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Approximate Delays Caused by 
Lock Service Interruptions 

VENKATESH RAMANATHAN AND PAUL SCHONFELD 

The lock structures in the inland waterway system have become major 
constraints to navigation as a result of increased traffic and facility 
deterioration, leading to costly delays. Most of the locks have ex
ceeded their design life, and service interruptions occur quite fre
quently, causing increasing delays to traffic. Hence, a reliable model 
is necessary to estimate the delay caused by lock service interruptions. 
In this paper, a model is developed in the form of one relatively simple 
equation to estimate tow delays caused by a single lock service in
terruption. A basic equation is derived on the basis of continuous flow 
theory. Because the waterway flows consist of discrete vessels, an 
appropriate discrete adjustment factor is developed. To account for 
the stochastic characteristics of actual waterway operations, an ad
justment factor is estimated statistically from simulation results. The 
resulting model provides accurate estimates of delays far more quickly 
and inexpensively than simulation. The simple model developed in 
this paper should be useful in future studies of capacities, delays, 
service reliability, maintenance policies, and general waterway 
economics. 

Inland waterways are an important part of the transportation net
work in the United States. They provide low-cost, energy-efficient 
and safe transportation of heavy or bulky commodities. The Na
tional Waterways Study (1) identified the structural reliability of 
the inland waterway system as a major constraint in the system's 
ability to handle commercial waterborne traffic. More than 100 
locks will have exceeded their 50-year design life by 2003 (1). 
Locks and dams are essential for creating stepped navigational 
pools with reliable depth for navigation. However, many of these 
facilities have become major constraints to inland navigation be
cause of increased traffic and facility deterioration, leading to 
costly delays. 

The objective of this paper is to develop a inodel that estimates 
the delay caused by a single lock service interruption (i.e., a 
''stall''). An equation is derived using the principles of continuous 
flow theory. Because the flow in real waterways consists of dis
crete tows or other vessels, an adjustment factor is developed on 
the basis of the assumption that the flow is discrete and uniform. 
Furthermore, the arrival and service distributions at waterway 
locks are probabilistic. Hence the equation developed using con
tinuous flow is combined with an adjustment factor estimated sta
tistically from the simulation results. This equation provides ac
curate estimates of delay caused by a lock service interruption. 

LITERATURE REVIEW 

Prediction of lock delays is essential for evaluating and scheduling 
waterway investments. Two models based on queueing theory 
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have been found for estimating lock delays. DeSalvo and Lave 
(2) model lock operation as a simple single server queueing pro
cess with Poisson distributed arrivals and exponentially distributed 
service time. The assumption of Poisson distributed arrival and 
exponentially distributed service time does not fit every lock in 
the waterway system. Wilson's model (3) extends DeSalvo's 
model by treating the service processes as general distributions. 
Both models are designed for analyzing single lock delays. Nei
ther of these models explicitly accounts for stalls. Also, the delays 
estimated with these models did not consider the interdependence 
between locks, which is highly significant in waterway locks. 

Kelejian's (4) efforts to model stall frequencies and duration 
have not yet yielded strong results despite the rigorous statistical 
method employed. Dai and Schonfeld (5) developed a microscopic 
simulation model that accounts for generally distributed arrivals 
and service times and interdependence between locks and stalls. 
As usual with microscopic simulation models, a significant 
amount of computer time is required for variance reduction to 
obtain reliable delay estimates. May and Keller ( 6) used the con
tinuous flow theory to estimate the effects of road capacity 
changes at bottlenecks on delays to users. The continuous flow 
theory has also been used for various other highway applications. 

In this paper, a simple model is developed to estimate delay 
caused by a lock service interruption using continuous flow theory 
and an adjustment factor estimated from simulation results. The 
model is a reliable substitute for expensive simulation. 

PROPOSED MODEL 

In this section, a general equation is derived that provides a good 
estimate of the delay caused by a single lock service interruption 
based on the assumption that the arrival and service rates are uni
form and continuous. 

