumed to be stochastic. This 
means that the alternative a decision maker would actually 
choose cannot be predicted but an assumption on the distri
bution of the stochastic part will allow one to predict the 
probability that it could be chosen. Thus for a population of 
decision makers, the share _of the population choosing each 
alternative could be predicted. 

The assumption of the distribution of the stochastic part of 
the utility determines the functional form of the model. In 
the logit model case, the assumption is that it is identically 
and independently Gumbel distributed. (The Gumbel distri
bution is fairly close to the normal distribution, the latter 

., 



I 
142 

corresponding to the so-called probit model.) This distribu
tion assumption implies the following formula for the prob
ability to choose a particular alternative (the multinomial logit 
model): 

(2) 

where 

P; = probability for a decision maker to choose alternative 
i, 

µ = a scale parameter (inversely proportional to the 
standard deviation of the stochastic term), 

V; = observable part of the utility, and 
C = choice set of the decision maker. 

In practice, V; is often assumed to be a linear function of 
parameters and variables. The model can then be formulated 
as: 

(3) 

where ~ is a parameter vector (to be estimated) and X; is a 
vector of variables for alternative i. 

Thus, the ~ values reflect the sensitivity of the variables 
included in the model. The log of the denominator-the so
called logsum-also has a useful property in that it can be 
interpreted as the expected maximum utility of the alterna
tives in the choice set. 

The assumption that the stochastic terms are independently 
and identically distributed is, however, fairly strong. It is 
probable that some alternatives to some extent share the same 
unobserved part of the utility function. For example, two 
modes to the same destination will share the unobserved part 
of the utility of this destination. In this case, the alternatives 
may be structured in classes of alternatives, such as mode 
alternatives and destination alternatives. A structured logit 
model of mode and destination choice can then be formulated 
as follows: A graphical presentation of the structure is shown 
in Figure 1. 

P(d) 

P(mld) 

where 

e-y'yd+win 2: exp(Wxm·d) 
m'd 

2: e-Y'Yd·+ ... in 2: exp(Wxm·d·) 
d'ED m'd' 

2: eWxm'd 

m'EMd 

(4) 

(5) 

P(d) = probability to choose destination d; 
yd = vector y of independent variables (attributes) for 

destination d; 
-y = associated parameter vector -y, to be estimated; 

D = set of p destination alternatives; 
w = logsum parameter (the ratio between the stan

dard deviations of the error terms at the mode 
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FIGURE 1 Graphical presentation of 
structured logit model of mode and 
destination choice. 

choice level and the destination level), to be 
estimated; 

P(mld) = probability to choose modem, given destination 
d; 

xmd = vector x of independent variables (attributes) for 
mode m and destination d; 

~ = associated parameter vector~. to be estimated; 
and 

Md = set of s mode choice alternatives for destination 
d. 

The formulation of a structured model implies that the 
choice probabilities of the alternatives of one class is modeled 
conditional on the choice of the alternative of the other class. 
In this example, the mode choice is modeled conditional on 
a destination choice. Another implication is that the logsum 
is used to take the utilities of the alternatives of a lower class 
(in the sense of the graph) into account when modeling the 
probability for the alternatives of a higher class (or choice 
level). 

The logsum parameter provides the connection between 
the choice levels and should have a value in the range of 0 
to 1. If the logsum parameter takes the value of 1, then the 
structured model is equivalent to the normal multinomial logit 
model. If the value is greater than 1, unreasonable effects 
may be predicted, such as an increased ridership for one mode 
caused by an improvement of another mode (belonging to the 
same choice level). 

Long-Distance Context 

The demand for long-distance trips is thus viewed as the result 
of the behavior of utility-maximizing individuals, choosing 
among a set of mutually exclusive alternatives related to mode, 
destination, and trip frequency. Individuals, however, often 
travel together, which may influence the costs for the different 
modes in different ways. Therefore, effects on costs of the 
size and (to some extent) of the mix of persons in the traveling 
party were taken into account. 

To define the alternatives concerning the trip, the concept 
of a trip must first be defined. As in other contexts, people 
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normally start trips in their homes, visit a destination and then 
return to their homes. This may be called a single-destination 
round trip, which is how the concept of a trip was defined in 
the analysis. This is, of course, a simplification of the reality, 
as is the assumption that only one mode was used on the 
whole trip. 

