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Demand for Aircraft Gates 

MAZEN I. HASSOUNAH AND GERALD N. STEUART 

Demand for aircraft gates, which is defined as the number of 
aircraft expected to require the service provided ~t a terminal 
building at any given time during one day's. operati?n, depends 
on flights scheduled and their actual behavior relative to those 
schedules. The schedules provide a deterministic element to the 
process of generating the actual nu~ber of aircraft .at gates, and 
deviation from these schedules provides a stochastic element to 
the process. A model that incorporate.s these two e_lements has 
been developed to estimate gate reqmrements at. airport~. The 
results of applying the model to an actual operation of. aucraft 
gates have demonstrated the ability of the model to descnbe gate 
occupancy as a function of time of day with reasonable accuracy. 
The results have also shown that a common gate use strategy 
(i.e., first-come, first-served discipline) r~quire~ fewer ga~es than 
strategies under which the use of gates is restn~ted to flights of 
a particular air carrier or sector. Furthermore, it has been ?em­
onstrated, given a scheduling practice involving bank ope:ations, 
how the time interval between banks influences the reqmrement 
for gates. 

An air terminal's ability to process aircraft and passengers 
depends to a large extent on the interface between the ter­
minal building and the aircraft. This interface is carried out 
at aircraft gates. The term "gate" designates an aircraft park­
ing space adjacent to an air terminal and used for the ser­
vicing, loading, and unloading of a single aircraft. A major 
problem facing operators at many large airports is that de­
mand for gates at certain times of the day often exceeds the 
number of gates available. Previous work has shown that 
deviation of flights from their schedules tends to increase the 
number of aircraft gates required during the busy periods of 
the day (J). The objective of this research is to study demand 
for aircraft gates given an underlying flights' schedule and the 
variation in their actual behavior from this schedule. Demand 
is defined as the number of aircraft expected to require a 
connection with the terminal building at any time during the 
operation of 1 day. As part of the analysis it is possible to 
investigate the influence of different scheduling practices and 
assignment strategies on gate requirements at airports. 

Most procedures used in the past for estimating gate re­
quirements at airports have been based on either average 
performance figures or idealized stochastic models. Horonjeff 
and McKelvey (2) suggested the following deterministic for­
mula for computing the required number of gates ( G): 

G = (CT)/U (1) 

where 

C = design volume of arrivals or departures (aircraft/ hr), 
T = weighted average gate occupancy time (hr), and 
U = gate utiliZation factor. 
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The gate utilization factor represents the amount of time the 
gates are occupied in relation to the time available. This factor 
must be applied, because it is virtually impossible for all gates 
available at a terminal building to be used 100 percent of the 
time. The technique is a valid planning tool if the scheduling 
practices and aircraft servicing procedures are as_sumed to. be 
fixed. Precise schedules, however, are rarely available durmg 
the planning stages of an air terminal. In addition, flights 
usually deviate from their schedules, and airport operators 
have to alter their service practices to cope with these devia­
tions. To recognize the stochastic nature of flight arrivals and 
departures, Bandara and Wirasinghe (3) defined, for planning 
purpo~es, the number of gates as 

G = R(T + S) (2) 

-
where R, T, and S are random variables that represent arrival 
rate, gate occupancy time, and separation time, respectively. 
The separation time, S, is selected as a substitution for the 
utilization factor in Equation 1 and defined as the time be­
tween departure from a gate and the next arrival. Data from 
Vancouver International Airport showed that the probability 
distribution of G during peak periods can be approximated 
by Type I extreme value distribution. 

A queueing model that assumes the arrival of flights to be 
homogeneous Poisson and gate occupancy times to be ex­
ponentially distributed has been proposed by Rallis ( 4). The 
Poisson process assumes the number of arrivals in nonover­
lapping time intervals to be stationary. This is not the case in 
the arrival process of flights due to the influence of their 
schedules. 

