Connection Strength Criteria for Mechanically Stabilized Earth Walls

JAMES G. COLLIN AND RYAN R. BERG

A rational design approach for determining the connection strength for geosynthetic-reinforced, mechanically stabilized earth highway walls is presented. This procedure draws heavily on similar procedures established within guidelines for determining the long-term allowable strength of the geosynthetic reinforcement for transportation applications. Test procedures and results of a limited testing program are presented, and use of the proposed design methodology is demonstrated.

During the past decade, polymer-reinforced soil retaining walls have gained wide acceptance as an economical alternative to both conventional cast-in-place concrete retaining walls and mechanically stabilized earth (MSE) walls using metallic reinforcements. The state-of-practice methodology used to analyze polymer-reinforced soil walls has been advanced by Mitchell and Villet (1), Christopher et al. (2), and AASHTO—Associated General Contractors (AGC)—American Road and Transportation Builders Association (ARTBA) Task Force 27 (3). Procedures for both the internal and external stability analyses of reinforced soil walls and for the determination of allowable design tensile loads on geosynthetics are presented in these documents.

However, the connection between the reinforcement and the wall facing is not comprehensively addressed in these guidelines. Task Force 27 (3), which specifically addresses highway wall applications, established the following general criteria for the connection strength of MSE walls using geosynthetic reinforcements:

- Extensible reinforcement connections to the wall face should be designed to carry 100 percent of the maximum design load at all levels within the wall.
- A representative section of the connection type (e.g., segmental concrete unit and geogrid reinforcement) should be load tested in order to determine the actual allowable working load for the connection system.
- The allowable design strength of the reinforcement cannot exceed that of the measured connection strength of the facing system.
- The allowable design strength of the connection should be determined at the in-ground service temperature. If no information is provided, the assumed temperature shall be taken as 37.8°C.

Application of these general criteria to design of a wall structure is subject to interpretation by the design engineer and by the contracting agency.

Tensile strength computations (3-5) for polymer soil reinforcement elements account for creep, damage during installation, biological degradation, and chemical degradation. Intuitively, the connection of reinforcement to wall facing elements should also consider these potential effects. The effects may vary, as interaction mechanisms, placement techniques, and environment may differ between reinforcement placed in a soil and reinforcement placed in a retaining wall face unit. The Task Force 27 guidelines and AASHTO bridge manual (6) do not specifically state that the factors affecting strength should be addressed separately for the connection areas. Hence, the current state of practice for the design of highway MSE structures varies with interpretations of the designer or regulatory agency and whether the long-term performance of the connection is considered. Short-term connection tests are routinely used to predict long-term performance.

An expanded connection strength design procedure, consistent with existing design guidelines for computing allowable tensile strength, has been developed and is presented. The proposed procedure addresses the long-term performance of the connection between the geosynthetic reinforcement and wall face elements. A laboratory testing program has also been conducted to determine the long-term mechanical performance of some wall connections (durability was not within the scope of this test program). Geogrid soil reinforcement elements and concrete segmental retaining wall (SRW) facing units were specifically examined at ambient (23°C) temperatures. The results of the testing program and an example calculation with the proposed procedure are presented.

ALLOWABLE TENSILE STRENGTH COMPUTATION PROCEDURES

The Task Force 27 guidelines, which are also incorporated into the AASHTO bridge manual, established a procedure for determining the long-term allowable strength $(T_{\rm a})$ of geosynthetic soil reinforcement for MSE highway wall structures. The criteria used in that procedure, with some modifications, appear to be appropriate for the evaluation of the connection strength between the reinforcement and wall facing elements, for transportation-related projects.