Four mode alternatives for long-distance trips were defined: 
car, train, air, and bus. Combined alternatives (e.g., train and 
air) were not defined, as the occurrence of such alternatives 
in the data was rare. The utility of the train, air, and bus 
modes may depend on the possibilities to get to and from the 
train or bus station and to the airport at the origin as well as 
at the destination. Because the access and egress modes may 
be of interest as policy variables and because the data per
mitted, the access and egress alternatives were also modeled 
as separate alternatives. 

The destination alternatives were defined to be approxi
mately 2,200 agglomerations and rural areas, comprising all 
of Sweden. Such a detailed zonal subdivision permits a more 
precise calculation of trip times and costs, but raises also the 
problem of handling many alternatives. 

The frequency alternatives were defined to consist of two 
alternatives, to make a trip during the analyzed period or not. 
The fraction having made more than one trip was small. 

Most variables in the analysis may be grouped into three 
main classes: (a) time and cost variables relating to the access 
and egress and main modes, (b) size variables relating to 
destinations, and ( c) socioeconomic variables relating to the 
travelers. 

STRUCTURE OF LOGIT MODEL FOR LONG
DISTANCE TRAVEL BEHAVIOR 

The general structure of the model is shown in Figure 2. The 
choice of access and egress modes is positioned at the bottom 
of the model. The actual structure is somewhat simplified in 
the figure in that the choices of access and egress modes are 
treated as two independent choices. At the next level is the 
choice of the main mode, which is influenced by the acces
sibility to the airport or station given by the logsum variable 
from the access and egress level. This variable represents the 
maximum expected utility from the alternatives at that level. 

Destination choice comes next, being influenced by the 
logsum variable from the main mode level (also including the 
logsum variable from the access and egress level). Finally, 
frequency choice is positioned at the top of the structure. 
Frequency choice is also influenced by the logsum variable 
from the level below, representing the maximum expected 
utility from the destination alternatives (including the logsum 
variable from the level below). The entire structure is thus 
internally linked by the logsum variables, which means that 
changes at the lower levels will affect the higher levels. 

As an example, an improvement of a bus service to an 
airport will, of course, cause some persons to switch from 
other modes to this airport (e.g., car). It will, however, also 
cause some persons to switch from other modes for their main 
trip to air because it is now easier to access the airport. A 
further effect is that destinations that are well served by air 
can now be more easily reached (because the airport is more 
accessible), which will cause a shift in travel to these desti-
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FIGURE 2 General model structure. 
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nations from other destinations. Finally, because accessibility 
is generally improved, trip frequency will also increase. The 
improvement of the bus service will thus influence all choices 
in the structure. 

The magnitude of the effects will, of course, depend on the 
sensitivity of the model to the variables that are affected by 
the project under consideration. This sensitivity is embedded 
in the parameters of the model, which have been estimated 
using statistical software. 

Trip Purpose 

There are many reasons to expect that the sensitivity of dif
ferent variables may vary by trip purpose. In this case, it was 
decided to estimate separate models for business trips and 
private trips. 

Estimation 

Estimating a model of this type involves some specific prob
lems. One problem is related to the fact that the total number 
of alternatives in the model will be high, making it cumber
some to estimate. In this case, a stratification procedure was 
used, leading to 22 destination alternatives (that vary between 
the observations in the data). 
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Another problem is related to the fact that the model is 
structured (nested). Such models may be estimated sequen
tially or simultaneously. It is desirable to estimate all levels 
simultaneously to avoid a bias in the calculated variance of 
the parameter estimates and to use data more efficiently. 
However, the number of alternatives may then become pro
hibitively high. There may also be other effects. 

If the whole model is not estimated simultaneously, si
multaneous estimation of various combinations of some of 
the choice levels may be thought of. However, frequency is 
related to a specific period, and the survey included trips for 
two different periods (trips > 100 km last 2 weeks and trips 
> 400 km last 6 months). As it is impossible to estimate one 
frequency model based on both types of frequency, the fre
quency model was restricted to include the frequency for trips 
> 100 km. For the other choices, all trip data were used 
(including, of course, destination choice sets corresponding 
to the trip category). Concerning the estimation of the rest 
of the structure, either the access choice or the egress choice 
will have to be separately estimated because they are assumed 
to be independent choices. Here, both choices were separately 
estimated, and, due to time limits, no tests were conducted 
to determine the effects of incorporating either of them into 
the mode and destination choice part of the structure. 