Many computer programs have been developed to simulate 
the daily assignment of aircraft to gates at airports ( 5 ,6). In 
these programs a fixed schedule of flights has been used as 
an input source to a queueing system in which the service 
mechanism has been a gate assignment strategy and deviations 
from the schedule have not been allowed. To overcome this 
shortcoming, Gosling ( 7) has proposed a gate assignment 
expert system that, in addition to its ability to deal with gate 
assignment under normal situations, could be used to assign 
aircraft to gates under situations in which flight operations 
depart from a predefined plan. The system has been applied 
to a small operation of aircraft gates at Denver Stapleton 
Airport, and the ability of the system to deal with large-scale 
gate operations is yet to be investigated. 

The actual arrival and departure times of flights in relation 
to their scheduled times, and the effect of this variettion on 
the demand for aircraft gates, were first studied by Steuart, 
who developed a simple stochastic model based on time­
dependent Bernoulli trials to investigate how strategies of 
scheduling flights influence the demand for aircraft gates (J). 
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His work concentrated on bank operations where all flights 
in a bank were assumed to have the same behavior. The time 
dependent Bernoulli parameter p(t) was defined in the model 
as the probability that a gate is occupied by an aircraft at a 
given time t, and all the moments of the resulting binomial 
distribution were determined from this parameter. Empirical 
data collected at O'Hare Airport, Chicago, were used to es­
timate the parameter p(t). 

The work presented in this paper is an expansion on Steuart's 
earlier work. The relationship between occupancy of aircraft 
gates and flights' behavior is established. A stochastic model, 
based on the assumption that each flight has a unique behavior 
relative to its scheduled arrival and departure times, is then 
developed to estimate the demand for gates as a function of 
time of day. Finally, an application of the model to an actual 
operation of aircraft gates and procedures to estimate gate 
requirements under different scheduling practices and assign­
ment strategies are presented. Only operations of aircraft 
gates on regular days are considered in this study. Operations 
of gates on irregular days in which bad weather conditions or 
air traffic control failures, or both, occur were a subject of 
another study by Steuart ( 8) who showed the schedule to 
have little or no effect on the process of generating loads on 
gates on these days. 

FLIGHT BEHAVIOR AND OCCUPANCY OF 
AIRCRAFT GATES 

Gate occupancy can be described by arrival and departure 
times of each flight. As a result, the measure of occupancy 
performance is taken to be the relationship between a flight's 
actual arrival and departure times relative to the schedule. 
The difference between a flight's scheduled arrival time and 
its actual arrival time is defined as an arrival lateness. A 
negative arrival lateness implies the flight arrived before its 
scheduled arrival time. Similarly, the difference between the 
flight's scheduled departure time and its actual departure time· 
is defined as a departure lateness. Flights usually do not depart 
before their scheduled departure time, and a negative lateness 
is not expected. Figure 1 shows a scatter plot of the joint 
arrival and departure lateness of 750 flights that arrived at 
Terminal 2 of Toronto's Lester B. Pearson International Air­
port from October 16 to November 3, 1987. Points within 15 
min of arrival lateness demonstrate considerable scatter, which 
would imply that departure lateness is independent of arrival 
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FIGURE 1 Joint arrival and departure lateness. 
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lateness within this range. As the arrival lateness becomes 
larger, the points show a correlation between arrival lateness 
and departure lateness. 

Flights may experience departure lateness because of ar­
rival lateness or other factors such as mechanical or security 
problems. To distinguish between the departure lateness caused 
by arrival lateness and that caused by other factors, the de­
parture lateness of late arrivals is analyzed. Late arrivals are 
defined as those flights that arrive after their buffer times. 
The buffer time of a flight is the point of time defined by the 
end of the time interval that is the difference between the 
scheduled occupancy time of the flight and the time required 
to service the aircraft at a gate. It is measured in minutes 
after the scheduled arrival time of the flight. 

