
































































































































































































































































































































































































FIGURE 7 Microstructural features of an asphalt-rich area in 
the unmodified AC-5 mixture (0 percent Kraton). 

FIGURE 8 Microstructural features of an asphalt-rich area in 
the 6 percent Kraton modified AC-5 mixture. 

FIGURE 9 Microstructural features of an asphalt-rich area in 
the 10 percent Kraton modified AC-5 mixture. 

FIGURE 10 Microstructural features of an asphalt-rich area 
in the 15 percent Kraton modified AC-5 mixture. 

FIGURE 11 Morphology of fine aggregate particles in the 
unmodified AC-5 mixture (0 percent Kraton). 

FIGURE 12 Morphology of fine aggregate particles in the 10 
percent Kraton modified AC-5 mixture. 
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FIGURE 13 Morphology of fine aggregate particles in the 15 
percent Kraton modified AC-5 mixture. 

increase in the amount of binder adhered to the surface of 
these particles. This attests to the enhancement of the ad­
hesive properties of the binder with the increase in the per­
centage of the Kraton modifier. 

The interpretation of the SEM results appears to be in 
complete agreement with the results from both the flexural 
static and flexural fatigue investigations. As the percentage 
of the Kraton modifier increases, the ultimate strength and 
the flexural modulus increase. Also, the fracture toughness 
evaluated using the MCL model has increased, as indicated 
by higher -y' and lower W. 

CONCLUDING REMARKS 

Invoking the MCL model, the effect of SBS additive on the 
fatigue resistance of AC-5 asphalt concrete mixture has been 
studied. It was found that the specific energy of damage -y' 
increased with the increase in the Kraton percentage within 
the range tested (from 0 to 15 percent). The dissipation coef­
ficient ·w decreased with the increase in Kraton percentage. 
It was also found that both the ultimate flexural strength and 
modulus increased with the increase in Kraton percentage. 
The increase in the ultimate strength and fracture toughness 
is attributed to the contribution of the polystyrene hard 
endblocks and the soft butadiene rubbery midblocks, 
respectively. 

The Kraton asphalt cement did not yield an optimum ad­
ditive content up to 15 percent of the asphalt binder by weight. 
It may be that an increase in the SBS percentage will cause 
a decrease in the fracture toughness as the polystyrene hard 
endblocks become dominant, making the mixture more brit­
tle. This point should be investigated further. 

SEM analysis of the fracture surface revealed ridge for­
mation in binder-rich areas that increased in size and intensity 
as the Kraton percentage increased. Better adhesion between 
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the binder and the aggregate as well as better cohesion within 
the binder results in microstretching of the binder, producing 
these ridges on the fracture surface. It is believed that this is 
the mechanism by which the Kraton-modified AC-5 asphalt 
concrete mixtures acquire their toughness. 
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