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Distance-Based Model for Estimating a 
Bus Route Origin-Destination Matrix 

DAVIDS. NAVICK AND PETER G. FURTH 

An origin-destination (0-D) matrix is a valuable tool for bus service 
planning. Unfortunately this trip table is not commonly available to 
the planner because of survey costs. However, stop-level on-off totals 
are often available. Past research has concentrated on using these to­
tals along with a small 0-D survey as a "seed matrix" to generate 
the full 0-D matrix. Such a seed is subject to bias and sampling error 
and also incurs the survey cost. A method is described in which the 
seed matrix is generated using a propensity function that models the 
propensity of travel as a function of travel distance. The proposed 
function is a product of a power term and an exponential term, equiv­
alent to a gamma distribution. When applied to one-directional travel, 
the gamma seed is shown to be reduced to a power function. The 
power function exponent is estimated by maximum likelihood for data 
from bus routes in Boston and Miami and is consistently found to be 
near 1.0. The gamma seed combined with the biproportional method 
to match origin and destination totals is shown to be effective in 
generating 0-D matrixes for Boston and Miami routes. In a practical 
design application, design measures were found to be relatively in­
sensitive to changes in the function parameter. 

A route-level origin-destination (0-D) matrix is an important tool 
of the transit analyst. This trip table contains passengers' trip 
length data that enables the able analyst to test service improve­
ments such as express, limited-stop, and short-turning services, or 
combining or splitting routes (J). Unfortunately, route-level 0-D 
matrixes are not commonly available because of cost restrictions. 

On-off counts, which represent row and column totals of the 
0-D matrix, are often available because they are used for funding 
and planning purposes. When on (origin) and off (destination) 
totals are known, the problem of trip distribution is to determine 
the matrix { t;j} that matches the given on and off totals, that is, 
that satisfies the constraints 

.2: tij = t;. for all i 

j 

.2: tij = t.j for all j 

where 

t;i = number of trips from i to j, 
t;. = boardings at stop i, and 
t.i = alightings at stop j. 

(1) 

(2) 

Many solutions meet these constraints. The estimation problem 
is to find the complying matrix that best fits a "seed matrix" 
embodying prior information about the preferences of trip makers. 
1\vo main features distinguish trip distribution models. The first 
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is the source of the seed matrix. The literature on trip distribution 
for general transportation planning emphasizes two sources of the 
seed: old surveys and, with the gravity model, distance-based 
models of impedance or its inverse, propensity. The literature on 
bus route 0-D matrix estimation concentrates primarily on using 
data from a small 0-D sample as the seed. This paper follows the 
example of an SG Associates study done of Cleveland bus routes 
in using a distance-based propensity (2). 

The second main feature of a trip distribution model is the 
criterion of what constitutes a good fit to the seed, and therefore 
how the seed should be expanded to match the row and column 
totals. Methods of expanding the seed that have been studied in­
clude the biproportional method (3), least squares ( 4), and iterative 
methods based on maximum likelihood (3,5), maximum entropy 
(6), and minimum informati~n (7). As Ben-Akiva et al. demon­
strate, results for transit route 0-D matrixes are extremely insen­
sitive to the method of expansion (3). They recommend the bi­
proportional method because of its computational advantages. 
Another advantage of the biproportional method is that it is com­
patible with the gravity model of trip distribution. 

BIPROPORTIONAL METHOD AND GRAVITY 
MODEL OF TRIP DISTRIBUTION 

The biproportional method produces estimates that have the form 

for all i, j (3) 

where A; and Bi are endogenous row and column factors that bal­
ance the matrix, that is, enable it to satisfy Equations 1 and 2. 
There is no general method for solving for these factors in closed 
form. The most popular way of finding them is through a proce­
dure known variously as iterative proportional fit (3) or Bregman's 
balancing method (7), in which all the rows are proportionately 
factored to match their row totals, all the columns are factored 
likewise, and the process is repeated until it converges. Conver­
gence is guaranteed, and the resulting matrix· solution is unique 
(7,8). If a~ is the balancing factor for row i at iteration k, then 
A; = Ilf(LZ~, and similarly for the column factors. 