One hundred seventy flights out of the 750 flights men­
tioned earlier were late arrivals. A scatter plot of the joint 
buffer and departure lateness of these flights is shown in Fig­
ure 2. The buffer lateness of a flight is defined as the difference 
between the flight's actual arrival time and its buffer time. 
The plot shows a strong correlation between departure late­
ness and buffer lateness. This would imply that if a flight 
arrives t min after its buffer time, a departure lateness close 
to t min will be the likely result. Figure 3 shows a scatter plot 
of scheduled and actual gate occupancy times of the same 170 
flights. As can be seen from the plot, the actual occupancy 
times are significantly less than the scheduled occupancy times 
for most flights, which implies that, in the case of a late arrival, 
airport operators try to service the aircraft as quickly as pos­
sible to minimize delay, and consequently the actual gate 
occupancy time of the flight becomes disassociated from its 
scheduled occupancy time. 
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FIGURE 2 Joint buffer and departure lateness, late arrivals. 
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STOCHASTIC MODEL OF GATE OCCUPANCY 

Stochastic Derivations 

Although flights are scheduled to arrive and depart at specific 
times, they usually deviate from these times. The reasons for 
deviation are numerous and unpredictable;.. therefore, devia­
tions are assumed to be random phenomenon. For a given 
flight, let the scheduled arrival time define the time origin 
(t = 0). If Y(t) is defined as a random variable whose value 
is determined by the event that the aircraft occupies a gate 
at time t, with t measured in minutes relative to the scheduled 
arrival time, this is a time dependent Bernoulli trial with 

Y(t) = g if the aircraft occupies a gate at time t 
otherwise 

(3) 

Therefore, if an aircraft occupies a gate time t, it must have 
arrived before time t and left after time t, and the probability 
that the aircraft occupies a gate at time l is 

P[Y(l) 1] = P[ (A s t) n ( D + t d ~ t)] (4) 

or 

P[Y(t) 1] P[(A s t) n (D ~ t - td)] (5) 

where 

A = random variable describing arrival lateness measured 
in minutes from scheduled arrival time, 

td = scheduled departure time in minutes after scheduled 
arrival time, and 

D = random variable describing departure lateness mea­
sured in minutes from scheduled departure time. Flights 
usually do not depart before their scheduled departure 
times; therefore D ~ 0. 

As an illustration, the scheduled arrival time, the scheduled 
departure time, ld, and buffer time measured in minutes after 
the scheduled arrival time, tb, are plotted on a time axis in 
Figure 4. 

Arrival times and departure times of flights that arrive be­
fore their buffer times can be assumed to be statistically in­
dependent. Arrival times and departure times of flights that 
arrive after their buffer times can be assumed to be correlated. 
In this context, two random events are defined: Bis the event 
that a flight arrives before its buffer time, and Wis the event 
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FIGURE 4 Representation of scheduled arrival and departure 
times in reference to buffer time. 
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that a flight arrives after its buffer time (complement of ar­
riving before the buffer time). The probabilities of these two 
events can be expressed in terms of the cumulative distribution 
of the random variable A as follows: 

(6) 

(7) 

Band Be are mutually exclusive, collectively exhaustive events. 
Therefore, the probability of another event, [Y(t) = 1], can 
be expressed in terms of those two events in the following 
manner 

P[Y(t) = 1] = P{[Y(l) = l]jB}P(B) 

+ P{[Y(t) = l]jBc}P(Bc) (8) 

The occupancy of a gate by an aircraft at time t, given the 
aircraft arrives before the buffer time, {[Y(t) = l]jB}, can be 
defined by the conditional joint event that the aircraft arrives 
before l and departs after l given arrival is before the buffer 
time. It follows that 

P{[Y(t) = l]jB} = P{[(A s t) n (D ~ t - td)]jB} (9) 

This expression can be evaluated by considering three non­
overlapping time intervals: (t < tb), (tbs ls td) and (t > td)· 
For t < tb, the probability that an aircraft occupies a gate is 
simply the probability it has arrived because, by definition, 
flights do not depart before their scheduled departure time 
td, and t~ < td. For lb s ts td, given the aircraft arrives before 
the buffer time and, by definition, does not depart before its 
scheduled departure time, the probability that the aircraft 
occupies a gate at time l equals unity. For t > td, given the 
aircraft arrives before the buffer time, it has therefore arrived 
before the scheduled departure time, and the probability that 
it. occupies a gate at any time t greater than (1 is simply the 
probability it has not yet departed. In summary, 

where 

FA1il) = FA(t)IFA(tb) for l <lb, 
= 1 fort~ tb, 

(10) 

and F v 18(t) can be estimated directly by considering the de­
parture lateness of flights that arrive before their buffer times. 

