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Drainability of Granular Bases for 
Highway Pavements 

BRUCE M. McENROE 

The best measure of the drainability of a granular base is the minimum 
degree of saturation that can be achieved through gravity drainage in 
the field. The amount of water that can drain from a base course 
depends not only on the physical properties of the material, but also 
on the cross-sectional geometry of the pavement system. A fine­
grained base may remain fully saturated under the largest suction that 
can be developed through gravity drainage. A formula for the mini­
mum degree of saturation in the granular base is developed from 
Brooks and Corey's formula for water retention in unsaturated porous 
media. The relationship for drainable porosity in the FHWA subdrain­
age design manual tends to overestimate the amount of drainage from 
fine-grained bases and greatly underestimate the amount of drainage 
from coarse-grained bases. If the minimum degree of saturation for a 
granular base is sufficiently low, it will drain fairly quickly. The rec­
ommended method for the estimation of drainage times is a one­
dimensional analysis of the saturated flow below the phreatic surface. 
This analysis accounts for the nonuniform spatial distribution of drain­
able porosity. Casagrande and Shannon's procedure, which is rec­
ommended by FHWA, tends to underestimate drainage times, partic­
ularly for base courses that are relatively thin. The recommended 
procedures for subdrainage analysis have been implemented in the 
SUBDRAIN computer program of the Kansas Department of 
Transportation. 

Pavements with inadequate subsurface drainage deteriorate much 
faster than well-drained pavements. If the base course of the pave­
ment is saturated or nearly saturated, wheel loads can cause water · 
and base material to be pumped out through joints and cracks and 
at pavement edges, which eventually undermines the pavement. 
Because it is virtually impossible to keep water from entering -
pavements through joints and cracks over the long run, good 
drainage is essential for pavement longevity. 

The AASHTO procedure for pavement design (1) incorporates 
a drainage coefficient as a key input. The value of this coefficient 
depends on the quality of drainage of the pavement system and 
the percentage of time that the road bed is exposed to moisture 
levels near saturation. The AASHTO design guide relates the 
quality of drainage to the time required for the removal of water 
from the base course, but it does not specify what degree of drain­
age or level of saturation constitutes ''removal.'' In FHWA's com­
puter program (2), the drainability of the base is measured by time 
required for a saturated base to drain to water content equal to 85 
percent of the water content at saturation. 

One measure of the drainability of a base course is its coeffi­
cient of permeability (Darcy permeability), k. The coefficient of 
permeability depends upon the intrinsic permeability of the gran­
ular material and the specific weight and viscosity of the fluid. 
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The relationship is 

k =Ky 
µ 

(1) 

in which K is the intrinsic permeability of the granular material and 
'Y and µ are the specific weight and viscosity of the fluid, respec­
tively. The coefficient of permeability, k, has dimensions of LIT 
(length/time). The intrinsic permeability, K, has dimensions of L2

• 

Another measure of drainability is the lowest degree of satu­
ration that can be achieved through gravity drainage in the field. 
The degree of saturation, s, is defined as the ratio 0/n, in which 
0 is the volumetric water content and n is the porosity (the vol­
umetric water content at complete saturation). The lowest degree 
of saturation that can be achieved in the field through gravity 
drainage is denoted smin· The difference between the water content 
at saturation and the lowest water content that can be achieved in 
the field through gravity drainage is termed the drainable porosity, 
nd. The porosity; the drainable porosity, and Smin are related as 
follows: 

(2) 

In current practice, the drainable porosity of the base material is 
usually estimated from the coefficient of permeability by means 
of a relationship that appears in graphical form in FHWA's report 
Highway Subdrainage Design (3). The algebraic form of this re­
lationship is 

nd = 0.0355k°·235 (3) 

for k in meters per day. The corresponding formula for the min­
imum degree of saturation is 

s . = 1 - 0.0355 k0.235 
mm n (4) 

for k in meters per day. Equation 3, which is strictly empirical, 
was fitted to measured values of the coefficient of permeability 
and the drainable porosity for soils of varied gradations and den­
sities. The report states that it "should be used with caution, par­
ticularly at the extremities where data were lacking or were quite 
scattered." Despite this warning, FHWA's DAMP program (2) 
obtains the drainable porosity of the granular base from Equation 
3 exclusively. It does not allow the user to enter another value for 
the drainable porosity. 