Thus, access and egress models were estimated separately, 
the mode and destination choice simultaneously, and the fre
quency model separately. All levels are still connected by logsum 
variables. The simultaneous estimation also requires software 
that can accommodate such a complication (ALOGIT was 
used in this project). 

A third problem is related to the fact that destination al
ternatives need to be described in terms of size. In this case, 
multiple sizes variables were used in the context of private 
trips, requiring specific capability of the estimation software,. 

DATA 

Travel Survey 

The data source is a national travel study conducted in 1984-
1985. The interviews were individual home interviews spread 
out over the whole year. The total sample amounted to 7 ,600 
persons. The rate of nonresponse was approximately 15 per
cent, yielding 6,500 individuals to be analyzed. The survey 
included long-distance trips as well as short-distance trips. 
Initially, the destinations for long-distance trips were not coded 
at a detailed level. A more detailed coding was introduced 
after the survey had been in process on for some time (for 
approximately 3,000 observations). These observations were 
used in the analysis. 

The information that was collected included socioeconomic 
data for the individual and his or her household as well as trip
related information, such as access and egress modes, main 
mode, destination (at the 2,200 zone level), trip purpose, party 
size, number of overnight stays, and type of accommodations. 

Transportation System Data 

For each destination alternative (the chosen destination and 
sampled destination alternatives), data on travel time com-
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ponents were provided by the National Transportation Coun
cil, using a network analysis system (EMME/2). The car, 
train, air, and long-distance bus networks were coded at a 
level of detail corresponding to a subdivision of 504 zones. 
The difference between this zonal subdivision and the one 
used to define destination alternatives concerned mainly small 
agglomerations. Data for access and egress were taken from 
a special data base containing regional and local level-of
service data at the 2,200-zone level. 

The construction of the mode-related cost variables had to 
rely on assumptions regarding the time of day of the trip as 
well as the mix of people in the traveling party, because this 
information was not included in the travel study and the dis
count systems for train as well as air were based on these 
factors. Also, overnight costs had to be calculated in many 
cases. 

Data Describing Destinations 

For 'each destination, data on the number of employees in 
different sectors of the economy were available. Also infor
mation on the population and area was available. For business 
trips, the number of employees in a subset of sectors was 
used. For private trips, the total population, the number of 
employees in the recreational sector, and the population den
sity were used. Also, data on population density were used. 

MODELS AND BUSINESS TRIPS 

Access and Egress Mode Choice 

For the choice of access modes to the station or the airport, 
four modes were defined. For egress, the number of modes 
is the same, but they are defined slightly differently. The 
modes for access and egress are nonmotorized modes, car, 
public transport, and taxi. The car mode was defined differ
ently for access and egress, the obvious difference being the 
possibility to use a household car at the origin. 

Separate models for access and egress trips were estimated. 
The parameters and the associated t-values of the model are 
presented in Table 1 for access as well as egress trips. 

TABLE 1 Parameter Estimates and I-Values for Access and 
Egress Mode Choice Models-Business Trips 

Access Egress 

Variable Parameter t-value Parameter 

Constant - walk -0.7338 1.9 -0.03685 
Constant - car -2.031 2.0 -2.125 
Constant - taxi -2.159 3.6 -1.745 
Car in household - car 3.028 2.9 
Household income - car 0.01037 
Household income - taxi 0.01131 4.5 0.01108 
Woman-taxi 1.304 3.8 
Cost -0.002867 3.0 -0.003345 
Time -0.002026 2.5 -0.009894 

Number of observations 300 283 
Log likelihood (parameters=O) -401.79 -389.15 
Final log likelihood -294.73 -293.46 

t-value 

0.1 
3.8 
3.6 

3.9 
5.0 

4.4 
2.5 

p2 0.266 0.246 

Note: Income is in thousands of Swedish crowns per year before tax; 
cost is in Swedish crowns; time is in minutes per round trip. 
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The models exhibit approximately the same sensitivity to 
costs at the origin as at the destination. The sensitivity to time 
is, however, radically different, with a much greater sensitivity 
at the destination. A possible explanation is that the time 
spent at the origin does not have much alternative use as 
working time, because the access trip often takes place in the 
morning or evening, whereas the time at the destination often 
takes place during work hours. 