The effect of a single stall, assuming uniform continuous flow, 
is shown in Figure 1. The service interruption would reduce the 
normal lock capacity (tows/day) c to a partial lock capacity (tows/ 
day) p in a lock with multiple chambers. If the lock has a single 
chamber, the partial capacity will probably drop to zero. If the 
service interruption occurs for stall duration (days) d, then the 
maximum queue length (tows) L formed during this period will 
be the duration d multiplied by the difference between the tow 
volume (tows/day) v and partial capacity p. 

L = d(v - p) (1) 

After the. end of the stall, the queue will start decreasing at a 
rate equal to the difference between the volume v and capacity c, 
and would finally become zero. The time s required to dissipate 
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FIGURE 1 Effect of one stall based on uniform continuous 
flow. 

a queue (tows) of length L is 

L 
s =----

-(v - c) 
d(v - p) 

-(v - c) 
d(v - p) 

(c - v) 
(2) 

The total delay to tows De [small delay assuming continuous de
terministic flow (tow days)] caused by interruption in service for 
duration d would be the area of the triangle or ''wedge'' shown 
in Figure 1. 

D =L _(-'-d_+--'-s) 
c 2 (3) 

Substituting the values of the maximum queue length L and queue 
dissipation time s from Equations 1 and 2, Equation 3 can be 
written as 

De = [d(v - p)] [d(v - p) + d] 
2 (c - v) 

(4) 

If the partial capacity p is zero, then the delay De in Equation 4 
simplifies to 

dv [ dv ] De=- --+ d 
2 (c - v) 

(5) 

For example, if v = 3 tows/hr, c = 4 tows/hr, d = 2 hr and p = 1 
tow/hr, then the delay De using Equation 4 will be 

D = [2
(3 - l)] [2(3 - l) + 2] = 12 tow hours 

c . 2 (4 - 3) 

Equations 4 and 5 are general enough to apply to one- or two
way traffic and to single or multiple chamber locks. 

DISCRETE ADJUSTMENT FACTOR 

At waterway locks, arrival and service distributions are discrete 
and probabilistic. However, Equations 4 and 5 were derived by 

TRANSPORTATION RESEARCH RECORD 1430 

assuming uniform continuous flow. In this section, an equation is 
derived that accounts for the difference in delay between uniform 
continuous and uniform discrete flows. 

A comparison of the probabilistic and deterministic discrete 
flow patterns is shown in Figure 2. This figure corresponds to the 
continuous deterministic wedge in the lower part of Figure 1. It 
can be seen that when the flow is deterministic, arrivals and de
partures occur at uniform intervals. If the tow volume is v tows/ 
hr and the lock capacity is c tows/hr, then the interarrival time 
between tows is l/v hr and the service time is 1/c hr/tow. However, 
when the flow is stochastic, interarrival and service times are not 
uniform. The effect of a single lock service interruption on uni
form discrete flow is shown in Figure 3. The delay caused by a 
single lock service interruption in case of discrete and determin
istic flow depends on the stall duration d and tow size (tows/tow) 
z. As the step size is higher for bigger than for smaller to~s, the 
deviation of the discrete uniform flow from the continuous uni
form flow is higher for bigger than for smaller tow arrivals for 
the same stall duration d. This can be clearly seen from Figure 3. 
The delay caused by a single lock service interruption can be 
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FIGURE 2 Comparison of deterministic and stochastic 
flow patterns. 
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FIGURE 3 Effect of one stall on discrete uniform flow. 
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determined by expressing the arrivals and departures as the sum 
of a geometric series. If the tow volume is v, the tow size is z, 
the partial capacity is p, and the interruption occurs for duration 
d, then the delay caused by discrete deterministic flow, Di. during 
the queue formation period is the difference between the area un
der the arrival and the departure steps (i.e., the area marked I in 
Figure 3). Because the interarrival time between tows is 1/v and 
the size of each step is equal to the tow size z, the area under the 
arrival steps is the sum of the areas of the rectangles, the area of 
each rectangle being the tow size z multiplied by the difference 
betweeen the duration d and arrival time of the tow 
(1/v, 2/v, etc.). Similarly, the area under the departure steps can 
be determined by summing the areas of each rectangle. The area 
of each rectangle is the tow size z multiplied by the difference 
between duration d and departure time lip, 2/p, and so on. Thus, 
the delay D 1 on the queue formation side can be written as follows: 