The occupancy of a gate by an aircraft at time t, given that 
the aircraft arrives after the buffer time tb, {[Y(t) = l]jBc}, 
can be defined by the conditional joint event that the aircraft 
arrives before t and departs after t given arrival is after the 
buffer time. It follows that 

This expression can be evaluated by considering two non­
overlapping time intervals: (t s tb) and (t > tb)· For t s tb, 
given arrival is after the buffer time, the probability that an. 
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aircraft occupies a gate is simply zero. For t > tb, since, as 
explained earlier, the actual occupancy time of a late arriving 
flight (i.e., one that arrives after its buffer time) is disasso­
ciated from its scheduled occupancy time, the flight's actual 
departure time can be determined more accurately by its ac­
tual arrival and occupancy times than by its scheduled de­
parture time and departure lateness. Let H be a random vari­
able defined as the actual occupancy time in minutes of a late 
arriving flight. The probability of a gate occupancy can then 
be defined as 

P{[Y(t) = l]IW} = P{[(A :s t) n (A + H;::: t)]IBc} 

for t > tb (12) 

where the right-hand side of the equation can be written as 

P[(A :s t)IW] + P[(A + H ;::: t)IBc] 

- P{[(A :s t) U (A + H;::: t)]IBc} (13) 

Since H as defined cannot be negative, the last term of the 
expression must equal unity, therefore, 

P{[Y(t) 

(14) 

where 

FAjsc(t) = 0 fort :5 tb 
= {[FA(t) - FA(tb)]l[l - FA(tb)]} fort> tb 

The cumulative distribution FA +HJsc(t) can be obtained at any 
time t greater than tb by summing the probabilities of all pairs 
[(a,h)IBc] for which (a + h)IBc :5 t. For all times less than 
the buffer time tb, this cumulative distribution is zero by the 
definition of AIBc and HIW. 

The approximate shape of the function P[Y(t) = 1] = p(t) 
is shown in Figure 5 along with the functions P{[Y(t) = l]IB} 
and P{[Y(t) = l]IBc}. This function of time increases from 
zero, starting at some point before the scheduled arrival time 
of the flight, and reaches a maximum near the scheduled 
departure time and then decreases. 

Special Cases 

So far, only flights that have arrival, departure, and buffer 
times (i.e., turnaround flights) have been considered. The 
discussion can be extended to cover originating and termi­
nating flights. At a given time t, the probability that a gate is 
occupied by an aircraft that stays at the gate overnight and 
departs in the morning (i.e., a morning originating flight) is 

··1 fort :5 td, and [1 - FD(t - td)] fort> td. During the day, 
aircraft are brought from hangars to gates at some time before 
the scheduled departure times of originating flights. The time 
an aircraft is brought from the hangar to a gate before the 
flights' scheduled departure time depends on the type of air­
craft (i.e., wide, narrow, or small body) and the flight sector 
(i.e., domestic, international). This time can be assumed to 
be a constant t 1 for each aircraft type and flight sector. It 
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FIGURE 5 Schematic development of random variable Y(t): 
(a) P[Y(t) = llBJ, (b) P[Y(t) = llBc], (c) P[Y(t) = 1]. 

follows that the probability that a gate is occupied by an 
aircraft, when the flight is originated during the day, is zero 
fort :5 t1 , 1 for t1 < t :std and [1 - FD(t - td)] fort> td. 

At a given time t, the probability that a gate is occupied 
by an aircraft that arrives last and stays at the gate overnight 
(i.e., an evening terminating flight) is FA(t) for all t. During 
the day, aircraft are towed off gates at some time after the 
arrival of terminating flights. This tirrie can also be assumed 
a constant t2 for each aircraft type and flight sector. The 
probability that a gate is occupied by an aircraft, when 
the flight is terminated during the day, can be calculated as 
[FA(t) - FA(t - t2)] for all t. 

