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Bayesian Updating of Infrastructure 
Deterioration Models 

YUN Lu AND SAMER MADANAT 

Deterioration forecasting plays an important role in the infrastructure 
management process. The precision of facility condition forecasting 
directly influences the quality of maintenance and rehabilitation de
cision making. One way to improve the precision of forecasting is by 
successive updating of deterioration model parameters. A Bayesian 
approach that uses inspection data for updating facility deterioration 
models is presented. As an empirical study with bridge deck data 
indicates, the use of this methodology significantly reduces the un
certainty inherent in condition forecasts. 

The process of infrastructure management consists of three activ
ities: data collection and inspection, deterioration modeling and 
forecasting, and maintenance and rehabilitation (M&R) decision 
making (1). After facility condition data are collected, deteriora
tion models are developed by using these data to forecast future 
facility performance; both data and models are later used to sup
port M&R decision making. One fact that should be emphasized 
is that the relationship between condition data and deterioration 
models has traditionally been a static one; that is, once a deteri
oration model is developed, subsequently collected data are not 
used for model updating. 

In contrast to this approach this paper presents a method that 
exploits the condition data collected during facility inspections to 
improve the precision of deterioration models. In this method data 
are used not only for deterioration modeling but also for model 
updating. 

The advantage of this method is that one can start to develop 
a model even with limited data. Later the model can be updated 
as additional data become available. Therefore this approach in
creases the precision of forecasting and is expected to decrease 
facility life cycle costs. 

The updating method used in this paper is the Bayesian ap
proach, which will be introduced in the next section. PONTIS (2), 
the California Department of Transportation-FHWA network op
timization system for bridge improvement and maintenance, used 
the same methodology to update the transition probabilities rep
resenting bridge deterioration. The only difference between the 
work presented in this paper and the updating procedure used in 
PONTIS is that the present research deals with a continuous de
terioration model, whereas PONTIS is based on a discrete model 
that uses Markov transition probabilities as model parameters. 

BAYESIAN APPROACH 

Bayesian analysis is defined as the approach to statistics that for
mally seeks to use prior information. In statistics the Bayesian 
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approach is widely used to estimate an unknown parameter 8. 
Bayesian analysis is performed by combining the prior informa
tion and the sample information (x) into what is called the pos
terior distribution of 8 given x, from which all decisions and 
inferences are made (3). 

Let TI(8) denote the prior distribution of 8 and let L (x, 8) 
denote the likelihood function, then Bayes's theorem can be ex
pressed as follows: 

TI(8~) = "' L(x, 8)TI(8) 

L L(x, 0)7r(0)d(0) 

(1) 

where 

L(x, 8) = f(xj8) = likelihood of experimental outcome x, that 
is, conditional probability of obtaining a par
ticular experimental outcome assuming that 
the parameter is 8; 

TI(8) =prior probability Of 8, that is, before avail
ability of experimental information; 

TI(8~) =posterior probability Of 8, that is, probabil
ity that has been revised in the light of ex
perimental outcome x. 

It is observed from Equation 1 that both the prior distribution 
and the likelihood function contribute to the posterior distribution 
of 8. The prior information enters the posterior probability den
sity function (pdt) via the prior pdf, whereas all of the sample 
information enters via the likelihood function. In this manner 
judgmental and observational data are combined properly and sys
tematically (4). 

Likelihood Function 

For observed data, x, the function L (x, 8) = f(xl8) considered as 
a function of 8 is called the likelihood function. 

Given a set of observed values x1, x2, ••• , Xm which represent 
a random sample from a population of X with underlying density 
fx(X), the probability of observing this particular set of values, 
assuming that the parameter of the distribution is 8, is 

f(xl8) = L (x, 8) = TI fx(x;j8) (2) 
i; I 

From Equation 2 it can be observed that the likelihood function 
L (x, 8) is the product of the density function of X evaluated at 
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Prior Information 

Generally the prior information comes from past experience, the 
nature of the problem, or previous work. A prior distribution for 
which 7r(0) can be easily calculated is the so-called conjugate 
prior. For example the class of normal priors is a conjugate family 
for the class of normal (sample) densities. That is if X has a nor
mal density and e has a normal prior, then the posterior density 
of e given x is also normal. 

A conjugate prior greatly simplifies the application of Bayes's 
theorem for determination of a posterior distribution. Conjugate 
distributions provide a convenient model that may be realistic in 
many situations. 

Posterior Distribution 

The posterior distribution is the combination of the prior infor
mation and the likelihood function. Just as the prior distribution 
reflects beliefs about e prior to experimentation, so 7r(0P:) re
flects the updated beliefs about e after (posterior to) observing 
the sample x. In other words the posterior distribution combines 
the prior beliefs about e with the information about e contained 
in the sample x to give a composite picture of the final beliefs 
about e. 

The two important quantities of the posterior distribution are 
the mean and the variance. The mean value of 0 that is used as 
the Bayesian estimator of the parameter is 

E"'0 "'(0) = f 07r(0ix)d0 (3) 

and the variance is given by 

(4) 

In the case of a conjugate distribution, once the mean and the 
variance of the posterior distribution are calculated, one can di
rectly write its probability density function. 

