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Hybrid Genetic Algorithm To Optimize 
Signal Phasing and Timing 

MOHAMMED A. HADI AND CHARLES E. w ALLACE 

Signal timing optimization involves the selection of four basic 
design elements: phase sequence, cycle length, green split, and 
offset. None of the available signal timing models is considered 
adequate to optimize all four design elements, particularly in two­
dimensional networks. Among the currcm m dels, TRANSYT-
7F i most effeclive for timing but it docs 1101 optimize phasing. 
Researchers have considered several methods for enhancing 
T.RANSYT-7F to include phasing optimizati.on but thus far no 
method has proven practical. An exhaustive carch of possible 
phasing combinations is computationally prohibitive· thus a new 
approach is needed. Genetic algorithms (GAs} are heuri tic pro­
bali tic arch procedures that have been applied to a wide range 
of engineering problems. The use i. investigated of a GA in 
combination with the TRANSYT-7F optimization routine to se­
lect all signal timing design elements. The main purpose of the 
GA in the proposed scheme is to opt imize pha e sequence . Two 
implementation of the GA model are presented. ln the first the 
GA and TRANSYT-7F optimization routines are executed con­
currently to achieve an optimal solution. In the second, the GA 
is allowed to optimize cycle length, phase sequences, and 9ffscts. 
Then 1 RANSYT-7F i used to adjust the re ·ultant signal timing. 
'fbe resuhs suggest rhat both implementation have potential for 
optimizing signal pha ing and timing. However the first method 
produces more consistent results. It also requires longer execution 
time. 

Several computer models have been developed for off-line 
optimization of signal timing. Each of these models has its 
own area of application and its own particular strengths and 
weaknesses. For coordinated systems, the optimization models 
currently used include PASSER II (1,2), MAXBAND (3), 
and TRANS YT-7F ( 4). None of these models is all inclusive, 
and a combination of them is often used to achieve a desired 
design policy (5-9). 

PASSER II and MAXBAND select a signal timing plan by 
maximizing bandwidth efficiency (the ratio of total bandwidth 
to the cycle length) and have been used primarily for arterial 
streets. Although MAXBAND has been extended for appli­
cation to multiple-arterial networks (10), this version is not 
widely used, primarily because of excessive computer time 
and its current limitation to mainframe computers. 

Both MAXBAND and PASSER II can optimize cycle length, 
phase sequences, and offsets. The main advantage of these 
programs is their ability to optimize phase sequences. One 
important disadvantage is that maximizing bandwidth does 
not necessarily result in optimal system performance in terms 
of stops, delay, and fuel consumption. This is because the 
maximal bandwidth design strategy does not explicitly rec­
ognize traffic demand as a function of time on individual links. 
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In addition, these programs do not optimize green splits, al­
though they do calculate splits based on manipulating the 
degrees of saturation. 

TRANSYT-7F has been used for arterial streets as well as 
two-dimensional networks. Traditionally, TRANSYT-7F op­
timizes cycle length, splits, and offsets by minimizing a di­
sutility index (DI), which is a function of delay, stops, fuel 
consumption, and, optionally, queue spillover. In the latest 
release of the program, a progression-based optimization model 
that uses the progression opportunities (PROS) concept has 
been implemented, overcoming an earlier shortcoming -of the 
model (I 1,12). This concept expands upon the maximal band­
width approach by considering short-term progression op­
portunities within the system. 

In spite of this major enhancement, the most significant 
deficiency in TRANSYT-7F remains-its inability to opti­
mize phase sequences. Phasing is an input to the model and 
cannot be changed in a given run. To examine alternative 
sequences, they have to be explicitly coded in multiple runs. 
Cohen (9) noted that adding a phase sequence optimization 
capability to TRANSYT-7F would involve combining a linear 
gradient search technique with a combinatorial problem. He 
recognized that this appears to be computationally infeasible 
since there are 4n possible phase sequence combinations at n 
intersections, assuming four possible phase sequences, namely, 
leading left, lagging left, leading in one direction and lagging 
in the other, and vice versa. 

To deal with this problem, other computer programs such 
as PAS SER II and MAXBAND have been used as a "prepro­
cessor" to determine the phase sequence before TRANSYT-
7F is run to optimize signal timing. It has been shown that 
this method has the potential for improving the signal timing 
plan produced by TRANSYT-7F (8,9). This strategy has been 
particularly successful for designing arterial signal timing. 