The probability to use the more expensive modes is most 
likely related to the position of the traveler in the hierarchy 
and the economic strength of the company (or equivalent) 
where the person works. This is probably reflected in the 
salary of the person. However, person income was not re
ported in the survey, and household income is used as a proxy. 
Still, the effects are significant. 

Choice of Main Mode and Destination 

The parameter values for the mode and destination choice 
model are presented in Table 2. The model includes variables 
related to modes as well as to destinations. The model is 
simultaneously estimated, although with some important re
strictions. Generally, simultaneous estimation is preferable to 
sequential estimation. In this case, simultaneous estimation 
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increases the correlation between time variables, resulting in 
difficulties in estimating mode-specific time parameters. 

Because a mode choice model could be estimated, the time 
and cost' parameters were used as input to the estimation of 
the mode and destination model, scaled by a specific "scale" 
parameter. The parameter values from the mode choice model 
are reported with t-values in brackets because they are not 
estimated in the mode and destination model. The scale pa
rameter, by which these made choice model parameter values 
should be multiplied, is reported separately with its associated 
t-value. The scale parameter is not significantly different 
from 1. 

The cost parameters are segmented with regard to the type 
of worker. Full-time, salaried employees are likely to have 
higher values of time than others, which is reflected in the 
lower cost parameter for this category. The in-vehiele time 
parameter is much lower for train and bus as compared with 
car and air, which appears reasonable because working con
ditions are more favorable on trains and buses than in cars 
and aircraft. This was also found by Ridout and Miller (4). 
Waiting time has a significant influence if the frequency is 
higher than one train per 4 hr (in both directions). 

The model also includes logsum parameters from the access 
mode model and from the egress mode model. The former 
is restricted to 1 because it otherwise would be larger than 1, 

TABLE 2 Parameter Estimates and t-Values for Mode and Destination 
Choice Model-Business Trips 

Model 1 Model2 
Variable parameter t-value parameter t-value 

Constant - train -2.898 4.4 -1.616 3.1 
Constant - air -3.807 5.1 -2.564 4.2 
Constant - bus -5.158 4.4 -6.024 5.3 

In-vehicle/transfer time, car/air -0.0024 (5.8) --0.0024 (5.8) 
train/bus -0.0014 (4.9) --0.0014 (4.9) 

Cost, full time salaried employees -0.00071 (3.2) --0.00071 (3.2) 
Cost, others -0.0013 (5.3) --0.0013 (5.3) 
Wait time, train/air< 240 min -0.0043 (2.5) --0.0043 (2.5) 
Parameter for generalised cost 1.090 10.3 1.083 10.4 

Access (logsum) 1.0 
(distance, km) --0.01183 2.8 

Egress (logsum) 0.4912 3.5 
(distance, km) --0.01421 2.7 

Car in household - car 1.356 2.2 0.4306 0.8 
Licenses per car - car -0.5038 2.2 --0.5547 2.5 
Travelling party > 4 persons - bus 3.152 2.5 3.269 2.6 

Destination in Stockholm - air 0.8568 3.4 0.9564 3.5 
Destination in smaller towns - air -0.6861 2.2 --0.7420 2.4 
Origin in Stockholm - air 1.165 4.5 l.395 5.2 
Origin in medium sized towns - train 0.9884 3.9 0.9679 3.8 

For all modes: 
Destination in Gothenburg -0.08027 0.3 --0.07147 0.3 
Destination in medium size towns 0.2640 1.4 0.2896 1.5 
Destination in smaller towns 0.05974 0.3 0.09827 0.4 
Destination in villages -0.006948 0.0 --0.01682 0.1 
Destination in rural areas 0.3109 0.9 0.3176 0.9 

Size of destination (log of employees) 1.0 1.0 
Logsum from mode choice 0.8410 8.0 0.8476 7.9 

Number of observations 527 527 
Log likelihood (0) -2267.48 - 2267.48 
Final log likelihood -1472.33 -1483.52 
p2 0.351 0.346 
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although not significantly. These parameters make the choice 
of the main mode sensitive to changes in times and costs for 
access and egress modes. An alternative model, with the only 
difference that access and egress are represented by the dis
tance, is also shown in Table 2. The alternative model has a 
p2 of 0.352 compared with a p2 of 0.346 for the base model, 
indicating that the probability that the alternative model is 
superior is low [in this case < 0.0001, using a modified like
lihood ratio index test (7)]. The alternative model, however, 
has the advantage not to require information on access and 
egress modes, which can be unnecessarily demanding when 
access and egress modeling is not required. 