In trip distribution using the gravity model, the seed matrix is 
a matrix of propensities (reciprocal of impedance or friction) that 
are primarily a function of distance; that is, 

where 

dij = distance from i to j (km or min), 
p( ) = propensity function, and 

(4) 



Navick and Furth 

K;i = an empirical adjustment factor, set equal to 1 in the ab-
sence of special information. 

The doubly constrained gravity model (so called because both 
origin and destination totals are given) is usually expressed as a 
share model, sometimes called the interactance model (9): 

for all i, j (5) 

where~ is an endogenous factor for column j. There is no general 
closed-form solution for~· The typical solution algorithm begins 
with ~ = t.i, the total attractions at j. Equation 5 is applied to 
generate a trial matrix. The share form implicitly guarantees that 
Equation 1 is satisfied, but Equation 2 generally is not. The ad­
justment is then to multiply each ~ by the ratio (target column j 
total)/(current column j total). The procedure iterates, repeatedly 
generating a new trial matrix and adjusting all the column factors 
until it converges. 

Although the doubly constrained gravity algorithm differs from 
iterative proportional fit, both procedures, in fact, produce iden­
tical results (ignoring roundoff error and premature termination). 
To demonstrate this, one can simply express Equation 5 in the 
following form: 

(6) 

where W; = t;./(2.is;rXi) is a row-specific factor, not dependent on 
any particular column, that, like ~' is endogenous to the proce­
dure. Equation 6 is a biproportional form: the product of a cell­
specific seed, a row-specific factor, and a column-specific factor. 
Because the biproportional solution is unique, the doubly con­
strained gravity model is therefore equivalent to the biproportional 
model. Each W; and~ is equal at convergence to its corresponding 
iterative proportional fit factor A; and Bi exc(!pt for a scalar (the 
solution will be unchanged if the row factors are all multiplied by 
a scalar and the column factors divided by the same scalar). There­
fore, the biproportional method can be interpreted as a gravity 
model, in which A; and Bi are the true "masses," that is, the 
inherent productiveness and attractiveness of origin i and desti­
nation j, and s;i is the inherent propensity of travel from i to j. 
The interaction of these three factors determines the number of 
trips from i to j. Unfortunately, because of this interaction, none 
of the factors can be observed directly. 

SOURCES OF SEED MATRIX 

In most of the literature on estimating bus route 0-D matrixes, 
the seed matrix is the data from a small-sample 0-D survey. This 
data source has three shortcomings: the survey cost, nonresponse 
bias, and bias and imprecision due to small sample size. Non­
response bias occurs when the passengers who do not respond 
follow different travel patterns than responding passengers. Such 
a situation arises when response rate is affected by passengers not 
getting a seat, passengers making short trips, and buses passing 
through neighborhoods of varying levels of literacy or coopera­
tion. Imprecision is a common problem with small samples. A 
rule of thumb is that there ought to be at least five counted pas­
sengers in an 0-D cell for it to be statistically significant. When 
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no passengers are counted in a cell, problems in updating occur­
especially when the biproportional method is used in which a cell 
with a zero seed will remain zero after updating, biasing the re­
sults. Although Bayesian methods have been developed for such 
nonstructural zero cases (3), the estimates are still heavily influ­
enced by the empirical seed's patterns. Aggregating to the seg­
ment level before updating .can also introduce large biases in favor 
of intrasegment travel (10). Historically, problems of nonresponse 
and small samples have constantly plagued transit 0-D surveys, 
and updating surveys to reliable on-off totals has not eliminated 
the problem._ Resulting 0-D surveys still suffer from a lack of 
believability. 

Another possible seed is a "null seed" of equal values (for 
convenience equal to 1) for all 0-D pairs except for 0-D pairs 
that are not valid, whose values are 0. In the bus route problem, 
an 0-D pair is not valid if it represents travel in the wrong 
direction or if it is on the matrix diagonal. It is also possible to 
disqualify 0-D pairs that represent very short trips if the analyst 
believes that no one would make a trip that short. Furth and 
Navick (10) show that a null seed with biproportional updating 
is equivalent to a procedure developed by Tsygalnitsky (11), a 
single-pass recursive algorithm in which all passengers eligible to 
alight are deemed equally likely to alight at a particular destina­
tion. A passenger is eligible to alight if he or she has not yet 
alighted and has met the minimum distance qualification. Tsygal­
nitsky's method showed good results at the stop level, even on 
routes with a significant amount of turnover (11,12). 