For this purpose, model integration programs like the 
Arterial Analysis Package (AAP) have been used to run 
PASSER II and TRANSYT-7F from a common data base, 
thus reducing the effort required to implement this strategy 
(13) . PASSER II can be run from the AAP, which can import 
the phasing and timing; then these can be automatically mapped 
as the initial timing for a TRANSYT-7F optimization run. 
Thi:s also has the advantage of providing TRANSYT-7F with 
a better "starting point,'' which has also been shown to lead 
to potentially better solutions (5 ,6), although with the new 
PROS options this factor is less important (JI). 

For networks, the development of integration models 
similar to the AAP has been delayed because of the unavail­
ability of a phase sequence optimization program that can 
deal with networks and run efficiently on microcomputers. 
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(Note that FHW A will be developing such a package in the 
near future.) 

The dilemma facing software developers is how to over­
come these functional gaps, particularly for networks: 

• Merging the functions of PASSER II or its network 
counterpart, PASSER IV, which is under development [re­
ported functionally by Chaudhary et al. elsewhere (14)], with 
TRANSYT-7F. This does not seem to be practical for both 
functional and programmatic reasons, not to mention the 
problem of software "ownership." 

• Improving upon the integrated application of a bandwidth 
model (PASSER IV or MAXBAND) and TRANSYT-7F to 
be more automatic. This is certainly feasible, but it will still 
require user intervention. 

• Putting phase sequence optimization explicitly into 
TRANSYT-7F. This is technically possible, but the massive 
restructuring of the model makes the chances for a timely and 
successful undertaking unlikely. 

•Applying a new approach to using TRANSYT-7F in an 
iterative fashion to optimize phasing by trial and error. As 
mentioned earlier, the possible combinations seem to make 
this approach prohibitive unless a more effective method than 
exhaustive search can be found . 

The last possibility is the aim of this paper. A new approach 
is applied to an iterative, heuristic algorithm for phase se­
quence optimization using TRANSYT-7F. 

BACKGROUND OF PROPOSED METHOD 

Heuristic search strategies called genetic algorithms (GAs) 
are finding increasing application in a variety of problems in 
science, engineering, business, and the social sciences (15). 
The GA strategies are based on the mechanics of natural 
selection and natural genetics. A number of analytical and 
empirical studies have demonstrated their capability in func­
tion optimization and artificial intelligence applications. 

The number of solutions evaluated using GAs to locate a 
satisfactory solution to a given problem is small in comparison 
with the size of the search space. Nevertheless, the compu­
tational requirements for GAs can be severe. A hybrid scheme 
that switches from the genetic search to a conventional non­
linear programming approach has been suggested in the lit­
erature to deal with this problem (15) . 

Foy et al. (16) investigated the implementation of a GA to 
produce optimal, or near optimal, signal timing. In that study, 
the GA was used to optimize cycle length, splits, and course 
offsets (actually simply flipping the two phases with no explicit 
offsets) for two-phase operations for a four-intersection net­
work. In the optimization process, a simple microscopic sim­
ulation model was used to evaluate alternative solutions based 
on minimizing delay. 

The results of Foy et al. show an improvement in the system 
performance when this GA strategy is used and suggest that 
GAs have potential in optimizing signal timing. The results 
obtained, however, were not compared with those that could 
be achieved using existing optimization models. In addition, 
the GA model was applied to a very simple system with two­
phase operation and no explicit offsets between intersections. 
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More typical real-world applications of the GA model are 
needed to prove its effectiveness. 

In this study, a GA was used in conjunction with the TRAN­
SYT-7F hill-climbing routine to optimize all four signal timing 
parameters (offset, split , cycle length, and phase sequence). 
This hybrid scheme works with arteries as well as two­
dimensional networks and can optimize timing based on sys­
tem performance (TRANSYT-7F DI), PROS, bandwidth, or 
a combination of these. 

TRANSYT-7F MODELS 

TRANSYT-7F is one of the most powerful computer pro­
grams for traffic signal timing and traffic flow analysis. Tra­
ditionally, TRANSYT has consisted of two main parts: a traffic 
flow model and an optimization model. 