One design consideration is serviceability. At the design load, how much movement might the wall experience during the life of the structure? This movement will be a function of

J. G. Collin, Tensar Earth Technologies, Inc., 5775B Glenridge Drive, Suite 450, Atlanta, Ga. 30328. R. R. Berg, 2190 Leyland Alcove, Woodbury, Minn. 55125.

the polymer reinforcement elongation (material and product structure creep) and possibly of creep associated with the soil-reinforcement interaction. After construction of a geosynthetic MSE wall, the total creep of the reinforcement should be limited so that the wall face does not move significantly (i.e., structure remains serviceable) and stays aesthetically pleasing. Thus, per Task Force 27 guidelines (without connection strength and geogrid junction strength criteria shown), the long-term allowable strength must be less than or equal to the following:

$$T_{as} = T_{w}/(\text{FD} \times \text{FC}) \tag{1}$$

where

 T_{as} = long-term geosynthetic tension based on a serviceability state criterion,

 T_w = tension level at which total strain does not exceed 5 percent within desired lifetime at design temperature,

FD = factor for chemical and biological durability, and

FC = factor for construction damage.

The Task Force 27 guidelines further establish that the longterm allowable strength of the geosynthetic must also be evaluated at the limit state and that failure by rupture of the reinforcement must be prevented. The equation for this evaluation is given as

$$T_{al} = T_l/(\text{FD} \times \text{FC} \times \text{FS}) \tag{2}$$

where

 T_{al} = long-term geosynthetic tension based on a limit state criterion,

 T_l = highest tension level at which accumulated creep strain rate continues to decrease with log-time within required design lifetime at design temperature, and

FS = factor of safety for general uncertainties.

The limit state criterion evaluates the allowable strength of the reinforcement by considering creep of the geosynthetic (i.e., from 10,000-hr creep tests on actual samples of the reinforcement and extrapolation to the design life), the effects of installation damage, and durability. Finally, the strength is reduced by a factor of safety for general uncertainties associated with material properties, design, and construction. A minimum factor of safety of 1.5 is required in the Task Force 27 guidelines and is used with full (i.e., unfactored) peak soil shear strength values.

Guidance for quantifying installation damage and durability factors have been provided by the Geosynthetic Research Institute (GRI) Standards of Practice GG4 and GT7 and Task Force 27. After determining serviceability and limit state tension values and the appropriate reduction factors, the T_a of the geosynthetic reinforcement is established as the minimum of T_{as} or T_{al} , per Equations 1 and 2, respectively. T_a , however, must also consider, and may be limited by, the connection strength between reinforcement and wall face.

Additionally, determination of the coefficient of interaction (C_i) between the reinforcement and soil as determined from pullout tests is limited by a serviceability requirement in the Task Force 27 guidelines. The ultimate pullout capacity of a

reinforcement may occur at displacements of 50 to 100 mm. This magnitude of movement could be unacceptable with regard to the alignment of a retaining wall face. Therefore, for embedment in soil, the maximum allowable pullout force used to determine C_i was established at a 20-mm limit on pullout. Wall movement associated with tensile loading of the reinforcement within the soil mass is limited both by the 5 percent serviceability creep strain limit and the 20-mm limit on pullout.

PROPOSED CONNECTION STRENGTH DESIGN PROCEDURE

The design of the connection between the reinforcement and wall face for a geosynthetic-reinforced MSE wall used in transportation applications should consider the same generalized criteria established by Task Force 27 for evaluating the long-term allowable strength of the soil reinforcement. Both a serviceability and a limit state analysis should be used.

Just as strain of the reinforcement and pullout of the reinforcement within the soil mass are limited in determining the T_a of the geosynthetic, the allowable deformation of the geosynthetic at the wall face connection should be limited. The movement of the wall face over the design life may be restricted by limiting the deformation at the connection. Although Task Force 27 guidelines do not specifically address the maximum elongation between reinforcement and wall face, they do limit the amount of overall elongation of the reinforcement embedded in soil during pullout to less than 20 mm. This deformation is as measured with a quick (e.g., displacement rate of 1 mm/min) pullout test. Therefore, for consistency, a 20-mm deformation, as determined with a quick connection strength test, is established in this document as the maximum allowable movement at the connection. The allowable serviceability connection strength is then determined as follows:

$$T_{cs} = T_{wconn}/(FD \times FC)$$
 (3)

where T_{cs} is the long-term allowable connection strength based on a serviceability criterion and T_{wconn} is the connection strength at 20-mm displacement at design temperature.