The null seed is plea of ignorance, assigning equal propensity 
to all valid 0-D pairs. However, when on-off totals are given, it 
is often an effective plea, as it will often outperform a small sam­
ple seed. Furth and Navick found that, even without accounting 
for nonresponse bias, prediction accuracy was better using the null 
seed than with a small sample seed with a sample size of 100 
responses (10). Geva et al. also found that it was the absolute 
sample size and not the sampling ratio that strongly influences 
estimation accuracy (5). 

This research, more fully documented by Navick (13), was mo­
tivated by the desire to develop a more believable and more ac­
curate seed matrix than a null seed without using a small-sample 
survey. Sometimes there are analysis problems in which an 0-D 
survey cannot be taken and a seed matrix is needed, as in the 
problem of updating a ride check with multiple point checks (14). 
An analogous development has occurred in modeling 0-D flows 
through intersections. Although various updating methods were 
developed (the same methods used with transit 0-D matrixes), the 
only options for a seed matrix were either a small sample or a 
null seed using citywide averages of proportions of vehicles going 
left, through, and right (15), until a model of propensity was de­
veloped on the basis of explanatory factors such as intersection 
angle and competing shortcuts (16). Intuitively, the factors that 
best explain transit trip distribution are a preference for short trips 
(due to the disutility or travel time), competition with walking for 
very short trips, price, and effects of competing transit services. 
Because of the prevalence of fiat fares, the price effect has been 
ignored. The effects of competing services can best be modeled 
as a modification to an initial framework of an isolated route. The 
remaining two factors then suggest that propensity be a function 
of distance, starting off low, increasing as walking loses its appeal, 
and then decreasing as the trip length disutility begins to over­
come the utility of the trip purpose. The Cleveland study found 
that the trip length distribution followed this pattern (2). A gamma 
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Distance 

FIGURE 1 Propensity functions. 

distribution with O'. > 0 has the desired shape, having the form 

(7) 

Propensity is relative and, unlike a probability distribution, is 
not required to integrate to 1 because it will only be rescaled in 
the updating process. Therefore the gamma function scalar needed 
for a probability distribution may be omitted. The gamma pro­
pensity can be thought of as a product of a power function and 
exponential function. It is illustrated in Figure 1, where it is com­
pared with the null seed, an exponential propensity (if O'. = 0), and 
a power function propensity (if B = 0). This propensity function 
has been used in vehicle trip distribution. Bellomo et al. found 
the gamma to be a very good fit to automobile trips in Detroit 
(17), and Nihan used it in a gravity model to distribute vehicles 
along a freeway given ramp on-off volumes (18). 

"NO QUESTIONS ASKED" SURVEY 

The authors' primary source of data for estimating and validating 
the propensity model was a set of 0-D matrixes for three Boston 
area bus routes. To minimize the effects of nonresponse and sam­
ple size bias, a "no questions asked" survey (11,19) was con­
ducted on three Massachusetts Bay Transportation Authority 
(MBTA) routes that have little competition from other transit 
routes and much passenger turnover. To ensure data quality, the 
authors were directly involved in data collection and compilation, 
supervising a team of engineering students. 