The traffic flow model in TRANSYT-7F is a deterministic, 
macroscopic, time-scan simulation. It simulates traffic flow in 
a street network of signalized intersections to compute a DI 
for a given signal timing and phasing plan. This DI is a function 
of stops, delay, fuel consumption, and, optionally, queue 
spillover. 

The TRANSYT-7F optimization procedure is based on an 
iterative, gradient search technique known as hill-climbing. 
It makes changes to the signal timing to determine whether 
a performance index (PI) has improved. By adopting only 
those changes that improve the PI, the optimizer tries to find 
a set of timing that optimizes the Pl subject to any constraints. 

In the latest release of the program (4), an improvement 
was added that allows it to calculate the PROS value for 
multiarterial networks . PROS is a measure of progression that 
considers not only through bands but also short-term pro­
gression opportunities within the system (11,12,17). 

In the past, the PI used in the optimization routine of 
TRANSYT-7F was always the DI calculated by the traffic 
flow model. However, the latest release of the program has 
the ability to optimize signal timing on the basis of PROS 
only, PROS and DI, PROS or DI, and DI only. It has been 
shown that the PROS-related strategies produce significant 
improvements in progression compared with DI-only opti­
mizations for single arteries as well as for multiarterial net­
works (11) . 

ELEMENTS OF GENETIC ALGORITHMS 

GAs are a family of adaptive search procedures that are loosely 
based on models of genetic changes in a population of indi­
viduals. The main advantage of GAs is their ability to use 
accumulating information about initially unknown search space 
in order to bias subsequent searches into useful subspaces. 

GAs differ from conventional nonlinear optimization tech­
niques in that they search by maintaining a population (or 
data base) of solutions from which better solutions are created 
rather than making incremental changes to a single solution 
to the problem. Thus , they are less susceptible to the local 
optimum problem experienced by traditional nonlinear pro­
gramming methods, in particular hill-climbing algorithms like 
those of TRANSYT. In addition, many optimization tech­
niques are calculus-based and depend on the restrictive re-
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quirements of continuity and function derivatives. GAs use 
only objective function information; thus, they do not need 
derivatives of the objective function and can work with noisy 
and discontinuous functions . 

GAs are iterative procedures that search by allowing a pop­
ulation (data base) of alternative solutions to reproduce and 
cross among themselves with biases allocated to the most fit 
members of the population. Possible solutions within each 
population are coded as binary strings (chromosomes). For 
example, if a solution to a certain problem takes a maximum 
value of, say, 31, it can be coded as a five-bit string (e.g., 
11011 for 27). 

A solution to a signal optimization problem consists of a 
cycle length, offsets, phase sequences, and phase splits; thus 
it requires a multiparameter solution. To code a multipara­
meter solution as a binary string, each parameter (cycle length, 
offset, etc.) is first coded as a binary variable as described 
above. Then these single parameters are concatenated to ob­
tain the required binary string. For example, if six-bit, three­
bit, and six-bit binary variables are selected to represent cycle 
length, phase sequence, and offset, respectively, the binary 
string representing the solution would be as follows (assuming 
that all bits in the soiution are zeros): 

1
000 I 

1
000 

1
000000

1 1

oooooolooooool 
nth . . . 1st mth . . . 1st y le 
sequence sequence off ·et offset length 

where m and n are the number of offsets and sequences to 
be optimized, respectively. 

A set of solutions is selected at random in the initial pop­
ulation using "successive coin flips" (heads = 1, tails = 0). 
Thereafter, during each iteration step, called a generation, 
the solutions of the current population are evaluated using 
an objective function, and on the basis of this evaluation, a 
new population of candidate solutions is formed (see Figure 
1). The objective function used in the process is model spe­
cific. For example, in signal timing optimization this could be 
fuel consumption, bandwidth, PROS, or a combination of the 
foregoing. 

The result is a new set of solutions ("offspring"), and the 
new solutions are more fit (that is, have a better objective 
function value) than the parent solutions from the previous 
generation. The GA continues to generate successive popu­
lations until some solution criterion is met. This could be 
reaching a fixed maximum number of generations or being 
unable to achieve further improvement in the objective function. 