The Bayesian approach has many advantages in the area of 
engineering planning and design. It systematically combines un
certainties associated with randomness and those arising from 
error of estimation and prediction. It provides a formal procedure 
for systematic updating of information and increases the predic
tion precision. 

APPLICATION OF UPDATING METHODOLOGY 

In this section the Bayesian approach is applied to the problem 
of updating facility deterioration models. A logistic model repre
senting the fraction of bridge deck area delaminated is used as an 
example. 

The logistic model has an S shape; its attractive mathematical 
property is that it has a bounded function that lies between 0 and 
1; it is therefore well-suited for representing the progression of 
the damaged fraction of a bridge deck. Figure 1 shows an appli
cation of the logistic model that represents the percentage of a 
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FIGURE 1 Fraction of bridge deck area damaged. 
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bridge deck area damaged (Pr) from year 0 to year 40 during 
which no maintenance or rehabilitation is performed. It can be 
observed from this graph that between years 0 and 10 there is 
very little damage since the bridge is new; after year 10 the rate 
of deterioration increases rapidly and P, reaches 0.94 at year 25. 
After that the deterioration tends to slow again. This trend is con
sistent with observations of bridge deck deterioration over time 
(5,6). 

The mathematical function of the logistic model is of the form 

1 
P,= b 1 + ea+ t+E 

where 

P, = fraction of area of bridge deck damaged; 
t = age of bridge deck; 

a, b =parameters specific to each bridge deck type; and 

(5) 

e = a random error term that captures the uncertainty asso
ciated with the deterioration process; it is usually as
sumed to be normally distributed, with mean µE equal to 
0 and variance cr; (the variance cr; is bridge deck type 
specific). 

In Equation 5 there are two parameters, a and b, that determine 
the rate of deterioration. Generally if sufficient observations of 
bridge decks of a given type consisting of t and P, are available, 
these two parameters can be estimated statistically. 

In reality no deterioration model is perfectly accurate because 
of the limited sample size, the inherent randomness of the process, 
observation errors, and so on. The Bayesian approach can be used 
to update the deterioration model parameters to increase the pre
cision of forecasting. For mathematical simplicity this paper con
siders updating parameter b only while treating parameter a as 
constant. Extending the method to update both parameters simul
taneously is conceptually straightforward, but somewhat mathe
matically cumbersome. 

Derivation of Prior Distribution and Likelihood Function 

To use Bayes's theorem one needs to find out the prior distribution 
of b and the likelihood function L(P" b ). 
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The prior distribution of b is easy to determine. If regression 
is used to estimate the parameters of Equation 5, then the param
eter b usually can be assumed to be normally distributed with 
mean µb and variance a~ (7). Therefore the prior density function 
of b can be written in the form · 

(6) 

To obtain the likelihood function the density function of P, must 
first be generated. 

In general if B is normally distributed with mean a and variance 
a 2 and B is log T, then T will be log-normally distributed (8). In 
Equation 5 let x = ea+bt+E and e =a + bt + E, then x = e 0 • Since 
8 = a + bt + E is normally distributed and 8 = log X, X is 
therefore log-normally distributed according to the above rule. Its 
density function is of the form 

-(log x-a-bt)' 

2cr! 
e 

f(x) = ~ ;;c 
v21T xae 

(7) 

Generally, if the pdf of x is known as f(x) and y = h(x), one 
can obtain the pdf of y by the following relation: 

(8) 

Therefore the density function of P, is given by 

(log(~ -1 )-a-bt]' 

(9) 

The likelihood function is the product of the pdf of P, over all 
observations: 

• [log(~-1)-a-b1]2 
L P .. , 

k i=I -2a( 

L(P,, b) = I1 f(P,,;lb) = _k_e ____ _ 

; : 

1 I1 V21T a ~1.;(l - P,,;) 
i: I 

Derivation of Posterior Distribution 

According to Equation 1 the posterior distribution of b is 

1r(blJ>,) = "" L(P,, b)1r(b) 

L L(P., b)7r(bYJ(b) 

(10) 

(11) 
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Substituting L(P" b) and 1T(b) with Equations 10 and 6, re
spectively, one obtains 

(12) 

It is tedious to use this equation. Fortunately the prior pdf is a 
conjugate normal distribution. Therefore the posterior distribution 
is also a normal distribution, with the mean and the variance 
shown in Equations 13 and 14, respectively (the derivation of 
these two equations is omitted for simplicity; it can be shown that 
Equation 12 simplifies to a normal distribution). 