D, = { d + [ d - ~ J + [ d - ~ J + ... + [d - (dv: l) J }z 

-{[ d - ; J + [ d -; J + ... + [ d - (dp p- l) ]}z (6) 

Because Equation 6 is a sum of a geometric series, the delay D 1 

can be simplified as follows: 

(d
2
v + d) (d 2

p - d) D = z - z 
I 2 2 (7) 

After the end of the stall, because the queue takes s hours to 
dissipate to zero length, the delay caused by discrete deterministic 
flow during the queue dissipation period (tow/days), Du, is the 
shaded area marked II in Figure 3. Because the departure time of 
the tows is now 1/c, 2/c, and so on, the delay Du can be expressed 
as 

Du=(!+~+ .. 
c c 

cs) + -;; z 

(
1 2 vs) + -+-+ ... +-z 
v v v 

(8) 

Equation 8 can be simplified as follows: 

(9) 

The total stall delay D, assuming discrete deterministic flow (tow 
days) caused by a service interruption for duration d when the 
arrival and service rates are discrete is the sum of delays D1 and 
Du: 

D, = [ d'v 
2
+ d} _ [ d'p 

2
+ d} 

+ [s(cs 
2
+ 1) }- [s(vs 

2
+ 1)} (10) 

Thus, Equation 10 gives the total delay D, caused by discrete flow 
and Equation 4 gives the total delay De caused by continuous flow. 
The ratio of the delay D, to the delay De may be defined as the 
discrete adjustment factor F,: 

D, 
F =-

' De 
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(11) 

Assuming the interdeparture time lip in the partial capacity con
dition to be less thant the stall duration d and substituting Equa
tions 4 and 10 into Equation 11, the discrete adjustment factor F, 
can be written as 

dz 
F, = 1 + -

De 
(12) 

Thus the delay caused by discrete uniform flow D, from Equations 
11 and 12 can be written as 

D = D (1 + dz) r c De (13) 

Equation 13 is therefore a good approximation for a waterway 
with discrete arrival and service times. The discrete adjustment 
factor depends on tow size z and stall duration d. Thus for the 
same stall duration d, the factor F, is larger when tows are larger 
because the steps in Figure 3 are larger. It is also worth noting 
that, because De is approximately proportional to d 2 (in Equations 
4 or 5) the factor F, (Equation 12) decreases asymptotically to
ward 1.0 as the stall duration increases. Therefore, Equations 4 or 
5 based on the continuous flow assumption provide good approx
imations of the delay, if (a) tows are small or (b) service inter
ruptions are long. Even with a discrete adjustment factor, Equation 
13 is only an approximation for real waterways with probabilistic 
arrival and service times. 

SIMULATION EXPERIMENT 

A microscopic simulation model to estimate delays caused by lock 
service interruptions has been developed by Dai and Schonfeld 
(5). The actual data, including the stall-related data from real 
waterway locks, were used for calibrating and then validating the 
simulation model. As usual with microscopic simulation models, a 
significant amount of computer time is required for variance reduc
tion purposes to obtain reliable delay estimates. In order to estimate 
the delay caused by a single stall, it is necessary to compute delays 
by running the simulation with and without that stall. The delay 
caused by a single stall is the difference between those two delays. 

An alternative to direct application of microsimulation is to 
employ the simulation model in an experiment to obtain a func
tional simplification that can be used to estimate the delay caused 
by a lock service interruption. An experiment was conducted to 
explore the extent to which the probabilistic nature of arrival and 
service rates in a real waterway affects the delay caused by one 
stall predicted by Equation 4. The observed data (1987) from Lock 
22 on the Mississippi river was used for the experiment. The vari
ables chosen for the simulation experiment were stall duration d 
and volume/capacity ratio v/c. 

The experiment simulate9 the lock for various combinations of 
volume/capacity ratio v/c and stall duration d. To achieve different 
values for volume/capacity ratio, the volume v was fixed at 10 
tows/day and the capacity c was adjusted to yield the desired 
v/c. For example, to achieve a v/c of 0.4, the capacity c used in 
simulation was 25 tows/day, because 10/25 = 0.4. In the existing 
simulation model (5), stalls of various durations were randomly 
generated based on average stall duration and frequency of oc
currence. Hence, the model was modified to estimate the delay 
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caused by a single stall of variable duration starting at some speci
fied time. To reduce the variance of the simulated delay, the final 
result used for comparison was obtained by averaging the output from 
40 independent simulation runs. To ensure that the system reaches 
steady state before the stall occurs, the first 12,000 tow waiting times 
are discarded from each simulation run. The results were recorded 
for a sufficiently long period to ensure that the full effects of the stall 
were captured. The results from the simulation experiment were then 
compared with those obtained using Equation 5. 