Drainage times are normally estimated, directly or indirectly, 
from formulas published by Casagrande and Shannon (4) in 1951. 
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The methods for estimation of drainage times in FHWA's sub­
drainage design manual (3) and the DAMP program (2) are based 
on these formulas. The basic forms of Casagrande and Shannon's 
relationships were derived through a simplified one-dimensional 
analysis in which the phreatic surface (water table) was considered 
planar at all times. To compensate for the error introduced by this 
approximation, they incorporated an undetermined coefficient in 
their analysis as a correction factor and used experimental data to 
determine its values for various conditions. 

This paper presents a new analysis of the drainage of a saturated 
granular base. Starting from basic principles of water retention 
and flow in porous media, this analysis leads to some new meth­
ods for the estimation of minimum degrees of saturation, drainable 
porosities, and drainage times. It also provides a basis for the 
evaluation of the current methods. 1\vo example problems illus­
trate the practical application of the recommended procedures. 

MINIMUM DEGREE OF SATURATION 

Theory 

Any granular material has a characteristic drainage curve that re­
lates the degree of saturation to the pore-water suction head (neg­
ative pressure head), \fl. The drainage curve is best determined 
from measurements of the water content at equilibrium for suc­
cessively larger suction heads in the laboratory. An approximate 
drainage curve can be computed from grain-size distribution and 
bulk density data (5). The drainage curves of most granular ma­
terials can be approximated closely by the formula of Brooks and 
Corey (6), 

(5) 

The terms s,, lflm and A. in Equation 5 are constants for a particular 
material. The values of these constants are determined by fitting 
Equation 5 to the data that make up the drainage curve. The con­
stant s, is termed the residual saturation. It is the degree of satu­
ration that is approached asymptotically at very large suction 
heads. The constant lfla is termed the air-entry head. It is the suc­
tion head below which the material remains fully saturated. The 
dimensionless constant A. is termed the pore-size distribution in­
dex. The more uniform the material, the larger the value of A.. 

Laliberte et al. (7) showed that the values of s,, lflm and A. are 
related to the porosity and intrinsic permeability of the granular 
material and the specific weight, viscosity, and surface tension of 
the fluid according to the formula 

(1 - s,) n cr2 A. -"------'--- -- = 5 
K \fl: -y2 A. + 2 

(6) 

in which K is the intrinsic permeability of the granular material 
and -y, µ, and er are the specific weight, viscosity, and surface 
tension of the fluid, 'respectively. The form of this relationship has 
a theoretical basis. The value of the constant on the right-hand 
side was determined experimentally. 

The drainable porosity of the base course of a pavement de­
pends not only on the physical properties of the material, but also 
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on the cross-sectional geometry of the pavement system. The ge­
ometry of the pavement section determines the maximum pore­
water suction at any point in the base. Figure 1 shows a pavement 
section with a granular base and edge drains. The subgrade is 
considered impervious. If the granular base is saturated and then 
allowed to drain under the force of gravity with no further inflow 
and no evaporation, drainage will eventually cease. In this state 
of static equilibrium, the suction head at any point is equal to its 
height above the water table in the edge drain (\fl = w + z) and, 
from Equation 5, the corresponding minimum degree of saturation 
at this level, smin(z), is 

{

1 Z:::;; lfla - W 

Smin (z) = (1 ) ( lfla )>. z > lfla - W 
S, + - S, W + Z 

(7) 