The results of a quick connection test between a geosynthetic reinforcement (geogrid of singular manufacture construction) and a concrete SRW unit that uses a pinned type of connection are shown in Figure 1. The ultimate connection strength, $T_{\rm ult}$, is equal to 47.5 kN/m for this test and occurs at a total deformation of 90 mm. However, for serviceability requirements (i.e., the connection strength at 20-mm displacement), $T_{\rm wconn}$ is equal to 25.4 kN/m.

The allowable connection strength, at a limited displacement, can be calculated with Equation 3. This criteria is intended as a guideline such that postconstruction movement of the wall face, if any occurs, is limited to an acceptable level.

The ultimate strength of the connection must also be evaluated. The allowable limit state connection strength is determined as follows:

$$T_{cl} = (T_{lconn} \times R_D)/(FD \times FS)$$
 (4)

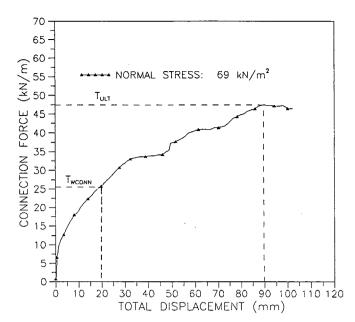


FIGURE 1 Quick connection test results for a geogrid concrete SRW unit: Geogrid B, pinned segmental concrete unit with tamped gravel.

where

 T_{cl} = long-term allowable connection strength based on a limit state criterion,

 $T_{l\text{conn}}$ = creep-limited strength of connection at design temperature, and

 R_D = reduction factor.

The creep-limited strength should be determined from creep tests of representative connections. These tests should be performed in general accordance with GRI Test Method GG5 (geogrid pullout) for a minimum test duration of 1,000 hr. This minimum time is recommended by the authors and is consistent with connection or seam strength criteria as set forth in GRI Standards of Practice GG4 and GT7. This duration appears acceptable if the rate of creep at termination of the test is approximately equal to that derived from creep testing of the geosynthetic itself. If not, the test duration should be extended. In no case should the value of the creep-limited strength of the geosynthetic.

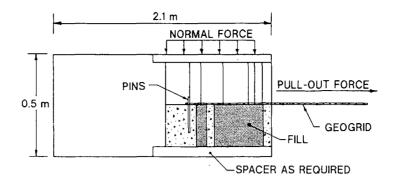
The factor for installation damage may be quantified by constructing the connection, compacting the unit fill, and applying a surcharge pressure to the units. After the desired normal pressure is applied, the reinforcement is exhumed. The ultimate strength of the reinforcement after installation is then determined and compared with the ultimate strength of the undamaged reinforcement to compute a factor for installation damage. The factor, FC, can be quantified. However, full-scale laboratory tests on representative connections directly incorporate the effect of damage into the force-displacement and force-time response curves.

The factor FD should address possible degradation of the soil reinforcement element in the connection environment (e.g., placed between SRW units and exposed to draining water, cast into concrete, etc.). Both potential chemical and

biological degradation must be addressed. Degradation of all components of a geosynthetic reinforcement element (e.g., coating and core of reinforcements of composite construction) must be considered. The effects of potential degradation on connection strength (e.g., decrease in reinforcement tensile strength, decrease in frictional interlock with face units) should be evaluated.

The reduction factor R_D at the connection should also be determined or estimated. The Task Force 27 guidelines require that the connections of geosynthetic reinforcements be designed to carry 100 percent of the maximum design load at all levels of reinforcement within the wall. A reduction factor of 1.0 meets this requirement. However, tensile load in the reinforcement at the wall face may not reach the maximum reinforcement design load and may be only some portion of the ultimate design load for any layer (2). Thus, use of an R_D value of less than 1 may be appropriate. However, unless field-instrumented walls with specific reinforcement and wall face type can substantiate using a lower factor of safety, the authors recommend $R_D = 1.0$. Finally, the strength is reduced by a factor of safety for general uncertainties. A factor of safety of 1.5 is consistent with the safety factor used with the Task Force 27 limit state criterion.