EXPERIMENT RESULTS 

The results from the simulation and the values calculated using 
Equation 5 for volume/capacity ratios ranging from 0.4 to 0.95 
are provided in Table 1. The average delay caused by a single 
stall obtained from simulation and the delay obtained using Equa
tion 5 are shown for various stall durations and volume/capacity 
ratios. Also shown are the standard deviation of the average delay 
from the simulation, standard error, and the t-test value for 95 
percent confidence interval. The ratio of the simulated and the 
deterministic delay is also computed. This-ratio is defined here to 
be the stochastic adjustment factor Fs: 

(14) 
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This stochastic adjustment factor Fs accounts for the probabilistic 
arrival and service rates in a real waterway. Thus, the results ob
tained using Equations 4 or 5, when multiplied by this factor Fn 
give the simulated delay. The stochastic adjustment factor is 
plotted in Figure 4 with stall duration on the horizontal axis and 
the delay caused by stall on the vertical axis for different volume 
to capacity ratios. Shown in Figure 5 is the variation of stochastic 
adjustment factor Fs with simulated delay Ds. Each point in these 
plots represents the average of 40 independent simulation runs. 
These plots are helpful in the assessment of the functional form 
of the stochastic adjustment factor F,. It appears from these plots 
that the factor decreases at a decreasing rate with the stall duration 
d and the simulated delay Ds. The factor increases with the volume/ 
capacity ratio vie. 

The comparison of simulated and deterministic delay suggests 
that the results are consistent with the basic principles of queueing 
theory. The deterministic delay was calculated on the basis of the 
assumption of uniform continuous flow. However, in a real water
way the arrival and service are probabilistic and discrete. It can 
be seen from Equations 4 and 5 that the delay De varies roughly 
with the square of the stall duration. Thus it is expected that the 
deviations between the deterministic delay De and the simulated 
delay Ds are higher at smaller stall durations than at longer ones. 
Hence, the stochastic adjustment factor Fs is larger at smaller stall 
durations and smaller for the longer (and costlier) stalls. 

TABLE 1 Comparison of Simulated Delay with Deterministic Queueing Delay 

a) v = 10 tows/day; c = 25 tows/day; v/c = 0.4 

Stall Delay (D
5

) 
1 Delay (Dc) 2 Factor Simulation Estimates 

Duration (tow days) (tow days) (Fs) J 

(days) ( 1) 4 ( 2) 5 ( 3) 6 

0.3 0.99 0.75 1. 313 0.41 0.07 3.63 
1 9.59 8.33 1.152 2.25 0.36 3.56 
2 36.63 33.33 1.099 9.31 1. 47 2.24 
3 79.74 75.00 1.063 12.34 1.95 2.43 
4 138.40 133. 33 1.038 21.26 3.36 1.51 
6 306.16 300.00 1.020 39.85 6.30 0.98 
8 541.92 533.33 1.016 71.21 11.26 0.76 

10 843.50 833.33 1.012 86.50 13.68 0.75 
12 1208.40 1200.00 1.007 116.23 18.38 0.46 

b) v = 10 tows/day; c = 12.5 tows/day; v/c = 0.8 

Stall Delay (D
5

) 
1 Delay {Dc) 2 Factor Simulation Estimates 

Duration (tow days) (tow days) (Fs) J 

(days) 

0.3 3.25 2.25 1.445 
1 31.92 25.00 1.270 
2 117.89 100.00 1.179 
3 252.95 225.00 1.124 
4 437.90 400.00 1.094 
6 956.10 900.00 1.062 
8 1672 .11 1600. 00 1.045 

10 2586.61 2500.00 1.034 
12 3682.85 3600.00 1.023 

1Simulated Delay 
2Delay due to Continuous flow 
3Stochastic Adjustment Factor 
4Standard Deviation of Simulated Delay 
5Standard Error of Simulated Delay 
6t-test value of Simulated Delay 

( 1) 4 ( 2) 5 ( 3) 6 

1.71 0.27 3.70 
12.28 1. 94 3.56 
28.06 4.44 4.07 
51.21 8.09 3.45 
69.29 10.95 3.45 

110.40 17.46 3.21 
199.29 31.51 2.28 
300.90 47.58 1. 82 
348.40 55.09 1.50 
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FIGURE 4 Variation of stochastic delay adjustment factor with stall duration. 