At elevations z :::;; lfla - w, the granular base will not drain at all. 
The drainable porosity at any level is the difference between the 
porosity and the minimum water content at that level: 

n,Az) = n [1 - Smin (z)] (8) 

Equation 8 follows from Equation 2. The average minimum sat­
uration at a distance x from the edge drain, smin(x), is the average 
of smin(z) over the thickness of the granular base: 

mx+d 

- 1 J Smin (x) = d Smin (z) dz (9) 

The evaluation of the right-hand side of Equation 9 leads to an 
algebraic formula for smin(x): 

1 xs~ 

s, + (1 - s,) { t\la - : - mx 

+ t\I~ · [(w + d + mx)1->-
d(l - A.) 

Smin (x) = 
_ ,1,aI->.1} < 

'I' X1 < X - X2 

s, + (1 - s,) ( \fl~ ) [(w + d + mx)1->­
d 1 - A. 

z 

x::.o Subgrade 

FIGURE 1 Cross section of pavement with 
granular base and edge drain. 

(10) 
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(12) 

The average drainable porosity at a distance x from the edge drain, 
n.t(x), can be determined from the porosity and the average min­
imum water content at this location as follows: 

nAx) = n [l - Smin(x)] (13) 

The spatially averaged minimum saturation for the entire base 
course, Smi"' is the average of smin(x) from x = 0 to x = L: 

1 [-Smin = - Smin (x) dx 
L o 

(14) 

The evaluation of the right-hand side of Equation 14 leads to an 
algebraic formula for smin: 

S . = + (l _ ) {~ + (\j/0 - w) (x2 - X1) 
mm S, S, L dL 

m(x~ - xi) 

2dL 

md.L(l - A.) (2 - A.) 

- (w + d + mx1)
2 ->-

- (w + ml)'-' + (w + mx,r' J 
_ \jla (x2 - Xi)} 

d.L(l - A.) 
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FIGURE 2 Minimum degree of saturation versus 
coefficient of permeability for Example 1. 
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The average drainable porosity for the entire base course, Nd, can 
be determined from the porosity and the spatially averaged mini­
mum saturation as follows: 

(16) 

For the base to drain at all, the air-entry head of the granular 
material must be less than the elevation difference between the 
top of the base at the crown and the water table in the edge drain 
(\jla < W + d + mL). 

The following example illustrates the relationship between the 
coefficient of permeability of the base material and the minimum 
degree of saturation. It also provides a comparison of Equations 
15 and 16 and Equation 3. 

Example 1: Minimum Degree of Saturation for 
Typical Pavement Section 

Problem: The base course of a pavement is to have a slope of 
0.02 m/m, a thickness of 0.1 m (3.9 in.), and a half-width (L in 
Figure 1) of 7.0 m (23.0 ft). The bottom of the drainpipe is to be 
0.1 m (3.9 in.) below the bottom of the base (w = 0.1 m). The 
base is to be constructed of a well-sorted granular material. This 
type of material would have a porosity of about 0.40, a residual 
saturation on the order of 0.1, and a pore-size distribution index 
on the order of 4. The objective is to determine the (spatially 
averaged) minimum degree of saturation of the base for materials 
with coefficients of permeability from 10 to 1000 m/day (33 to 
3,300 ft/day). 

Solution: According to Equation 15, the minimum degree of 
saturation of the base is determined by four geometric variables 
(d, w, L, and m) and three properties of the material (s,, \j/0 , and 
A.). Equation 6 provides an estimate of the air-entry head based 
on other properties of the material and the fluid. The solid curve 
in Figure 2 shows Smin from Equation 15 ford= 0.1 m (3.9 in.), 
w = 0.1 m (3.9 in.), m = 0.02 m/m, L = 7.0 m (23.0 ft), s, = 0.10, 
and \j/0 = 1.333/C112 for \j/0 in meters and k in meters per day. The 
formula for \j/0 , from Equation 6, is based on n = 0.40, 'Y = 9810 
N/m3

, µ = 0.00131 N s/m2
, and a = 0.0742 Nim (water at 10°C). 