As passengers boarded, they were handed a card coded with 
their origin stop number and were asked to simply return the card 
to a surveyor on leaving the bus. '.lb the authors' knowledge, this 
is the first application of the "no questions asked" survey at the 
st_op level rather that at the segment level. To get stop-level detail, 
three surveyors were needed for each bus, two at the front and 
one at the rear door. At the front door, the first surveyor held a 
box containing the survey cards, one bunch for each origin stop. 
Also in the box was the return bunch, consisting initially of spe­
cially colored header cards, one per stop (coded by stop number). 
The first surveyor kept the stop list and made sure that the second 
surveyor had in hand the bunch of cards for the origin stop being 

· approached. He handed a card to each boarding passenger and 
collected cards from the alighting passengers. The collected cards 
were filed by the first surveyor in the return bunch behind the 
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header card of the alighting stop. The rear door surveyor also 
collected and filed cards from alighting passengers. By being well­
prepared and aggressive, the group of surveyors was able to get 
a response rate of more than 90 percent on every trip, even though 
two of these routes operate in inner-city areas where typical on­
board surveys get a 30 percent response rate. Such a small number 
of passengers refused to participate that it was possible in most 
cases to "follow" them and handle their cards for them. The 
authors' experience with the "no questions asked" survey was 
very positive, and they enthusiastically recommend it as the best 
way to directly obtain 0-D data when it can be .done. 

0-D data were also obtained for several Miami bus routes col­
lected using ''no questions asked'' surveys. In Miami the cards 
were coded by route segment rather than by stop. Each segment 
was about 1.6 km (1 mi) long. Table 1 presents the Boston and 
Miami routes selected for analysis. 

NORMALIZED TRIP PROPENSmES 

0-D matrixes obtained from the MBTA surveys were used to in­
vestigate the shape of the propensity distribution. These 0-D ma­
trixes contain information about propensity and about the popu­
larity of origins and destinations. To uncover the propensity the 
matrixes had to be normalized, that is, the popularity factor had 
to be minimized. For example, although it is assumed that pro­
pensity to travel eventually decreases as distance increases, a 
strong attractor such as a mall or rapid transit station at the end 
of a route may overcome the propensity decay. This attractive 
power will be reflected by a large number of alightings at the end 
of the route and should not be mistaken as a desire for longer 
trips. 

Normalizing a matrix usually means updating each row and 
column total to the same constant, but this is not appropriate for 
a one-directional, and therefore triangular, matrix in which there 
are many cells with zero propensity. Therefore each row and col­
umn total was normalized to equal the number of valid cells con­
tributing to it, making the average normalized value per cell unity. 
Any normalized value above 1 implies a greater-than-average 
travel propensity; values below 1, a smaller-than-average propen­
sity. Matrix cells of equal travel distance were then aggregated 
within each bus trip and over all bus trips within a route. Because 
stop spacing does not vary much on the routes studied, travel 
distance was simply measured in stops. Then aggregating over all 
the Boston routes, the mean normalized propensity for each travel 
distance was determined. 

A plot of the mean normalized propensity versus travel distance 
is shown in Figure 2. It supports the assumption of a ·gamma 
propensity, showing an increasing propensity for approximately 
the first seven stops, a leveling off until approximately Stop 27 
(about 6.4 km (4 mi)] and then a decay until the end of the route. 
However, the routes surveyed were only about 8.1 km (5 mi) long, 
and so further exploration with longer routes is needed to see 
whether the decay is significant. 

ESTIMATION OF PROPENSITY MODEL 

Maximum likelihood can be used to estimate the parameters of 
the gamma propensity function. Each cell of the 0-D matrix can 
be considered an independent Poisson variable Tii with expected 
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TABLE 1 "No Questions Asked" Survey Data 

City Route. Direction 

Boston in 

out 

66 in 

out 

77 in 
out 

Miami 53 in & out 

54-6 in & out 

G in & out 

n.a. = data not available 

value A;j· If it is assumed that passengers arrive at stop i in a 
Poisson process, a typical assumption, and they are "stamped" 
with their destination stop j with conditional probability Pili• then 
the number of trips in cell (i, j) will be Poisson distributed. (Al­
ternatively, one could simply assume that passengers arrive in a 
Poisson process for each 0-D pair.) The probability of a realiza­
tion t;i, given it came from such a distribution, is 

1.6 

l;> 1.4 
·ig 
8. 1.2 

£ 1 

] 0.8 
t;l 

§ o.6 • 
z 
la 0.4 

~ 0.2 

• 
• • 
• 

• • • 
•• • • • • • 

• •• • • • •••• • • • • 
• ••••••• • •• 

• 
•• 

• • 
• 

(8) 
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FIGURE 2 Mean normalized propensities for Boston routes. 