ESTIMATION OF STOCHASTIC DELAY 
ADJUSTMENT FACTOR 

In this section, a ·mathematical function that reasonably fits the 
observed stochastic adjustment factor Fs is derived. The experi
mental results suggest that the functional form of the stochastic 
adjustment factor is nonlinear with respect to the stall duration 
and linear with respect to the volume/capacity ratio. A functional 

Stochastic 
Adjustment 
Factor 

Fs = (Ds/Dc) 

. 1 10 

form that increases linearly with the volume/capacity ratio v/c and 
decreases exponentially with the stall duration d appears to closely 
fit the data. One tractable mathematical form expressing such a 
relation is the following: 

(15) 

100 1000 10000 100000 

Delay Ds (Tow Days) 

FIGURE 5 Variation of stochastic delay adjustment factor with simulated delay. 
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where a is a magnitude parameter and b is an exponential decay 
parameter. This relation may be interpreted to have a lower bound 
of 1.0, with the second term representing a quantity accounting 
for the stochastic effects. The parameters a and b were statistically 
estimated using ordinary least-squares linear regression. Hence 
Equation 15 becomes 

The basic linear regression procedure used to estimate the par
ameters 0.6 and -0.432 in Equation 15 assumes that the data are 
homoscedastically distributed; that is, that the variance of the de
pendent variable does not vary with the independent variable. 
However, the simulation results (shown in Figures 4 and 5) in
dicate otherwise. To eliminate this problem of heteroscedasticity, 
the parameters were re-estimated with a logarithmic transforma
tion (7,8) of Equation 15. Converting the transformed variables 
back to their original form yielded the following transformed 
model for the stochastic adjustment factor: 

F, = 1 + 0.6 (~) e-0
·""', R' = 0.93 (16) 

The stochastic adjustment factor Fs together with Equation 4 
may be used to commute the total delay caused by a single stall, 
De: 

F, = 1 + 0.42 (~) e-0
"", R' = 0.92 (19) 

(17) Substituting Equations 19 and 4 into Equation 17, the estimated 
total delay caused by single stall is found to be 

Substituting Equation 16 for the stochastic adjustment factor Fs 
and Equation 4 for D c in Equation 17, a complete expression for 
the stall delay can be obtained, as follows: 

(20) 

{[ d(v; p)] [ ~~ ~ :; + d]} R' = 0.93 (18) 
A comparison of the simulated delay D_,. and estimated stall 

delay (tow days) De obtained using Equations 18 and 20 is given 
in Table 2. Shown in Figures 6 and 7 is the variation of the es-

TABLE 2 Comparison of Simulated Delay with Estimated Delay 

a) v = 10 tows/day; c 25 tows/day; v/c = 0.4 

Stall 
Duration (d) 

(Days) 

0.3 
1 
2 
3 
4 
6 
8 

10 
12 

Simulated 
Delay (D5 ) 

(tow-days) 

0.98 
9.59 

36.63 
79.74 

138.40 
306.16 
541.92 
843.50 

1208.40 

Estimated 
Delay (De) 
(tow-days) 

Before1 After2 

0.91 
9.63 

36.70 
79.93 

139.01 
305. 3.9 
537.37 
835.99 

1201.61 

0.87 
9.41 

36.67 
80.79 

141.28 
310.66 
544.61 
843.83 

1209.01 

% Deviation 
100 X (De-Ds) /D5 

Before 3 

-7.80 
0.32 
0.19 
0.23 
0.44 

-0.25 
-0,84 
-0.89 
-0.56 

After4 

-12.02 
- 1.95 

0.09 
1. 32 
2.08 
1.47 
0.49 
0.04 
0.05 

b) v = 10 tows/day; c 12.5 tows/day; v/c = 0.8 

Stall 
Duration (d) 