Three basic components are required for GA implemen­
tation: 

1. A scheme to allow for a binary string (a string of O's and 
l's) representation of alternative solutions to the problem; 

2. An objective function to evaluate the fitness of each 
solution; and 

'l. nPnP.t-il"' r\nPr"='tn'T"C' th<:lt m1m1ro th.Q. h1ro.1n.rr1,..'"l 1 O'lr'll.1,~t;r..-. -- -------- ~r----~-~ --·-· ................ _ ...... _. ...,. .............. e ......... ~. -· ......... ~ .... ...... .. . 

process (these operators are used in the formation of succes­
sive populations). 

A simple GA that produces good results in many problems 
consists of three genetic operators: reproduction, crossover, 
and mutation. Further improvements to GAs have been sug-
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Select lnltlal populatlon 
(initial solutions) randomly 

Decode each solution to obtain 
the solution parameters 

Evaluate each solution fitness using 
an objective function such as fuel 

consumption, PROS, etc. 

Yes 

Use Genetic Operators to generate a 
new population of solutions from old 
solutions based on their fitnesses. 

Generation I 
with n solutions 

FIGURE 1 Diagram explaining the possible use of a GA 
in signal timing optimization. 

gested in the literature and more advanced operators and 
techniques have been implemented (15). These include dom­
inance, inversion, intrachromosomal duplication, deletion, 
translocation, segregation, niche exploitation and speciation, 
migration, marriage restriction, and sharing functions . 

A simple GA that uses the three basic operators (repro­
duction, crossover, and mutation) is employed in this study. 
The following is a brief description of the GA operators and 
techniques used. 

Reproduction 

Reproduction is the process of selecting those solutions (in-

allowed to contribute to the next generation. The procedure 
randomly selects these individuals on the basis of their ob­
jective function values (fitness). Strings with higher fitness 
have a higher probability of contributing one or more off­
spring in the next generation. Thus, the effect of reproduction 
is to bias the population to contain more-fit members . The 
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reproduction process is repeated until the number of the se­
lected strings equals the specified population size. The pop­
ulation size is an input to the model. 

Crossover 

Crossover randomly chooses two individuals from the pop­
ulation selected using the reproduction operator explained in 
the previous section. These two individuals (parents) are then 
"mated" to produce two offspring. This is done by choosing 
a random number K between 1 and the string length (L) less 
1 as a "crossover point." The first K bits of Parent 1 and the 
last L-K bits of Parent 2 are joined to form one offspring. 
Similarly, the first K bits of Parent 2 and the last L-K bits of 
Parent 1 are joined to form the other offspring. This proce­
dure is repeated until there is a new population that has the 
same number of individuals as the old population (the pop­
ulation size). 

For example, assume that the string length in a given prob­
lem is 8 and the two selected parents are 

Parent 1 = 01101011 
Parent 2 = 11010100 

If the random number selected between 1 and L-1 is 3, then 
the resulting crossover yields the following offspring, as il­
lustrated by the underlined substrings above for Child 1 and 
not underlined for Child 2: 

Child 1 
Child 2 

01110100 
11001011 

Crossover probability (CP) is a GA parameter that controls 
the frequency with which the crossover operator is applied. 
In each new population CP · N individuals undergo crossover, 
where N is the population size. If CP is too high, good so­
lutions are discarded faster than selection can produce im­
provements. If the crossover rate is too low, the search may 
stagnate (18). 

Mutation 

This operator, with a probability equal to the mutation prob­
ability (MP), randomly alters the value of a string position 
(0 to 1 and vice versa). The function of this operator is to 
prevent any given bit position from remaining forever fixed 
to q single value over the entire set of solution alternatives. 

MP is a parameter that controls the probability with which 
a given string position alters its value. Small values of MP are 
always used because a high level of mutation results in an 
essentially random search (18). 

Scaling 

At the start of a GA exercise, it is common to have a few 
solutions with much higher fitness than other solutions. This 
causes the reproduction process to produce a population with 
a high proportion of the high-fitness individuals, causing pre­
mature convergence. 
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Late in the exercise, a different problem arises. At this 
near-optimization stage, the population average fitness may 
become close to the maximum fitness, although there may 
still be significant diversity within the population. This leads 
the reproduction process to select the same number of average 
and best individuals, leading the process to a random walk. 

To deal with these two problems, scaling of the objective 
function has been suggested to keep appropriate levels of 
competition throughout the process. Three linear scaling 
mechanisms have been used. These are linear scaling, sigma 
truncation, and power law scaling (15). 