Period Trips Passengers 

AM 2 176 
PM 1 54 
AM 2 129 
PM 61 

AM 4 244 
PM 2 102 
AM 4 333 
PM 2 183 

PM 3 81 
PM 3 158 

PRE AM n.a. 255 
AM 377 
MID 573 
PM 0 
EVE 0 
SAT 972 
SUN 195 

PREAM n.a. 896 
AM 1,371 
MID 4,156 
PM 2,630 
EVE 1,902 
SAT 620 
SUN 1,549 

PRE AM n.a. 88 
AM 846 
MID 1,875 
PM 222 
EVE 293 
SAT 1,628 
SUN 1,044 

Each A.ij represents the mean number of trips between origin i 
and destination j and is assumed, following the gravity model, to 
be the product of three factors: a productiveness factor A;, an 
attr~ctiveness factor Bi, and a distance-based propensity: 

(9) 

The likelihood function, L, is the probability that the observed 
matrix is a realization of independent cells that are each Poisson 
distributed with parameters A;i that are a function of the parameters 
A;, Bi, a, and j3: 

(10) 

As is common in maximum likelihood estimation, the log like­
lihood function, LL, is maximized: 

LL = .2:4{t;Jaln(d;J - d;ij3 + ln(A;) + ln(Bi)] 
I ) 

(11) 
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To maximize the log likelihood function, partial derivatives with 
resp~ct to O'., 13, A;, and Bj are set equal to 0: 

(12) 

(13) 

(14) 

(15) 

Rearranging the partial derivative expressions for A; and Bj: 

Lt;j = t;. = A;L dij e-d;jBj = 2:sijA;Bj = LA;j (16) 
j j J 

(17) 

Equations 16 and 17, equivalent to Equations 1 and 2, will be 
satisfied by updating the seed matrix {sij} using the biproportional 
method to match the given row and column totals t;. and t.j. Notice 
that this biproportional application arises without explicit con­
straints that the matrix of estimates {A.;j} agree with any row or 
column total. 

Investigation of the partial with respect to 13 reveals that the 
problem can be further simplified for this one-directional bus route 
problem. For an upper triangular 0-D matrix, 

n-1 n 

2: 2: diA.ij - l;j) (18) 
i=l j=i+1 

Separating the expression; 

(19) 

For the one-directional case, the distance between any 0-D pair 
(i,j) can be expressed as the sum of the distances of stop-to-stop 
segments: 

j-I 

dij = Ldk,k+I 
k=i 

Substituting 

Changing the summation order, 

aLL 

a13 

(20) 

(21) 

(22) 
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Combining under a single summation, 

(23) 

In this final expression, each k defines a rectangular block of 
0-D cells representing all of the 0-D pairs that cross the seg­
ment between stop k and stop k+ 1. Since the sum of any such 
block is simply the volume on segment (k,k+ 1 ), Equation 23 may 
be rewritten as 

aLL n-1 k 

~ = ~dk,k+1 b[(A;. - A.;) - (t;. - t.;)] = 0 (24) 

since A;. = t;. and A.; = t.j for all i (Equations 16 and 17). This 
implies that 13 and the exponential term of the gamma propensity 
seed do not affect the likelihood function for the case of one­
directional travel. Arbitrarily setting 13 to 0 allows the seed to be 
expressed simply as a power function alone: 

(25) 

This result is not an indication that a power seed represents the 
propensity of travelers-a decay in propensity as distance in­
creases is definitely believed; however, an exponential decay can­
not be identified in a one-directional scenario. 