(Days) 

0.3 
1 
2 
3 
4 

,6 
8 

10 
12 

Simulated 
Delay (D9 ) 

(tow-days) 

3.25 
31.92 

117.89 
252.95 
437.90 
956.10 

1672 .11 
2586.61 
3682.85 

Estimated 
Delay (De) 
(tow-days) 

Before1 After2 

3.19 
32.79 

120.23 
254.55 
434 .11 
931.34 

1624.24 
2515.96 
3609.69 

2.95 
31. 48 

120.02 
259.76 
447.69 
963. 93 

1667.70 
25,63. 02 
3654.06 

1Estimated Delay before Transformation 
2Estimated Delay after Transformation 
3 % Deviation before Transformation 
4% Deviation after Transformation 

% Deviation 
100 X (De-Ds) /D5 

Before 3 

-1.67 
2.73 
1.99 
0.63 

-0.87 
-2.49 
-2.86 
-2.73 
-1.99 

After4 

-9.33 
-1.37 
1. 80 
2.69 
2.24 
0.82 

-0.26 
-0.91 
-0.78 
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FIGURE 6 Variation of delay caused by a single lock service interruption with 
stall duration. 
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timated delay De, with stall duration and v/c, respectively. A com
parison of the stochastic adjustment factor Fs obtained using Equa
tions 16 and 19 is shown in Figure 8. It is observed that the 
deviation between the simulated delay D,. and the estimated delay 
De obtained using Equations 18 or 20 is less than 2 percent for 
stall durations exceeding 2 days and volume/capacity ratios below 

0.6. Equations 18 and 20 both provide accurate delay estimates. 
Although Equation 18 provides slightly more accurate estimates 
when stall durations are less than 2 days, the transformed model 
in Equation 20 should be preferred in all cases because of its 
greater theoretical soundness and in order to have a single general 
model. 

Delay (De) 
(tow days) 

8000 

6000 

4000 

2000 

~ d=8days 

............... d= JO days 

----<>-- d = 12 days 

0.0 0.2 0.4 0.6 0.8 1.0 

Volume/Capacity (vie) 

FIGURE 7 Variation of delay caused by a single lock service interruption with 
volume/capacity. 
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a) v JO tows/day; c = 25 tows/day; vie = 0.4 
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FIGURE 8 Comparison of stochastic delay adjustment factor. 

SUMMARY AND CONCLUSIONS 

With many inland water locks now becoming older than 50 years, 
it is important to have reliable and efficient means of modeling 
the delays at locks for evaluation, reliability analysis, and main
tenance and investment planning. Presented in this paper has been 
the development of a quick and simple model that approximates 
simulation results in estimating lock delays caused by a single 
stall. 

An equation was developed on the basis of continuous flow 
theory. This equation is a close approximation for stalls producing 
large delays but not for those producing small delays. Because 
this equation was derived on the basis of uniform flow, it is only 
an approximation for a real waterway with discrete arrival and 

service rates. To account for discrete arrival and service times at 
locks, a discrete adjustment factor was derived assuming uniform 
discrete flow. This model has some explanatory value but is su
perseded in this paper by a probabilistic model. Because the vessel 
flows are probabilistic in real waterways, a simulation experiment 
was conducted to estimate the delay caused by a single stall. A 
single general ' 'metamodel,'' combining a structural form ob
tained from queueing theory with the stochastic adjustment factor 
statistically estimated from simulation results, fits the simulated 
delays quite well and constitutes an accurate, quick, and simple 
substitute for simulation. 

The model was further improved with a logarithmic transfor
mation that compensates for heteroscedasticity in the data. Al
though the transformed model (Equation 20) is slightly less ac-
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curate than the untransformed model (Equation 18) when stall 
durations are low, it is slightly more accurate for longer durations, 
which are more significant in economic evaluations. Henceforth 
it is recommended that only the transformed model be used, be
cause it is more justified theoretically and provides a single gen
eral model. For an even better approximation of the model, the 
stochastic adjustment factor may be re-estimated when the cham
ber configurations or arrival and service distributions change 
significantly. 
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