The foregoing example demonstrates that a granular base must 
be fairly coarse to drain well. In this example, materials with 
coefficients of permeability less than 15 m/day do not drain at all 
because their air-entry heads are too large (\j/0 > w + d + mL). 
Materials with coefficients of permeability below 33 m/day (110 
ft/day) will remain more than 85 percent saturated. A minimum 
saturation of 50 percent requires a coefficient of permeability of 
64 m/day (210 ft/day). On the other hand, nearly all of the pore 
water will drain by gravity if the material is very coarse. Materials 
with c~efficients of permeability above 150 m/day ( 490 ft/day) 
will drain to below 20 percent of saturation. 

Figure 2 also shows Equation 3, the relationship incorporated 
in FHWA's DAMP program (2). This formula appears to overes­
timate the amount of drainage from fine-grained material and to 
greatly underestimate the amount of drainage from coarse-grained 
materials. 

DYNAMICS OF DRAINAGE 

One-Dimensional Analysis with Spatially Varied 
Drainable Porosity 

Figure 1 shows the drainage of a granular base with no inflow or 
outflow through the pavement or subgrade. Drainage starts from 
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an initial condition of complete satura!ion at time t = 0. The ob­
jective of the analysis is to determine the degree of saturation of 
the base at times t > 0. The primary direction of flow is downslope 
parallel to top of the subgrade. The vertical distribution of pore­
water pressure is essentially hydrostatic everywhere except over 
the edge drain and very near x = 0, where the vertical curvature 
of the streamlines is significant. Most of the fl.ow occurs in the 
zone of positive pore-water pressures below the phreatic surface 
(the surface of atmospheric pressure). 

The drainage of the base course is analyzed as a problem of 
one-dimensional unconfined saturated flow in the zone of positive 
pressures below the phreatic surface, with a spatially varied drain­
able porosity. The degree of saturation above the phreatic surface 
at a distance x from the edge drain is assumed to be smin(x). The 
corresponding water content above the phreatic surface is n -
nix). 

The continuity equation for the flow in the zone below the 
phreatic surface is 

(17) 

in which h(x,t) is the elevation of the phreatic surface and q(x,t) 
is the discharge (per unit width) in the -x direction. The equation 
of motion is the Dupuit discharge formula for unconfined seepage 
over a sloping bed: 

mx] 
ah(x,t) 

q(x,t) = K [h(x,t) - ax (18) 

The substitution of the right-hand side of Equation 18 for q(x,t) 
in Equation 17 yields the governing equation with h(x,t) as the 
dependent variable: 

_ ah(x,t) a { ah(x,t)} ntt(x) -- - K - [h(x,t) - mx] -- = 0 
dt dX dX 

(19) 

The initial condition is h(x,O) = mx + d, which represents com­
plete saturation with no excess pressure. The lower boundary, x = 
0, is the brink of the edge drain. The appropriate boundary con­
dition at this location is a hydraulic gradient of unity (8). The 
upper boundary, x = L, is the crown of the road. Symmetry re­
quires that no fl.ow cross this boundary. This requirement is sat­
isfied by a horizontal phreatic surface (hydraulic gradient of zero) 
until h becomes zero. The average degree of saturation at any time 
can be determined from the phreatic-surface profile: 

1 J.L {- _ h(x,t) - mx} 
S(t) = L 

0 

Smin (x) + [1 - Smin(x)] d dx 

(20) 

This mathematical model of the drainage process has been imple­
mented in the SUBDRAIN computer program of the Kansas De­
partment of Transportation. This program solves Equation 19 for 
the stated initial and boundary conditions by a nonlinear implicit· 
finite-difference scheme. The program returns the average degree 
of saturation at the end of each time step. It also returns the time 
to 85 percent saturation (S = 0.85) and the time to 50 percent 
drainage (S = Smin + 0.5Nin). 
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One-Dimensional Analysis with Constant Drainable 
Porosity 