The insignificance of the exponential term in the one-directional 
case can also be proved directly from a property of the bipropor­
tional method. A biproportional update {A.ij} of a seed matrix {s;J 
will have the following cross-product property (3) for cells (i,j) 
and (u,v) with sij > 0 and Suv > 0: 

S;jSuv = A;jAuv 

SujSiv AujAiv 
(26) 

Inserting the gamma propensity seed along with the row and col­
umn updating factors, 

SijSuv = (dije-f3dijA;B){d~ve-f3duvAfiv) 

SujSiv (d~je-f3dujAfiJ(d';.,e-f3d;v'AJJv) 

Collecting terms and canceling the updating factors, 

S;jSuv = (dijduv)"e-f3(d;j+duv) 

SujSiv (dujdiv}ae-f3(duj+div) 

(27) 

(28) 

In the one-directional case, the following relationships between 
stops must hold: i < j, u < v, u < j, and i < v; otherwise one or 
more of the seeds in Equation 26 will be 0. Therefore i < u < v 
< j. By placing this relationship on a number line, it is observed 
that 

(29) 

The exponential terms in Equation 28 will therefore cancel for 
any values of B, implying that the value of B is immaterial for the 
case of one-directional travel. 
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EQUIVALENCE OF EXPONENTIAL AND NULL 
SEEDS 

A common propensity function used in gravity models is the ex­
ponential function. For example, Sheffi derived the maximum en­
tropy result for the doubly constrained gravity model and found 
the propensity to be exponential (20). If a is set equal to 0, the 
proposed gamma propensity seed becomes an exponential seed. 
The foregoing results shows that the 13 does not affect the matrix 
estimate for one-directional travel. Now if 13 is set equal to 0, 
the seed becomes the null seed. Therefore, in the case of one­
directional travel, the null seed, which assumes equal propensity 
for any travel distance, is equivalent to an exponential seed, 
which implies equal conditional propensity. That is, the propensity 
for ending a trip at the next stop, given that it has not yet ended, 
does not change with distance. This extends the result found by 
Furth and Navick (10) and proves that with one-directional travel, 
Tsygalnitsky's method, the biproportional/gravity method with a 
null seed, and the biproportional/gravity method with an expo­
nential seed are all equivalent. 

MAXIMUM LIKELIHOOD ESTIMATES OF ALPHA 

Using one-directional data from Boston, B could not be estimated. 
Using the power seed and the likelihood function given earlier, a 

was estimated from both the Boston and Miami data. The data 
were first analyzed on a disagreggate level. For each trip, the log 
likelihood for values of a ranging from -1.0 to 4.0 with a step 
size of 0.2 was computed, and the optimal a identified. This enu­
meration method was chosen to allow for aggregation over routes 
and time periods. 

The Miami data were in a two-directional, segment-level format 
that called for slight changes in the methodology. To place the 
matrixes in one-directional triangular form, the diagonal cells 
were split in half for each direction. Also the seed matrix had to 
be changed because of the diagonal being included in the analysis. 
Propensity assignment to each cell of the segment-to-segment ma­
trix was the average of the stop-to-stop propensities included in 
that cell. Maximum likelihood estimation for a was then applied 
as in the Boston case. 

The results of the maximum likelihood estimation are presented 
in Table 2. The table is aggregated at the route, city, and two-city 
levels for various periods. As a broad observation, a = 1.0 fits all 

TABLE 2 Maximum Likelihood Alphas 

Period 

Route AM Mid PM 

Bos 1 1.0 n.a. 1.6 
Bos66 1.8 n.a. 0.8 
Bos77 n.a. n.a. 1.0 
Mia53 2.4 1.8 n.a. 
Mia 54-6 0.8 0.6 1.6 
MiaG 0.6 0.4 0.2 
Bos 1.4 n.a. 1.0 
Mia 0.8 0.6 1.4 
Bos-Mia 1.0 n.a. 1.4 

n.a. = data not available 
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the combinations reasonably well. An attempt was made to ob­
serve varying travel propensities at different times of the day and 
days of the week. No patterns emerged; parameter values were 
scattered about 1.0 for a.m., p.m., weekday, and weekend trips. 
This result differs significantly from the exponent of -1.8 esti­
mated in the Cleveland study (2) (the reported exponent is + 1.8, 
but that is the exponent for impedance, the reciprocal of propen­
sity). In that study, stop-to-stop "distance" was measured as the 
sum of travel time and route headway. But, more important, that 
study did not control for alighting totals, and therefore its pro­
pensity function is dominated by the decay in the trip length 
distribution. 