MODEL IMPLEMENTATION 

A simple GA similar to the one described in the previous 
section was used in conjunction with the TRANSYT-7F hill­
climbing procedure to optimize signal timing. In this scheme, 
the main objective of the genetic search was to identify the 
optimal phase sequences, cycle length, and (possibly) the ini­
tial offsets. TRANSYT-7F was then used normally to adjust 
cycle length within a narrow cycle length range and to optim­
ize splits and offsets. 

The objective function used by the GA in selecting the 
optimal phase sequences was the PROS value calculated by 
TRANSYT-7F release 7. Other objective functions such as 
the TRANSYT-7F DI either alone or in combination with 
PROS could be used instead; however, DI calculation re­
quires executing the TRANSYT-7F simulation model, which 
takes a much longer time than the PROS calculation. 

In this study, a separate computer program was written to 
exercise the GA and call TRANSYT-7F whenever the hill­
climbing procedure, the PROS calculation, or both were 
needed. Two different implementations of the hybrid GA 
model were tested in this study, as described below. 

Method 1: Concurrent Use of GA and TRANSYT-7F 
Hill-Climbing 

In Method 1, each alternative solution within a GA generation 
consisted of a phase subsequence for each arterial intersection 
and a cycle length. Offsets and splits for these solutions were 
calculated using the TRANSYT-7F hill-climbing procedure 
and the resulting PROS were used as the solution fitness 
values. The splits were calculated by the TRANSYT-7F in­
ternal initial timing routine based on equalizing the degrees 
of saturation on the critical conflicting links and were fixed. 

The first step in using a GA is to choose a scheme for coding 
each possible solution as a finite-length binary string. In this 
implementation, each binary string consisted of a six-digit 
binary number representing a cycle length and a series of 
three-digit binary numbers representing arterial phase sub­
sequences on all arterial intersections (defined below). An 
arterial phase subsequence is defined as the order of all phases 
serving arterial movements. If all the bits in a coded string 
were O's, this string would be as follows: 

1
000 I 

1
000 

1
0 0 0 looooool 

nth . . . 2nd 1 t Cycle 
sequence equence sequence length 
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The resultant string was of length 6 + (3 · n), where n is 
the total number of subsequences to be optimized. A fixed 
number of these strings had to be selected for each GA gen­
eration. It has been reported (15) that even for very large 
and complex search spaces, GA can rapidly locate structures 
with high fitness ratings using a generation population of 50 
to 100 alternative solutions (binary strings). The population 
size (the number of alterative solutions within each genera­
tion) used in this study was 50. 

The selection of these strings was random in the initial 
generation. In every generation thereafter, the three basic 
genetic operators (reproduction, crossover, and mutation) were 
used to create new strings based on the fitness values. As 
described above, the fitness values used in this implementa­
tion were the PROS values obtained from TRANSYT-7F 
optimization of offsets for each alternative solution within a 
GA generation. To perform these runs , a procedure was de­
veloped to decode each binary string as a cycle length and 
phase subsequences, which were then used as inputs to 
TRANSYT-7F. 

The six bits representing cycle length were first converted 
to an integer (N) between 0 and 63. This number was then 
mapped into an integer between the minimum and maximum 
cycle lengths as follows: 

Cycle = Min + N · (Max - Min)/63 (1) 
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where Min and Max are the minimum and maximum allow­
able cycle lengths, respectively. This number was then rounded 
into a multiple of 5 sec. 

The three-bit binary numbers were first converted to in­
tegers between 0 and 7. Each number was then mapped into 
a phase subsequence using Table 1. (Note that more exotic 
phasings such as split phasing were not considered in this 
study, but can be easily added.) 

After each TRANSYT-7F run , the GA reads the resultant 
PROS value from the graphic data file (GDF) produced by 
TRANSYT-7F. Before these PROS values were used by the 
GA to evaluate different alternatives, they were scaled using 
a linear scaling function . This scaling procedure was suggested 
to improve the GA performance as described above. 

In this study, each GA run was executed for a maximum 
of 50 generations. After the GA had been exercised for the 
maximum number of generations, the set of phase sequences 
that produced the highest PROS value was selected as the 
best phasing. 