The determination of the allowable design strength (T_d) of the reinforcement is, therefore, limited by Equations 1 through 4 and equals the least of the four. The connection strength will typically be a function of normal pressure. Thus T_d will likely vary with depth below top of wall and with batter of SRW units (7). At any given elevation, T_d is equal to the lowest of Equations 1 through 4:


$$T_d \le T_{as} = T_w/(\text{FD} \times \text{FC})$$

 $T_d \le T_{al} = T_l/(\text{FD} \times \text{FC} \times \text{FS})$
 $T_d \le T_{cs} = T_{w\text{conn}}/(\text{FD} \times \text{FC})$
 $T_d \le T_{cl} = (T_{l\text{conn}} \times R_D)/(\text{FD} \times \text{FC} \times \text{FS})$

TEST PROGRAM

A laboratory testing program was developed to evaluate the connection strength factors T_{wconn} , T_{lconn} , and FC of a geosynthetic reinforcement to an SRW unit. The testing program specifically evaluated geogrids with a single pinned-type SRW unit. The first phase of the connection strength test program was to evaluate the connection strength at 20-mm deformation and the ultimate connection strength with quick tests. The second phase of the program involved the quantification of the factor of safety for installation damage, FC. The final phase involved the determination of the creep-limited strength of the connection.

The connection strength tests for Phases 1 and 3 of the program were performed in general accordance with the GRI Test Method GG5, with modifications to the procedures for use with the SRW units. The connection strength tests were conducted in a pullout test box that is 0.9 m wide, 2.1 m long, and 0.5 m deep.

The configuration for each connection strength test is presented conceptually in Figure 2. The reinforcement was placed

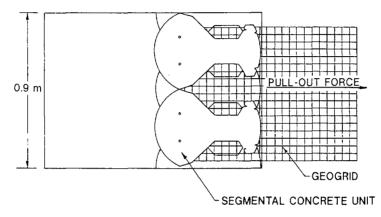


FIGURE 2 Schematic connection test configuration: *top*, side view; *bottom*, top view (not to scale).

between two layers of SRW units. The geogrid reinforcement was placed over the connecting pins and pulled taut to the pins before the second row of SRW units was placed, and the SRW units were stacked in a running bond configuration. The voids in and around the units were filled with crushed stone (No. 57 stone), which met the "select backfill" requirements outlined by Task Force 27.

The specific details regarding the connection strength testing for each phase of the test program are summarized in the following:

- Text box dimensions were 0.9 m by 2.1 m.
- Text box height was 0.25 m above and below the pullout specimen, for a total height of 0.5 m.
- Normal stress was applied using an air bladder to the SRW/gravel/geogrid system in the box.
- Soil was compacted into all block apertures and areas surrounding blocks by hand tamping to approximately 90 percent relative density under dry conditions.
- For each pullout test, fresh epoxy-encapsulated geogrid samples were secured to a clamping device. This ensured consistent load distribution over the width of the test specimen during pullout tests.
- Displacement of the reinforcement was measured from the back of the SRW units.
 - Typical reinforcement widths for the tests were 0.8 m.

For Phase 1, all tests were run until a constant or decreasing pullout load was recorded. Hydraulic ram displacement rate was 1 mm/min, as measured on the specimen clamp.

For Phase 2, SRW unit-to-geogrid connections were constructed within the pullout box, and a normal pressure was applied. Geogrid samples were exhumed, and wide-width tensile tests were run to quantify FC.

For Phase 3, for all geogrids evaluated the in-isolation creeplimited strength of the geogrid (i.e., T_1 of Equation 2) was selected as the long-term (1,000-hr) constant load. Depending on the geogrid tested, this load represented between 60 and 80 percent of the ultimate connection strength based on the Phase 1 tests.