The destination variables consist of a size variable and some 
dummy variables. The size variable parameter is constrained 
to 1. Thus, the probability to choose a destination is propor
tional to its size (other things being equal). The logsum pa
rameter from the main-mode choice level to the destination 
choice level is significantly different from 0, but not from 1. 

Choice of Frequency 

The frequency model concerns the frequency of trips longer 
than 100 km (single distance). It includes a variable for the 
expected utility from such trips, measured as the logsum from 
the levels below (i.e., the destination, main mode, and access 
and egress levels). Zero frequency does not necessarily in
dicate nonmobility; it may well be the case that a number of 
shorter trips has taken place. Therefore, the model also in
cludes a measure of the attractivity of such trips, namely the 
logsum of destination zones within 100 km. However, this 
logsum measure is based on a destination choice model, con
taining only a distance parameter and size variables. 

Both of these logsum variables get significant parameters, 
which means that accessibility influences trip frequency. How
ever, this does not necessarily prove a causality, because it 
may also be the case that workplaces of employees with high 
trip frequency locate where accessibility is high. The effect 
of, for instance, reduced travel costs on trip frequency may 
therefore be less than is predicted by the model. 

The frequency model also includes the socioeconomic vari
ables and dummy variables for type of origin zone. The es
timated model parameters are presented in Table 3. 

MODELS FOR PRIVATE TRIPS 

Access and Egress Mode Choice 

For the choice of access modes to the station or the airport, 
the same four modes were defined as for business trips. Ob
viously, the possibility of being met at the station or airport 
by someone having a car depends on the trip purpose. There
fore, a dummy variable was introduced for the car alternative 
for the trip purpose "visit friends or relatives." Separate models 
for access and egress trips were estimated. The parameters 
and the associated t-values of these models for private trips 
are presented in Table 4. 

For private trips, the access and egress models include some 
mode-specific dummy variables for origin and destination, 
respectively. These account to some extent for lack of infor-
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TABLE 3 Parameter Estimates and I-Values for Frequency 
Model-Business Trips > 100 km 

Variable Parameter 

Constant - travel > I 00 km -6.069 

Logsum > 100 km - travel > 100 km 0.6613 
Logsum < 100 km - no travel > I 00 km 0.4585 

Woman - no travel> 100 km 1.116 
Full time salaried employee - travel > 100 km 0.9393 
Age 24-45 - travel >I 00 km 0.5822 

Origin Stockholm - travel> 100 km 0.7739 
Origin Gothenburg - travel> 100 km 0.3828 
Origin medium size towns - travel> 100 km -0.4807 
Origin in small towns - travel> 100 km -0.7486 
Origin in villages - travel > 100 km -0 .1116 

Number of observations 
Log likelihood(O) 
Final log likelihood 
p2 

1595 
-1105.56 

-329.36 
0.702 

t..qlue 

H 

4.7 
3.6 

4..4 
4.0 
2.6 

l.6 
0_7 
L4 
2.0 
0.4 

mation on distances, times, costs, and frequencies for the 
within destination zone part of the access~and egress trips. 

In both models, waiting time (half headway) and the time 
parameters differ significantly from 0, the magnitude of the 
parameters being slightly larger in the egress model. In both 
models, the waiting time parameter is less than the time pa
rameter (which is equal for all modes). This is contrary to 
conventional wisdom concerning local trips, and may be be
cause airport and train station services are often adjusted to 
departure times when frequencies are low. 

The cost variable does not quite reach normal significance 
levels in the access model and is omitted in the egress model. 
The low-cost sensitivity may be due to other factors, such as 
time restrictions, the need to carry luggage, and, especially 
at the destination, lack of information on the local public 
transport system. It may, of course, also be due to the general 
coarseness of the model. 