Method 2: Use of GA Followed by TRANSYT-7F 
Hill-Climbing 

Method 2 differed from Method 1 in that the GA was ex­
tended to optimize offsets in addition to cycle length and 

TABLE I Look-Up Table To Transform Three-Bit Binary Numbers to Phase 
Subsequences 

Binary eh~S~ S~b~~~~n~e 
Number Integer E-W Artery N-S Artery 

000 0 ___J ·- ·1 l. I • 
,-- -· • I 
• 

001 ·- ___J I • ·1 l. --· ,-- • I . 
010 2 __J ___J ·- ·1 L.41 i I • ,-- - · - · • I • 

Oll 3 ___J ___J I • · 1 i ·1 L. -· ,-- • I . 
100 4 ____J ·- ·- ·1L.ll.l" ,-- ,--

• . 
101 5 ·- ·- ____J I • l I :1 1 -· ,-- ,-- - I . ~ 

llO 6 ____J ·- ·- ·1 i I • l L. -· ,-- • I . 
111 7 L__ ____J 

1 L. I • ·- - · • I 
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phase sequence. This means that each alternative solution 
within a GA generation consisted of a cycle length, phase 
sequences, and offsets. 

TRANSYT-7F evaluation runs were performed for each of 
these solutions to determine their fitness (PROS). The splits 
in these runs were calculated using the TRANSYT-7F initial 
timing routine. Offset optimization was performed by the GA, 
not TRANSYT-7F; thus the computational requirement of 
this method was much lower than that of Method 1. 

In this implementation, each binary string consisted of a 
six-digit number representing a cycle length , a series of three­
digit binary numbers representing phase subsequences, as in 
Method 1, and a series of six-digit numbers representing off­
sets for all arterial intersections. For example, if all the bits 
in a string were O's, this string would be as follows: 

1
000 I 

1
000 

1
000000

1 1

ooooool ooooool 
nth . . . lst mth . . . lst yclc 
sequence ·equence offset offset Iengtl1 

Each string was of length (3 · n) + (6 · m) + 6, where n and 
m are the number of subsequences and offsets to be opti­
mized, respectively. 

The cycle length and phase sequences were decoded from 
these strings as described in Method 1. To decode offsets , 
each six-bit binary number representing an offset was first 
transformed to an integer (M) between 0 and 63. Then it was 
mapped into an integer between 0 and 100 representing the 
offset as a percentage of cycle length as follows: 

Offset = M · 100/63 (2) 

This value was then converted into seconds and used together 
with cycle length and sequences as inputs to TRANSYT-7F. 

After the GA had been executed for the maximum number 
of generations, the four solutions with the highest fitness 
(PROS) values were located. The TRANSYT-7F hill-climbing 
routine was then used to adjust the offsets and cycle length 
within a small cycle-length range. The solutions from these 
runs were compared and the phase sequences that produced 
the highest PROS value were selected as the optimal phase 
sequences. In effect, this method uses the GA to locate the 
peaks and the TRANSYT-7F hill-climbing procedure to climb 
them. 

Other than the differences mentioned above, all other as­
pects of Method 2 were the same as those of Method 1. 

MODEL APPLICATIONS 

Three real-world traffic systems were used to evaluate the 
two implementations of the hybrid GA discussed in this paper . 
These systems were Cape Coral Parkway, a seven-intersection 
artery in the city of Cape Coral, Florida; Volusia Avenue, a 
12-intersection east-west artery in the city of Daytona Beach, 
Florida; and a 12-intersection grid network in the city of Day­
tona Beach, Florida. For the Daytona Beach network, the 
objective was to select the phase sequences for two inter­
secting arteries within the network. These were Ridgewood 
Avenue, a four-intersection north-south artery, and Volusia 
Avenue, a three-intersection east-west artery. 

109 

In most cases, the existing phase sequences were leading 
dual lefts without overlap. For the purpose of this study sev­
eral permitted-only left turns were changed to protected, even 
though they were not warranted, to provide multiple phasing. 

In this comparative study, the splits used were always those 
calculated by the TRANSYT-7F internal initial timing rou­
tine, and they were held constant. For all systems investigated, 
the cycle range was 100 to 120 sec. 