A more approximate analysis with a constant drainable porosity 
leads to a simple algebraic formula for th_e time to 50 percent 
drainage. In this analysis, the spatially averaged drainable poros­
ity, Nd, is substituted for the local drainable porosity, nix), in the 
governing differential equation. With this simplification, the prob­
lem can be stated in terms of the dimensionless variables 

Kmt 
T = 

LNd 

x 
X= 

L 

h 
H= 

D 

mL 

d 

mL 

The goverµing equation is 

aH(X,1) - ~ {[H(XT) - X] aH(X,T)} 0 
aT ax ' ax 

(21) 

(22) 

(23) 

(24) 

(25) 

and the initial condition is H = D + X. The boundary conditions 
can also be stated in terms of these dimensionless variables. 
H(X,1) is determined entirely by D, the dimensionless thickness 
of the base. 

The degree of drainage at any dimensionless time, U, is the 
fraction of drainable pore space that has been drained: 

1 - s 
U= 

1 - Smin 
(26) 

Its value at any time can be calculated from the dimensionless 
phreatic-surface profile: 

U(1) = f ~(X,1) - X] dx (27) 

Because D determines H(X,T), it also determines U(1). Figure 3 
shows the relationship between the dimensionless time to 50 per­
cent drainage, Tso, and the dimensionless thickness of the base, 
D, as determined from numerical solutions of the governing equa­
tion for many values of D. These numerical results are fitted 
closely by the simple empirical formula 

Tso = 
0.63 

D + 1.3 
(28) 

In dimensional form, this formula is 

LNd d 
( )

-! 

Tso = 0.63 Km mL + 1.3 (29) 

Formulas for times to other degrees of drainage could be devel­
oped in the same way. 
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Simplified One-Dimensional Analysis by 
Casagrande and Shannon 

Casagrande and Shannon's model of the drainage process (4) can 
be expressed concisely in terms of the dimensionless variables T, 
U, and Das 

T = C(D) · f(D, U) 

in which 

f(D, U) = 

and 

D + 2U 
2U - D In D 

2D - 2UD + 1 
l + In (2 - 2U) (D + 1) 

D + 1 
-Dln--

D 

C(D) = 2.45 - 0.8D- 113 

(30) 

U$ 0.5 

(31) 

u > 0.5 

(32) 

The function f(D, U) is the solution for T from their simplified 
one-dimensional analysis with a planar phreatic surface. The func­
tion C(D) is a correction factor that was introduced to better fit 
the results of some laboratory and field experiments. A formula 
for the time to 50 percent drainage can be obtained by the sub­
stitution of 0.5 for U in Equation 30. This formula is 

( 
D + 1) Tso = (1.225 - 0.4D- 113

) 1 - D In --0 (33) 

Equation 33 is plotted in Figure 3. For large values of D, Equation 
33 closely approximates the numerical results from the complete 
one-dimensional analysis with a constant drainable porosity. For 
small values of D, Equation 33 appears to underestimate T50 

considerably. 
The following example illustrates the relationship between the 

coefficient of permeability of the base material and two measures 
of the drainage time for a typical pavement section. It also pro­
vides a comparison of three different methods for estimating these 
drainage times. 
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FIGURE 3 Comparison of two approximate 
methods for time to 50 percent drainage. 
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FIGURE 4 Time to 85 percent of saturation versus 
coefficient of ·permeability· for Example 2. 

Example 2: Drainage Times for Typical Granular Base 
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Problem: As in the previous example, the base course of a pave­
ment is to have a slope of 0.02 m/m, a thickness of 0.1 m (3.9 
in.), and a half-width (L in Figure 1) of 7.0 m (23.0 ft). The 
bottom of the drainpipe is to be 0.1 m (3.9 in.) below the bottom 
of the base (w = 0.1 m). The base is to be constructed of a well­
sorted granular material. This type of material would have a po­
rosity of about 0.40, a residual saturation on the order of 0.1, and 
a pore-size distribution index on the order of 4. The objective is 
to determine the times to 85 percent saturation (S = 0.85) and the 
times to 50 percent drainage (U = 0.50) for base materials with 
coefficients of permeability from 10 to 1000 m/day (33 to 3,300 
ft/day). 