Mode and Destination Choice 

As was the case for business trips, there were difficulties in 
estimating time parameters. Here it appeared obvious that 
attractive destinations (which are often small places) covaried 
with poor public transport service. Because the variables in 
the model can be expected to explain attractivity only to some 
extent, such a covariation can be expected to bias mode
related parameters. Therefore, these parameters were first 
estimated in a mode choice model and then included ih the 
simultaneously estimated mode and destination choice model 
adjusted by a scale parameter. In this case, this parameter is 
also not significantly different from 1. The parameters for the 
time and cost variables indicate that in-vehicle time for the 
train is much less onerous than in-vehicle time for other modes, 
including railcar. The parameters of the model are shown in 
Table 5 (Model 1). 

Also in this case there has been a segmentation of the cost 
parameter related to household income. The observations 
have been classified into two groups, with an income of 120,000 
Swedish crowns (SEK) (1985 prices) as a divider. The cost 
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TABLE 4 Parameter Estimates and I-Values for Access and Egress 
Mode Choice Models-Private Trips 

Access Ea-ess 
Variable Parameter t-value Pr.uneter t-value 

Constant - walk -0.9478 3.6 -0.2758 1.0 
Constant - car -0.8457 3.1 -0.2802 I.I 
Constant - taxi -1.502 6.0 -1.386 4.9 
Origin in Stockholm - public transport 1.052 3.3 
Origin in rural areas - public transport -0.9976 2.0 
Destination in Stockholm - public transport - 1.420 4.5 
Destination in Stockholm - taxi 1.090 2.5 
Destination in Gothenburg - public transport - 1.102 2.8 

Trip purpose to visit friends/relatives - car 1.126 4.6 
Car in household - car 1.468 5.6 
Waiting time - public transport -0.001051 3.1 -0.001454 2.8 
Cost -0.003371 1.8 
Time -0.002412 3.0 -0.002924 3.0 

Number of obseivations 385 342 
Log likelihood(O) -525.95 -470.08 
Final log likelihood -357.73 -344.86 
p2 0.312 0.266 

sensitivity of the high-income group is only half the sensitivity 
of the low-income group. 

The access and egress logsum variable is also included in 
the model. As for the business models, an alternative model 
using access and egress distance has been tested (Model 2 in 
Table 5). The differences between the models are small, also 
in terms of log likelihood. The model with the logsum variable 
is therefore not superior in terms of goodness of fit, but it 
provides the opportunity to calculate the effects of changes 
in times and costs of access and egress modes on main mode 
choice. 

The destination variables include one multiple-size variable 
(total population and number of employees in the recreation 
sector) and a population density variable. Clearly, these vari
ables cannot fully differentiate between different destinations 
for the mix of private-trip purposes. Some additional dummy 
variables indicate that trip purpose and time of year play a 
role for destination choice as well as mode choice. 

The logsum parameter from main mode choice to desti
nation choice also is not significantly different from 1 in this 
case. 

Frequency Choice 

The frequency model for private trips is similar to the one 
for business trips. As for business trips, the accessibility vari
ables for trips outside and inside the 100-km border get sig
nificant parameter estimates (Table 6), although these esti
mates are lower than those for business trips. 

The model also includes socioeconomic variables at the 
individual as well as the household level. At the individual 
level, the model includes the age of the interviewed person. 
The traveling party may, of course, include persons of dif
ferent ages as well. At the household level, household income, 
summer house ownership, and the number of children are 
included. 

VALVES OF TIME 

Values of time are implicit in the models and take the form 
of estimated cost- and time-parameter values. For business 
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trips, the values range from 40 SEK (approximately $6 U.S.) 
per hour (access trip) to 200 SEK (approximately $30 U.S.) 
for car and air trips for full-time, salaried employees (1985 
prices). For private trips, there is a similar range, although 
the mean values are lower than those for business trips. For 
example, the value of in-vehicle time for private trips by train 
is about 60 percent of the value for business trips (60 SEK 
and 100 SEK, respectively). 

The values of time implicit in the reported models are much 
higher than similar values found in urban studies, which nor
mally range from 15 to 25 SEK for in-vehicle time. For the 
train, this is supported to some extent by stated preference 
studies, but it should be kept in mind that the cost variables 
are associated with considerable uncertainty. Therefore, the 
values of time should not be used in economic project eval
uations until confirmed by other studies. 