Two hypothesis tests were conducted to investigate the statis­
tical strength of a universal alpha. Two proposed universal 
alphas-1.0 (propensity increasing linearly with distance, in ad­
dition to an unspecified exponential decay) and 0 (the null seed, 
or merely exponential decay)-were tested for equivalence 
against the maximum likelihood estimate for each particular case. 
The likelihood ratio test with 1 degree of freedom and a signifi­
cance level of 0.05 was used. A rejection of the hypothesis implies 
a poor fit for the so-called universal alpha. a = 1.0 was not re­
jected in 38 percent of the 42 cases, while the null seed was 
rejected in all except two cases. 

Although the performance of the a = 1.0 seed is not staggering, 
consideration must be given to the likelihood of almost any hy­
pothesized value being rejected when there is a large sample size. 
For model application, a planner must typically choose a value of 
a without the benefit of data from which to estimate a locally 
preferred value. Overall, the results show enough consistency and 
support for a value near a = 1.0 that this value is recommended 
until and unless analysis of additional data points to a preferred 
value. 

PREDICTION ACCURACY AND SENSITIVITY 

Using on-off totals for each MBTA trip surveyed, 0-D .matrixes 
were estimated for using various universal alphas and compared 
with the observed matrix. A planner will typically care more about 
segment-level accuracy than a stop-level accuracy, since misallo­
cating passengers from one stop to a neighboring stop is usually 
inconsequential. Therefore the stop-level estimated and observed 
0-D matrixes were aggregated to the segment level using five-

Sat Sun WkDay WkEnd Day 

n.a. n.a. 1.0 n.a. n.a. 
n.a. n.a. 1.4 n.a. n.a. 
n.a. n.a. n.a. n.a. n.a. 
2.0 0.4 n.a. 2.0 n.a. 
-0.8 0.6 1.2 0.4 1.0 
0.6 0.8 0.4 0.6 0.6 
n.a. n.a. 1.2 n.a. n.a. 
0.4 0.8 0.8 0.6 0.8 
n.a. n.a. 0.8 n.a. n.a. 
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TABLE3 Segment-Level Accuracy 

Relative Root-Mean-Square Error(%) 

Boston Route 1 

Alpha In/AM In/PM Out/ AM Out/PM 

0 1.54 2.15 1.72 
1 1.72 1.79 1.64 
2 2.03 1.73 1.83 
optimal 1.61 1.75 1.70 

stop segments. The matrixes were then compared using the fol­
lowing relative root-mean-square error (RRMSE) formula: 

RRMSE 

where 

1 
t .. 

i,j = segments, 
m = number of segments, 
K =number of valid segment-level 0-D pairs, and 
t .. =total boardings for trip. 

(30) 

This measure describes the difference between the generated 
segment-level 0-D cell value and the observed cell in relation to 
the total boardings. The results are given in Table 3 for different 
values of O'.. The results show little sensitivity to O'., with the mea­
sure of error varying between 0.68 and 2.15 percent of total board­
ings. Of several proposed universal alphas including the null seed 
(O'. = 0), O'. = 1.0 performs the best in all but three of the cases. 
The RRMSEs for O'. = 1.0 do not significantly deviate from those 
of the optimal values, with an average error of approximately 1.5 
percent over all the routes. 

To examine the distribution of errors, the relative absolute error 
for each (segment-level) 0-D cell was calculated using the 
formula 

(Relative absolute error);j = IA.;j - t;A 
t .. 

(31) 

A cumulative distribution of relative absolute errors was con­
structed over all the route-direction-period combinations. The me­
dian relative absolute error was 0.5 percent of total boardings, and 
the 95th-percentile value was approximately 2.6 percent of total 
boardings. Both the segment-level and the stop-level errors appear 
quite reasonable from a planning standpoint. 