Solution: The drainage times are estimated by three different 
methods: 

1. Complete one-dimensional analysis with spatially varied 
drainable porosity from Equations 10-13 (SUBDRAIN program), 

2. Complete one-dimensional analysis with a constant, spatially 
ayeraged drainable porosity from Equations 15-16 (modified 
SUBDRAIN program), and 

3. Simplified one-dimensional analysis by Casagrande and 
Shannon ( 4) with constant drainable porosity from Equation 3 
(DAMP program). 

Figure 4 compares the results for the time to 85 percent of 
saturation. These results for Methods 1 and 3 do not differ greatly 
except fork< 40 rn/day (130 ft/day). A comparison of the results 
for Methods 1 and 2 shows that the more approximate method 
yields considerably shorter estimates of drainage times for mate­
rials with permeabilities less than about 100 m/day (330 ft/day). 
The drainable porosity is actually larger near the centerline of the 
road than near the sides because of the difference in elevation. 
Most of the water that drains from the base must travel a distance 
greater than L/2 to reach the edge drain. This is why Method 1, 
which uses spatially varied drainable porosities, yields longer 
drainage times than Method 2, which uses a spatially averaged 
drainable porosity. The two methods yield nearly identical drain­
age times for very coarse materials because the spatial variability 
of drainable porosity is very small for these materials in this 
system. 

Figure 5 compares the results for the time to 50 percent drain­
age. The drainage times for Method 3 are based on different drain-
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FIGURE 5 Time to 50 percent drainage versus 
coefficient of permeability for Example 2. 

able porosities, and therefore different volumes of drainage, than 
the drainage times for Methods 1 and 2. Method 2 underestimates 
the time to 50 percent drainage for materials with permeabilities 
less than about 100 m/day (330 ft/day) because the spatial vari­
ability of the drainable porosity is relatively large for these ma­
terials in this system. 

CONCLUSIONS 

The best measure of the drainability of a granular base is the 
minimum degree of saturation that can be achieved through grav­
ity drainage in the field. The amount of water that can drain from 
a base course depends not only on the physical properties of the 
material, but also on the cross-sectional geometry of the pavement 
system. The geometry of the pavement section limits the amount 
of suction that gravity can exert on the pore water. A granular 
base must be fairly coarse to drain adequately. A fine-grained base 
may remain fully saturated under the largest suction that can be 
developed through gravity drainage. 

Equation 15 can provide a good estimate of the minimum de­
gree of saturation for a granular base. It incorporates both the 
water-retention properties of the drainage material and the cross­
sectional geometry of the pavement. Equation 3, which appears 
in FHWA's subdrainage design manual (3) and. the DAMP com­
puter program (2), tends to overestimate the amount of drainage 
from fine-grained bases and to greatly underestimate the amount 
of drainage from coarse-grained bases. Equation 3 does not ac­
count for the cross-sectional geometry of the pavement. 
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The recommended method for estimation of drainage times is 
a one-dimensional analysis of the saturated flow below the phre­
atic surface, with the local drainable porosities determined from 
Equation 10. The equation that governs the drainage process is 
solved· numerically by a finite-difference method. If the spatial 
variability of the drainable porosity is neglected, drainage times 
are underestimated. The formulas of Casagrande and Shannon ( 4) 
underestimate drainage times, particularly for systems in which 
d/mL « 1. 

The recommended procedures for subdrainage analysis have 
been implemented in the SUBDRAIN computer program of the 
Kansas Department of Transportation. These procedures could 
easily be incorporated into FHWA's DAMP program and other 
similar programs. 
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