Occupancy of Aircraft Gates by Time of Day 

On any given day, each scheduled flight i has a unique Yi( t), 
which depends on the flight's scheduled arrival aiid departure 
times, aircraft service time, and its behavior relative to these 
times. Ifs; is defined as the scheduled arrival time of the i1

h 

flight, the expectation of the random variable Yi(t), which is 
assumed to be Bernoulli at any given time t relative to the 
scheduled arrival time, is 

E[Yi(t)] = P[Yi(t - si) = 1] = p;(t - s;) (15) 

and the variance of the random variable Y;(t) is 

Var[Yi(t)] = pi(t - sJ[l - p;(t - sJ] (16) 
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The total number of aircraft occupying gates at time t on a 
given day can now be defined as 

N(t) = L Y;(t) (17) 

The expectation of the random variable N(t) is 

E[N(t)] = L E[Y;(t)] (18) 

The variance of the random variable N(t) can be calculated 
as 

Var[N(t)] L Var[Y;(t)] + L cov[Y;(t), Y/t)] (19) 
ioFj 

Numerical Illustrations 

As illustrations of how the model can be used to calculate the 
probability that an aircraft occupies a gate at time t and the 
expected value and the variance of the number of aircraft 
occupying gates at time t the following two examples are 
presented: 

Example 1 

In Example 1, a flight is scheduled to arrive at an air terminal 
at 12:00 p.m. and to depart at 13:00. The aircraft service time 
is 45 min. The flight's buffer time can be calculated as [(13:00 
- 12:00) - 45 = 15 min after the scheduled arr{val time], 
that is, 12:15. The probability that the flight arrives before 
its buffer time is FA(l5). The probability that the aircraft 
occupies a gate at 12:45 given it has arrived before the buffer 
time is 1. The probability that the aircraft occupies a gate at 
12:45 given it has arrived after the buffer time is FA 18c( 45) -
FA +HIBc( 45). Data collected to analyze the flight's behavior 
relative to its schedule indicated that FA(l5) = 0.820 and 
FA 18c( 45) - FA +HIBc( 45) = 0.848. The probability that the 
aircraft occupies a gate at 12:45 can now be calculated as 

P[Y(45) = 1] = 1 * 0.820 + 0.848 * (1 - 0.820) = 0.973 

Example 2 

In Example 2, three fligh~s are scheduled to be serviced by 
an air terminal during a given day. The probabilities that each 
one of these flights occupies a gate at 12:45 p.m. were cal­
culated using the model as p 1(12:45) = 0.973, pz(12:45) = 
0.562, and p3(12:45) = 0.310. The expected value of the 
number of aircraft occupying gates at 12:45 is 

E[N(12:45)] = 0.973 + 0.562 + 0.310 = 1.845 aircraft 

If the flights are assumed to behave independently of each 
other, the variance of the number of aircraft occupying gates 
at 12:45 can be estimated as 

Var[N(12:45)] = 0.973(1 - 0.973) + 0.562(1 - 0.562) 

+ 0.310(1 - 0.310) = 0.486 aircraft2 
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APPLICATIONS OF MODEL 

Empirical Realization of Model 

Actual operation of aircraft gates at Terminal 2 of Toronto's 
Lester B. Pearson International Airport has been used to test 
the performance of the model. The number of gates available 
to accommodate passenger aircraft at Terminal 2 is 36. Twenty­
eight of these gates can accommodate narrow-body aircraft 
(B727, B737, DCB, DC9) and wide-body aircraft (B747, B767, 
LlOll, L15, DClO). The remaining eight gates can accom­
modate only small aircraft (CVR, DH8, BlO, B99). The data 
used in the exercise were developed from summaries and logs 
of daily operations kept by Air Canada, the prime occupant. 
and owner of Terminal 2 gates. Only passenger aircraft that 
have been assigned to terminal gates were included in the 
data. Aircraft that have been assigned nonterminal gates (cargo 
aircraft) were not included. 