A series of connection strength tests using the procedures just outlined was performed on several geogrids (Table 1). The various confining pressures used in testing are given in Table 2. A single test for a particular geogrid was performed at the noted confined pressure.

TEST RESULTS

The connection force at 20-mm horizontal displacement and the peak value of connection force for the 13 pullout tests conducted under Phase 1 of the program are presented in Table 2. A typical plot of applied connection force versus horizontal displacement for a quick test is shown in Figure 1.

The results of Phase 2 of the test program, quantification of the factor for construction installation damage, are 1.08 for Geogrid A, 1.02 for Geogrid B, and 1.01 for Geogrid C. Typical results of wide-width testing for are shown in Figure 3. The tensile force-versus-strain curves comparing undamaged and damaged geogrids (Figure 3) are in agreement with

TABLE 1 Properties of Geogrids Tested (9,10)

Property	Geogrid "A"	Geogrid "B"	Geogrid "C"	Geogrid "D"
Manufacture	Singular	Singular	Singular	Singular
Polymer Composition	Polyethylene	Polyethylene	Polyethylene	Polyethylene
Junction Method	Planar	Planar	Planar	Planar
Aperture Size, mm Longitudinal Transverse	145 17	145 17	145 17	145 17
Thickness, mm at rib at junction	0.8 2.8	1.3 4.3	1.8 5.8	1.3 4.1
Wide Width Strip Tensile, (ASTM D4595), kN/m 2% strain ultimate	14.6 24.8 54.0	29.2 52.4 86.0	38.0 60.0 116.8	5.4 10.2 17.5

TABLE 2 Summary of Connection Strength Test Results for Phase 1 of Testing Program (11)

GEOGRID	NORMAL STRESS (kN/m ²)	CONNECTION STRENGTH @ 20 mm DISPLACEMENT (kN/m)	PEAK CONNECTION STRENGTH (kN/m)
Geogrid A	28	13.0	27.2
	48	11.5	32.7
	69	15.2	33.7
Geogrid B	28	17.5	35.4
	48	18.6	39.8
	69	25.4	47.5
	103	25.8	56.9
Geogrid C	48	26.2	50.1
	69	29.7	53.4
	103	27.7	56.9
Geogrid D	14	17.3	21.9
	28	18.3	21.2
	42	17.8	21.2

the findings of other researchers (8), that construction damage does not affect measured strains at loads below failure.

The results from the Phase 3 portion of the test program for Geogrid B are presented graphically in Figure 4 (total displacement versus log-time plot). The total displacement even under long-term sustained loading conditions is below the 20-mm serviceability requirement established from the quick tests. A plot of average (of three points within the embedded area) strain of the geogrid at the connection versus log-time is also shown in Figure 4. This response is consistent with in-isolation creep test response of the geogrid. The creep-limited strengths of the connections based on the results of the Phase 3 test program are 20.4, 33.6, and 43.8 kN/m for Geogrids A, B, and C, respectively.

The results presented in Table 2 and the preceding paragraphs can now be used to determine the connection strength for the particular materials tested. For example, the connection strength for Geogrid B at a confining pressure of 69 kN/m² is determined as follows:

Serviceability:

$$T_{cs} = T_{wconn}/(FD \times FC) = 25.4/(1.1 \times 1) = 23 \text{ kN/m}$$

Limit State:

$$T_{cl} = (T_{lconn} \times R_D)/(FD \times FC \times FS)$$

= $(33.6 \times 1)/(1.1 \times 1 \times 1.5) = 20 \text{ kN/m}$

Note that the minimum value of FD allowed by Task Force 27 (i.e., FD=1.1) was used in this example, as the determination of FD is beyond the scope of this study. Values of FC equal to 1 were used in the computations, because full-scale laboratory test results directly include the effects of construction damage. The allowable connection strength is the lower of these and, therefore, is equal to 20 kN/m. This value can then be compared with the long-term allowable geogrid strength and the lower value used for design purposes.