The population size (the number of alternative solutions 
within each generation) , maximum number of generations, 
crossover probability, and mutation probability used in these 
studies were 50, 50, 0.90, and 0.01, respectively, based on 
previous GA research. 

The resultant designs from the two GA implementations 
were compared with those obtained using TRANSYT-7F op­
timizations with both the "existing" phase sequences and the 
phase sequences selected by PASSER 11-90. In all cases, the 
objective function used in the optimization was the PROS 
value calculated by TRANSYT-7F. The comparison was based 
on perceived progression as measured by the PROS and band­
width efficiency. 

Figure 2 shows the variation of the population maximum 
fitness and the population average fitness over the generations 
of evolution when Method 1 was used. For all three systems 
investigated, this method was able to locate good solutions 
after only a few GA generations. The solution with the highest 
fitness could be achieved after 10 to 24 iterations (generations) 
depending on the system investigated. This means that 500 
to 1,200 TRANSYT-7F PROS-only optimization runs were 
required. This is very efficient compared with the implemen­
tation of enumerative schemes in which every possible se­
quence combination is tried . In that case, the number of pos­
sible combinations for a 12-intersection artery and eight possible 
phase sequences is (812 = 6.87 · 1010

). 

PROS-only optimization is very quick compared with tra­
ditional TRANSYT-7F DI optimization. On a 20-MHz 80386 
machine with a math coprocessor, it took less than half a 
second per intersection. For a 12-intersection artery, each 
PROS optimization took about 6 sec; thus, 1,200 optimization 
runs would require less than 2 hr. This time can possibly be 
reduced by further improvement of the GA model as dis­
cussed below and by using a quicker TRANSYT-7F optimi­
zation that uses fewer optimization steps. 

Figure 3 shows the increase in the population maximum 
PROS and the population average PROS over the GA gen­
erations when using Method 2. In this method, after the GA 
had been run for 50 generations, TRANSYT-7F was used to 
adjust the resultant timing. This adjustment produced addi­
tional improvements in PROS , which can be observed by 
comparing the maximum PROS values that could be achieved 
using the GA alone (from Figure 3) with the best PROS values 
produced by Method 2, as reported in Table 2. These im­
provements were 13 percent ( 43 versus 38), 26 percent (29 
versus 23), and 9 percent (38 versus 35) for the three cases. 

Method 2 is much more efficient than Method 1. The reason 
for this is that TRANSYT-7F was used only to calculate the 
PROS for each alternative solution rather than optimizing the 
offsets. It is expected that if the PROS values were calculated 
internally without a need to call TRANSYT-7F externally, the 
time required to run 50 generations (2,500 PROS calculations) 
would be less than a minute for a 12-intersection artery . 
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FIGURE 2 Improvement in PROS when optimized using Method 1 with 0.90 
crossover probability. 

It can be observed from Figure 3, however, that after reach­
ing a certain point in the optimization, the maximum PROS 
value did not always increase from generation to generation 
with Method 2. In these cases, the PROS value did not show 
a clear trend of improvement late in the GA process. This is 
true for at least two of the three examples and suggests that 
further improvements might be needed for Method 2. 

Table 2 and Figure 4 indicate that using Method 1 or Method 
2 to select signal phasing could result in significant improve­
ments in PROS compared with using the existing phase se-
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quences. Method 1 improved PROS by 27 percent ( 42 versus 
33), 44 percent (36 versus 25), and 18 percent (39 versus 33) 
for the three cases. Method 2 produced 30 percent (43 versus 
33), 16 percent (29 versus 25), and 15 percent (38 versus 33) 
PROS improvements, respectively. 

In addition, using Method 1 or Method 2 to optimize phas­
ing produced higher bandwidth efficiency compared with ex­
isting phase sequences. For example, Method 1 increased the 
bandwidth efficiency by 209 percent (34 versus 11) and 138 
percent (31 versus 13) for Cape Coral Parkway and Volusia 

30 40 50 
Generation 

- Cape Coral Average --+-- Cape Coral Max. 