MODE CHOICE MODEL SPECIFICATION TESTS 

Sweden is approximately 2,000 km from the south to the 
north, thus allowing a wide range of possible travel distances. 
Because longer distances will be associated with extra over
night stays for ground modes, this is a source of specific mod
eling difficulties. As described earlier, this has been, to a 
certain extent, accounted for in the model, but it can still be 
argued that the variance in the stochastic component in the 
utility functions is larger for longer trips (other factors may 
also contribute to this, such as more binding time constraints 
for ground modes on longer trips). This would violate the 
assumptions of the multinominal logit model, which requires 
the variance to be constant for all alternatives. 

Therefore, a test was conducted to investigate whether there 
are significant differences in the variance for mode choice 
alternatives according to trip length. One way to test such a 
phenomenon would be to estimate relative scale factors for 
the utility functions for alternatives belonging to different trip
length categories and determine if they differ significantly. 
This is equivalent to estimating separate models for different 
categories, with the restriction that the parameters be the 
same up to a single-scaling factor. If this factor is less than 1 
for a specific (distance) category, it suggests that the variance 
for the stochastic part of the utility function is larger for this 
group, because the scale parameter of the logit model is in
versely proportional to the square root of the variance [see, 
for example, work by Ben-Akiva and Lerman (J)]. Such a 
test can easily be conducted using software that can simul
taneously estimate a tree logit model (ALOGIT was used in 
this case). 

The test was conducted as follows. The sample for the mode 
choice models used as input in the joint mode and destination 
choice model described above was subdivided into four groups 
according to distance. Then the same specification of this 
model was estimated using the full sample, but allowing for 
a separate scale factor (affecting all parameters in the utility 
function) for each of the subgroups except one (the reference 
group). The category for trips from 100 to 300 km was used 
as reference group. Each of the other groups thus had a spe
cific scale parameter that could be tested statistically to see 
whether it differed from 1. The scale parameters and their 
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TABLE 5 Parameter Estimates and t-Values for Mode and Destination 
Choice Model-Private Trips 

Model 1 Model 2 
Variable parameter t-value parameter t-value 

Constant - train -1.044 3.2 0.1915 1.2 
Constant - air -2.434 9.0 -0.9014 3.6 
Constant - bus -1.011 4.9 -1.085 5.3 

Invehicle time car/bus/jetplane -0.002676 (12.3) -0.002676 (12.3) 
Invehicle time train (normal/sleep) -0.001117 (4.3) -0.001117 (4.3) 
Invehicle time train - railcar -0.002727 (3.6) -0.002727 (3.6) 
lnvehicle time air (prop. aircraft) -0.003415 (1.8) -0.003415 (1.8) 

Cost, household income <120 000 SEK -0.001762 (7.3) -0.001762 (7.3) 
Cost, household income >120 000 SEK -0.0008363 (2.9) -0.0008363 (2.9) 

Waiting time (half headway) -0.002197 (2.0) -0.002197 (2.0) 
Number of transfers - train -0.2512 (4.5) -0.2512 (4.5) 
Number of transfers - air ~0.3729 (2.9) -0.3729 (2.9) 

Scale parameter 1.061 18.6 l.106 19.3 

Access/egress logsum 0.5324 4.7 

Access/egress distance -0.01162 4.5 

Car in household - car 2.088 12.5 1.913 11.8 
Licenses per car - car -1.804 8.9 -1.724 8.5 

Age < 18 years - car -0.9010 5.8 -0.8962 5.7 
Age > 64 years - air -1.295 3.1 1.393 3.4 
Trip purpose recreation - car 0.4961 3.5 0.6939 5.1 
Trip purpose recreation - bus 1.780 8.6 1.934 9.4 
Trip purpose summer house - car 0.9862 3.3 1.147 3.8 

Destination in Stockholm -0.5552 3.2 -0.4169 2.5 
Destination in Gothenburg -0.1770 0.9 -0.1191 0.6 
Destination in medium size towns 0.2063 1.3 0.1944 1.2 
Destination in smaller towns 0.1201 0.9 0.1135 0.8 
Destination in villages 0.1925 1.7 0.1927 1.7 

Recr. trip in June/July - villages 0.4852 3.3 0.4889. 3.3 
Visit trip in June/July - rural areas -0.5104 2.0 -0.5152 2.0 

Population density in dest. zone -0.04371 6.8 -0.04390 6.8 
Logsum from mode choice 0.8912 16.3 0.8620 16.6 

Size variables: 
Population 1. 1. 
Number of employees in 
recreation branch, for recreation 4.837 25.1 4.841 25.1 
(not exponentiated) 

Number of observations 1846 1846 
Log likelihood (0) -7492.01 -7492.01 
Fmal log likelihood -5733.41 -5733.23 
p2 0.234 0.234 

associated standard errors are shown for business trips as well 
as for private trips in Table 7. 