To put the proposed model in an operational form, it is 
necessary to describe each flight's behavior relative to its 
schedule and buffer time. Data limitations made this imprac­
tical; therefore, it was important to find, if possible, the com­
mon characteristics of some identifiable group of flights and 
assume that all flights within the group behave in a similar, 
though random, manner. Analysis of data collected at Ter­
minal 2 showed that flights of different sectors and different 
aircraft types behave in different manners relative to their 
schedules. Accordingly, flights were categorized into five groups 
based on aircraft type and flight sector where transborder 
flights are those departing to or arriving from the United 
States: 

1. Narrow-body aircraft, domestic flights; 
2. Narrow-body aircraft, transborder flights; 
3. Wide-body aircraft, domestic flights; 
4. Wide-body aircraft, transborder and international flights; 

and 
5. Small aircraft, domestic and transborder flights. 

Scheduled arrival and departure times and actual arrival and 
departure times of flights in each of the five categories were 
recorded for 30 days of operation in October and November 
1988. Arrival lateness, departure lateness, and actual occu­
pancy time distributions were then developed for each· cate­
gory. As an example, Figure 6 shows arrival lateness distri­
butions of the five categories of flights. Aircraft service and 
buffer times were determined from Air Canada's gate plan­
ning guidelines. Using these data, an estimate p;(t) of the 
function P[Y;(t)] was obtained for each scheduled flight ion 
Thursday, January 14, 1988, and estimates of E[N(t)] were 
calculated, using the model, at 1-min intervals. These esti­
mates were compared to the sample meanxN(r) calculated from 
gate occupancy data of 9 weekdays: Monday, January 11 to 
Friday, January 15 and Monday, January 18 to Thursday, 
January 21, 1988, and to the scheduled gate occupancy. 

As shown on Figure 7, estimates of E[N(t)] are in agree­
ment with xN<T>'s for most of the day. Both estimates differ 
significantly from the scheduled gate occupancy during busy 
periods (1:00 to 3:00 p.m. and 6:00 to 8:00 p.m.). During 
these periods, deviation of flights from the schedule causes 
the actual required number of gates to exceed the number 
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specified by the schedule. The maximum scheduled gate oc­
cupancy from 1:00 to 3:00 p.m. is 20 aircraft. Both estimates 
of gate occupancy show higher values during this period. 

The variance of the number of aircraft occupying gates at 
time t, Var[N(t)], depends on the degree of correlation ex­
isting between flights. One extreme assumption is that of 
uncorrelated flights. The variance then becomes 

Var[N(t)] = L Var[Y;(t)] (20) 
i 

Another extreme is to assume flights to be perfectly correlated 
and the variance is 

Var[N(t)] = L Var[Y;(t)] 
i 

+ L (Var[Y;(t)]) 112(Var[Ylt)]) 112 

i-4:-j 
(21) 

15:00 

TIME OF DAY 

18:00 21:00 0:00 

Figure 8 shows estimates of Var[N(t)] for both cases and the 
sample variance, sf.v(r)· The estimate of Var[N(t)] under the 
assumption of no correlation is consistently smaller than the 
sample variance. This implies that some kind of positive cor­
relation occurs between flights. However, this correlation is 
small as indicated by the magnitude of the sample variance 
relative to the estimate of Var[N(t)] under the assumption of 
perfect correlation. 

Gate Requirements at Airports 

At a given time t, the random variable N describing the num­
ber of gates occupied by aircraft can be thought of as the sum 
of a large number of independent, but not identically distrib­
uted, random variables each of which has a small effect on 
the sum. It follows from the central limit theorem that N is 
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FIGURE 8 Gate occupancies, estimated variance. 

asymptotically normal with mean E(N) and variance Var(N). 
In this context, the number of aircraft gates required at time 
t can be calculated such that the probability that the demand 
for gates exceeds this number is very small, say 0.05. This is 
the value n such that 

(22) 

In terms of Z, the standardized normal (0,1) distribution, 
where 

Z = [N - E(N)]l\/Var(N) (23) 

one should calculate n such that Fz(z) = 0.95. It follows that 
z = 1.645 and 

n = E(N) + 1.645\/Var(N) (24) 

The maximum value of n·over time of day provides an estimate 
of the required number of aircraft gates. 