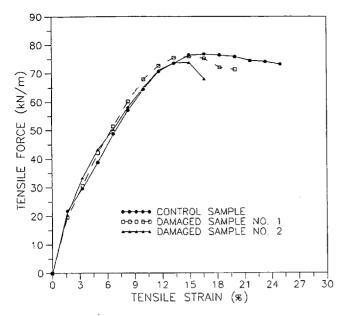


FIGURE 3 Wide-width test results for Geogrid B.

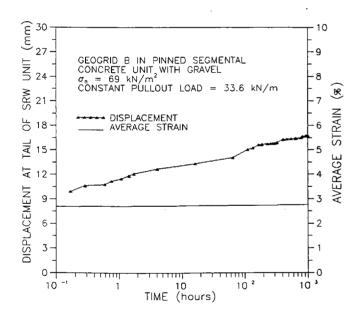


FIGURE 4 Long-term connection test: displacement versus time and average strain rate versus time.

CONCLUSIONS

The required, or design, connection strength between the geosynthetic reinforcement and wall face elements in transportation MSE walls is not clearly defined in existing guidelines. Traditionally, connections have been designed using quick testing and safety factors per the designer's judgment or agency guidelines. Displacements and deformations of the wall face over time have been assumed to be acceptable. This paper presents a design rationale that accounts for both serviceability and limit state criteria for use in designing geosynthetic-reinforced MSE walls. This proposed design method is intended specifically for use in transportation projects, as it is based on and is consistent with existing transportation guidelines (1-3,5,6).

REFERENCES

- Mitchell, J. K., and W. C. B. Villet. NCHRP Report 290: Reinforcement of Earth Slopes and Embankments. TRB, National Research Council, Washington, D.C., 1987.
- Christopher, B. R., S. A. Gill, J. P. Giroud, I. Juran, J. K. Mitchell, F. Schlosser, and J. Dunnicliff. Design and Construction Guidelines for Reinforced Soil Structures, Vol. 1. Report FHWA-RD-89-043. FHWA, U.S. Department of Transportation, 1989.
- 3. Design Guidelines for Use of Extensible Reinforcements (Geosynthetics) for Mechanically Stabilized Earth Walls in Permanent Applications. Task Force 27, AASHTO-AGC-ARTBA Committee on Materials, AASHTO, Washington, D.C., 1990.
- Bonaparte, R., and R. R. Berg. Long-Term Allowable Tension for Geosynthetic Reinforcement. *Proc.*, Geosynthetics '87 Conference, Vol. 1, New Orleans, La., Feb. 1987.
- 5. Berg, R. R. Guidelines for Design, Specification, and Contracting of Geosynthetic Mechanically Stabilized Earth Slopes on Firm Foundations. FHWA, U.S. Department of Transportation, 1992.
- 6. Standard Specifications for Highway Bridges, 14th ed. with Interim Specifications. AASHTO, Washington, D.C., 1991.
- Simac, M. R., R. J. Bathurst, R. R. Berg, and S. Lothspeich. Design Manual for Segmental Retaining Walls (Modular Concrete Block Retaining Wall Systems). National Concrete Masonry Association, Herndon, Va., 1993.
- 8. Allen, T. M. Determination of Long-Term Tensile Strength of Geosynthetics: A State-of-the-Art Review. *Proc.*, Geosynthetics '91 Conference, Vol. 1, Atlanta, Ga., Feb. 1991.
- 9. 1993 Specifier's Guide. *Geotechnical Fabrics Report*, Vol. 8, No. 7, Dec. 1990.
- 10. 1992 Specifier's Guide. Geotechnical Fabrics Report, Vol. 9, No. 9, Dec. 1991.
- 11. Chewning, R. J., and J. G. Collin. Evaluation of Geogrid to Wall Facing Connections for Modular Block Earth Retaining Wall Systems. Design and Construction with Geosynthetics: Proc., 12th Ohio River Valley Soil Seminar, Lexington, Ky., 1991.

Publication of this paper sponsored by Committee on Geosynthetics.