The meaning of these scale parameters is that the estimated 
parameter values (not shown here) are to be multiplied by 
these factors when applying the model to mode choice alter
natives in a certain distance category. This means that the 
sensitivity to variable changes will be larger when the scale 
parameter is larger than 1, and reverse (everything else being 
equal). 

As shown in Table 7, there are large differences between 
the·different subgroups in the business model, although only 
the scale parameter for the third category is significantly dif
ferent from 1. For private trips, the differences are not large, 
and none of the scale factors is significantly different from 1. 

The results suggest that it is reasonable to include the full 
range of travel distances in the mode choice model for private 
trips (with the current specification), and that the model for 
business trips needs to be improved to meet the requirements 
for the multinomial logit model. These results may have an 
interest per se, although the specification of the joint mode 
and destination choice model (or the other models) was not 
analyzed in this particular way. 

Further complexity of the model structure was also not 
tested within the reported project. The data are, however, 
still subject to research. A specification test that was con
ducted later (suggested by a referee) split mode choice into 
two levels: (a) the choice between the car and shared modes 
and (b) choice between shared modes. Although significantly 
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TABLE 6 Parameter Estimates and t-Values for 
Frequency Model-Private Trips > 100 km 

Variable Parameter t-valu: 

Constant - l+ trips -2.057 2.0 
Logsum trip > 100 km - I+ trips 0.1566 2.'.: 
Logsum trip< 100 km - no trip 0.2453 4.4 
Household income - I+ trip 0.002457 2.:: 
Origin in Stockholm - I+ trip 0.4212 1.9 
Origin in rural areas - l+ trip -0.4648 3.C: 
Age < 19 years - l+ trip 0.3538 1.8 
Age 19-24 years - l+ trip 0.5264 3.G 
Age >64years-l+trip -0.3635 2.1 
Number of persons< 12 years in household - I+ trip-0.1034 1.4 
Household owns summerhouse - I+ trip 0.5725 5.1 

Number of observations 
Log likelihood(O) 
Final log likelihood 
p2 

2700 
-3196.57 
-1182.73 

o.63u 

TABLE 7 Scale Parameter Estimates and Standard Errors for 
Distance Groups 

Tra\-el distance 
(single way) 

Up to 300 km 

301 - 600 km 

601-900 km 

901-

Business trigs 
scale parameter 

1.0 

1.382 

0.6250 

0.8692 

Private trigs 
std error scale parameter std error 

1.0 

0.258 0.8897 0.0706 

0.140 0.8985 0.0793 

0.214 0.8844 0.102 

better in terms of the likelihood ratio test, such a structure 
implied poor cost parameter estimates for business trips and 
affected the parameter estimates of the private trips model 
only marginally (the logsum parameter being 0.8). 

CONCLUSIONS 

Long-distance travel behavior is treated as individual choices 
of trip frequency, destination, main mode, and access and 
egress modes. A system of structured logit models was esti
mated for these choices. Separate models were estimated for 
business trips and private trips. The model exercise shows 
that long-distance travel behavior is sensitive to the following: 

• Socioeconomic characteristics of the individual and of the 
household, 

• Characteristics of the destination in terms of population 
and employment, 

• Characteristics of main modes, and 
• Characteristics of access and egress modes. 
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The model exercise further shows that these characteristics 
are influential at all choice levels. The relative importance of 
these characteristics is reflect in the model parameters. Spe
cifically, train in-vehicle time seems to be less onerous than 
in-vehicle time for other modes. Also, cost sensitivity seems 
to be quite different among types of employes and among 
household income groups. 

Long-distance travel behavior is, of course, more compli
cated than is reflected in the model system. Among the ne
glected behavioral phenomenon are trip chaining and the use 
of different modes on outbound and homebound trip legs. 
Also, the models were estimated using a travel study that was 
not specifically designed for such a task, yielding less accurate 
information than would have been desirable and making it 
impossible to account for time availability. 

However, modeling long-distance travel behavior by using 
discrete choice models seems to be a viable way to achieve a 
tool for evaluating infrastructure investment and other changes 
of the tra11sportation system. 
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