SENSITIVITY ANALYSIS FOR DESIGN 
APPLICATION 

Another test of a model for generating 0-D matrixes is how it 
will perform under practical design applications. One application 
in which the 0-D matrix is an important tool is the design of 
limited-stop service to complement local service. A limited-stop 
route is effective where the route is composed of a few heavily 

1.64 
1.52 
1.59 
1.52 
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Boston Route 66 

In/AM In/PM Out/AM Out/PM 

0.80 0.98 1.14 1.36 
0.68 0.88 0.92 1.39 
0.82 1.06 0.97 1.59 
0.72 0.86 0.94 1.37 

used stops. By combining local service with limited-stop route, 
where stops are made only at those with the most passenger move­
ments, passenger travel times, and sometimes vehicle operating 
hours can be reduced. 

In our application, those stops in the top 20th percentile by 
passenger movements were designated as limited stops. All pas­
sengers whose origins and destinations were both within one stop 
of a designated stop were assumed to use the limited stop; the 
others remained on the local route. In this way, the 0-D matrix 
is split into two. The key design measures for a limited-stop route 
are peak volume (which governs the cost of the route) and total 
boardings (which governs the benefit of the route). 

Both the observed and estimated 0-D matrixes were analyzed 
for limited-stop service on MBTA Routes 1 and 66 for both di­
rections and in various periods. The results show no practical dif­
ferences in the design measures for O'. = 0.0, 1.0, 2.0, and the 
optimal alpha. Compared with the design measures obtained using 
the observed 0-D matrix, the greatest errors occurred on RT 66/ 
OUT/AM; these errors were 13 boardings per hour (5 percent) 
and 18 passengers per hour (11 percent) in peak volume. RT 66/ 
OUT/PM had a discrepancy of 14 passengers per hour (7 percent) 
in peak volume. For the other six route/direction/periods exam­
ined, the errors were considerably smaller. 

CONCLUSIONS 

Through the separation of observed 0-D matrixes into two com­
ponents, propensity and popularity, the gamma distribution was 
found to be a good representation of passenger trip length. Nor­
malized propensities increased for approximately 1.6 km (1 mi), 
leveled off for the next 4.8 km (3 mi), and decreased to the end 
of the route. This model of propensity coupled with the belief in 
the gravity model enables an 0-D matrix to be generated effec­
tively to match on-off counts. The updating method used was the 
iterative proportional fit, which was shown to be the equivalent 
of the gravity (share) model. 

The gamma propensity function is reduced to a power function 
in the one-directional case because of the properties of the bipro­
portional method. The exponential term is unobservable in this 
case, although still a propensity component. Following from this 
finding, the null seed and the exponential seed, both based on 
assumptions of equal propensity, were shown to be equivalent in 
the one-directional case. 

The power function's parameter, O'., was estimated using th 
0-D data from both the Boston and Miami routes. In general, O'. 

1.0 was observed to fit all combinations of routes, days, and time 
reasonably well. Statistically, a universal O'. = 1.0 performed bette 
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than the null seed (a = 0) as measured by the likelihood ratio 
tests. A test of segment-level accuracy revealed that a = 1.0 per­
formed the best, yielding an RRMSE in the estimate of a segment­
to-segment 0-D pair of approximately 1.5 percent of total board­
ings. For an individual stop-level 0-D cell, the median absolute 
relative error for a = 1.0 was approximately 0.5 percent of total 
boardings. These error magnitudes appear reasonable for planning 
purposes. In a practical application, limited-stop route design, the 
design measures were insensitive to the choice of a. 

The one-directional nature of this problem limits the degrees of 
freedom and allows for little variability in final matrix estimation. 
However, a planner that has on-off totals can now confidently 
investigate potential route changes in the office using a generated 
0-D matrix from a power seed with a= 1.0 (propensity increasing 
linearly with distance) rather from an expensive 0-D survey. 
However, care must be taken in applying this method when there 
is significant competition between routes, as mentioned elsewhere 
(10); competition will lower the propensity to travel between com­
mon stop pairs on both routes. 

Finally, a methodology has been developed to extend this work 
to the generation of 0-D matrixes for transit networks. In this 
two-directional problem, the exponential term of the gamma pro­
pensity seed will contribute significantly and must be estimated. 
The two-directional propensity's power term should not vary sig­
nificantly from the findings in this study. 
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