Equation 24 assliines a common gate use strategy (first­
come, first-served discipline). Exclusive use of gates by par­
ticular air carriers or by flights of certain sectors is another 
gate use strategy used at many airports. Under such a strategy, 
Equation 24 can be rewritten for flights of each carrier or 
sector k, as 

(25) 

The total required number of gates can then be obtained by 
aggregating the maximum values of nk's over time of day. 

Gate Requirements at Terminal 2 of Toronto Airport 

A strategy of using gates exclusively for flights of a particular 
sector is currently adopted at Terminal 2, Lester B. Pearson 

15:00 

TIME OF DAY 

18:00 21:00 0:00 

International Airport. Fifteen of the 28 available gates that 
can accommodate both wide- and narrow-body aircraft are 
dedicated to domestic flights: 8 to transborder flights, and 5 
to international flights. Under this strategy and for the sched­
ule of the previous section that represents a typical week-day 
operation, gate requirements estimated using the procedure 
described in the preceding comply with the available number 
of gates. This is expected because the schedule has presumably 
been designed to account for the available gates and the adopted 
strategy of their use. For the same schedule, a common use 
strategy (first-come, first-served discipline) results in a saving 
of four gates as compared with the existing strategy. An ex­
clusive strategy under which a group of gates is dedicated to 
Air Canada flights and the remaining gates are used by other 
air carriers requires a total of 27 gates. Sixteen of these gates 
are required by Air Canada and the remaining 11 by the other 
carriers. 

Analysis of Bank Operations 

Many airports are used by airlines as collection-distribution 
centers for their passengers. Flights are brought in and dis­
patched in banks (groups). The purpose is to facilitate transfer 
of passengers and baggage between flights in the same bank. 
If the banks are spaced apart such that interactions between 
flights of different banks are minimal, gate requirements can 
be estimated from the scheduled occupancies by taking the 
size of the largest bank plus one or two gates to account for 
variations. As the spacing between banks decreases, however, 
gate requirements increase because of deviation of flights from 
their schedules. The question is how close the banks could 
be scheduled without causing an excessive increase in gate 
requirements. Consider, for example, a schedule that consists 
of two banks of the same size, say, 25 flights each. Each flight 
has a scheduled occupancy time of 60 min and all flights are 
of the same sector and of the same aircraft type. Gate re-
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TABLE 1 Gate Requirements under Bank Operations 

Maximum Required Number of Gates Spacing Between Banlcs 
(min) E[N(t)]+ 1.645..JV AR[N(t)] 

60 
70 
80 
90 

100 
110 
120 
130 
140 
150 

35.88 
29.18 
27.21 
26.0CJ 
25.95 
25.85 
25.71 
25.66 
25.66 
25.66 

quirements, under a common gate use strategy, for different 
time intervals between the two banks are shown on Table 1. 
When the flights of the second bank are scheduled to arrive 
40 min or later after the departure of the flights of the first 
bank, 26 gates are required. As the spacing between the two 
banks decreases, the required number of gates starts to in­
crease and reaches 36 when the departure of the flights of the 
first bank and the arrival of the flights of the second bank 
coincide. 

CONCLUSIONS 

Two factors have been shown to influence demand for aircraft 
gates: the flights' schedules and their actual behavior relative 
to these schedules. The first factor provides a deterministic, 
element to the process of generating demand and the second 
factor provides a stochastic element to this process. The sto­
chastic gate occupancy model presented in this paper provides 
a plausible tool for estimating gate requirements at airports 
based on these two elements. However, improvements can 
be achieved by further investigation of the cause and the 
nature of correlation between flights. 

The use of computer-generated nominal schedules for es­
timating loads on terminal facilities has become a common 
practice at many airports. These schedules are generated from 
annual forecasts by making assumptions about aircraft fleet 
mix and load factors. The procedures of the paper provide a 
tool for incorporating the stochastic nature of flight arrivals 
and departures in the process of estimating gate requirements 
using nominal schedules. 

36 
30 
28 
27 
26 
26 
26 
26 
26 
26 
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