-a- Volusia Max. ----- Daytona Average 

---- Volusia Average 

__.... Daytona Max. 

FIGURE 3 Improvement in PROS when optimized using Method 2 with 0.90 
crossover probability. 
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TABLE 2 Comparison of the Results Obtained Using TRANSYT-7F To Optimize PROS 
with Different Phase Sequences 

Effective PROS (%) Ban<Width Efficiency (%) 
Crossover Sequence 

System Source Artery Probability Right" Left" Average Rjght1 Left1 Average 

Cape Coral 
Parkway 

Existing 0.90 40 26 33 21 0 11 

PASSER II 0.90 31 51 41 22 45 33 

Method 1 0.90 38 47 42 27 41 34 

Method 2 0.90 35 50 43 27 45 36 

Method 2 0.65 42 35 38 38 19 29 

Volusia Existing 0.90 24 25 25 18 7 13 
Avenue 

PASSER II 0.90 30 35 32 24 31 28 

Method 1 1 0.90 34 37 36 30 32 31 

Method 2 l 0.90 27 32 29 27 14 

Method 2 l 0.65 34 33 34 30 26 28 

Daytona Existing 1 0.90 31 37 33 15 28 21 
Beach 2 34 28 25 4 15 
Network 

PASSER II 1 0.90 45 33 37 45 26 35 
2 31 36 17 33 25 

Method I 1 0.90 42 42 39 33 38 35 
2 32 32 22 18 20 

Method 2 1 0.90 43 42 38 34 38 36 
2 38 22 36 0 18 

• Right and Left refers to the right-bound and left-bound travel on the artery . 

Avenue, respectively. For the two arteries of the Daytona 
Beach network, Method 1 increased the bandwidth by 66 
percent (35 versus 21) and 33 percent (20 versus 15), respec­
tively. 

The two GA methods were also compared with using 
PAS SER II for phase sequence optimization on individual 
arteries to determine whether they could be as effective. The 
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results are shown in Table 2 and Figure 4. Method 1 was able 
to produce better PROS values in all cases. The improvements 
achieved were 2 percent (42 versus 41), 12 percent (36 versus 
32), and 5 percent (39 versus 37) for the three systems in­
vestigated. In addition, Method 1 was able to produce good 
solutions in terms of bandwidth efficiency relative to PASSER 
II solutions, as shown in Table 2. 

Volusia Daytona 

- Existing - PASSER II ~ Method 1 li!il Method 2 

FIGURE 4 Comparison of maximum PROS achieved using 
different phase sequence sources. 
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Method 2 was able to select solutions with higher PROS 
values compared with PASSER II solutions in only two of 
the three systems investigated (Cape Coral Parkway and Day­
tona Beach network). In the Volusia Avenue example, Method 
2 could not reach as good a solution as that produced by 
PASS ER II, again suggesting that Method 2 needs to be 
improved. 

A sensitivity analysis was performed to examine the effect 
of varying crossover probability (CP) on Method 2 perfor­
mance. It was thought that a lower value of this parameter 
might improve the performance of the model by preventing 
premature convergence. Table 1 shows that reducing CP from 
0.90 to 0.65 increased PROS by 17 percent (34 percent versus 
29 percent) for Volusia Avenue; however, it also reduced 
PROS for Cape Coral Parkway by 10 percent (38 versus 42). 
This indicated that varying genetic operators and parameters 
might have important effects on the performance of the model. 

CONCLUSIONS AND RECOMMENDATIONS 

From the results of this study, it can be concluded that the 
GA method has potential for use in signal phasing and timing 
optimization. It appears that the concurrent use of the GA 
and TRANSYT-7F (that is, Method 1) can optimize the phase 
sequences for arterial streets as well as multiarterial networks . 

Using the GA followed by TRANSYT-7F as in Method 2 
can produce as good results as those produced by Method 1 
or PASSER II only in some of the cases; however, this method 
is much more efficient than Method 1 in terms of execution 
time. Several suggestions for improving the performance of 
Method 2 might include 

1. Varying various GA parameters, including crossover 
probabilty, mutation probability, population size, string length, 
and objective function scaling strategy. Lower values of cross­
over probability might produce better results. 

2. Using advanced GA operators. 

Implementation of the hybrid GA internally in the 
TRANSYT-7F program should be investigated further. This 
will give TRANSYT-7F the ability of simultaneous optimiza­
tion of all signal timing elements. Further research is needed 
to reduce the execution time of this strategy, particularly 
Method 1. Further research is also needed to improve the 
general optimization process of TRANSYT-7F, because this 
would also improve its performance with respect to phasing 
optimization. 
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