µ' (13) 2 . 
(JE 2 2 - +ta k b 

(14) 

Therefore the pdf of the posterior distribution is of the form 

(b-µ')' 

-2cr'' 
e 

'TT(blJ>,) = ---vz:rr a' 
(15) 

PARAMETRIC ANALYSIS 

In this section a parametric analysis is performed to evaluate the 
effect of performing Bayesian updating on the forecasting preci
sion of a logistic model of bridge deck deterioration. The deteri
oration model studied in this section has the following form (9): 

1 1 
p =----( 1 + ea+bt+e - 1 + e8.72-0.441+E 

(16) 

Bayes's theorem was used to update the parameter b to increase 
the model's prediction precision. Hence the parameter bis treated 
as a random variable instead of a constant. Model estimation re
sults indicated that the prior distribution of b is normal, with mean 
µb equal to -0.44 and standard deviation ab equal to 0.2 (9). By 
calculating the posterior mean and variance of b through Equa
tions 13 and 14, the parameter b can be updated repeatedly, thus 
reducing the standard deviation of b. Therefore the standard de
viation of P, is also expected to decrease. Monte Carlo simulation 
was used in the study to compute the standard deviation of P, 
after each model update. The use of Monte Carlo simulation was 
necessitated by the form of the deterioration model. As Equation 
16 shows the relationship between the parameter b and P, is 
strongly nonlinear, which makes the derivation of the variance of 
P, as a function of ab analytically rather difficult. · . 

'I\vo cases are compared: one is without updating and the other 
is with updating. In the first case parameter b is normally distrib-
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uted with mean µb equal to -0.44 and standard deviation rrb equal 
to 0.2. Since no updating is performed in this case the mean and 
standard deviation of b will remain constant from year 2 to year 
20, which is the horizon used in the analysis. In the second case 
Bayesian updating is performed every 2 years after each inspec
tion cycle. The number of observations k collected in every in
spection period in the parametric study is assumed to be 10. Each 
observation consists of a pair (t, P1) pertaining to a particular 
bridge deck among the population of bridges. In this case the 
parameter b is still normally distributed, but the mean and stan
dard deviation are updated every 2 years according to Equations 
13 and 14, respectively. Figure 2 depicts the standard deviation 
of b under these two scenarios. It can be observed from Figure 2 
that the standard deviation of b decreases significantly as a result 
of updating, especially during the first update. 

To show that the prediction accuracy is increased by updating 
the parameter b, the standard deviation of P1 needs to be compared 
under these two cases. Monte Carlo simulation was used to cal
culate the standard deviation of P1 after each update. The results 
are summarized in Figure 3, which shows that the standard de
viation of P1 becomes substantially smaller when the parameter b 
is updated. The shapes of the two curves in Figure 3 are instruc
tive. The upper curve, corresponding to the nonupdating case, 
shows the standard deviation of the forecast of P1 increasing up 
to year 20, after which it decreases until it becomes O at year 40 
(not shown in the figure). This behavior stems from the fact that 
the P1 function is bounded from below by 0 and from above by 
1, which forces the standard deviation to 0 at these two extremes. 
The lower curve, which corresponds to the updating case, shows 
a similar behavior, except that the maximum forecast standard 
error occurs earlier because of the contribution of Bayesian up
dating to reducing the standard deviation of b. 

A study of the change in infrastructure life cycle costs with the 
level of uncertainty in condition forecasting can be found in an
other study (10). Figure 4 is adapted from that study. In Figure 4 
the x-axis shows the standard error of conditional forecasting 
measured in PCI (Pavement Condition Index) units, a measure of 
pavement performance. The y-axis shows the expected life cycle 
cost, which is the sum of agency costs and user costs over the 
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planning horizon, associated with the optimal policies. The M&R 
decision model used to compute these minimum life cycle costs 
is a Markov decision process-based optimization model. Under 
this decision model the inspection frequency is predetermined 
once per time period. Figure 4 shows that increasing the uncer
tainty in forecasting of the condition leads to a substantial increase 
in the value of the minimum expected cost. This result demon
strates the economic benefits of improving the precision of the 
deterioration models used in pavement management. Although the 
application in the present study (bridge decks) is different from 
the one used in that study, a similar result should hold because of 
the similarities in the cost structures of the two problems. 

CONCLUSION 

In this paper a Bayesian methodology for updating deterioration 
models in infrastructure management was presented. This method 
has the following advantages: 

1. It significantly decreases the uncertainty inherent in the fore
casting of facility condition, thus decreasing the expected facility 
life cycle cost, and 

2. It allows the development of a deterioration model even with 
limited data; the model is repeatedly updated and improved as 
inspection data are incorporated. 

A deterioration model representing the damaged fraction of a 
bridge deck area was chosen as an application example of this 
methodology. As the empirical study indicated, the use of the 
methodology presented in this paper for updating the deterioration 
model parameter reduces the uncertainty associated with fore
casting bridge deck condition significantly. Therefore the facility 
life cycle cost can be expected to decrease. 

Although the sample problem dealt with a deterioration model 
for bridge decks, this methodology is also applicable to highway 
pavements as long as an appropriate deterioration model can be 
developed. 
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FIGURE 4 Minimum expected life cycle cost versus standard error of forecast. 

To make this methodology operational and simplify the imple
mentation, the following considerations should be taken into 
account: 

1. The likelihood function plays an important role in Bayes's 
theorem. Therefore the choice of functional form for the deterio
ration model is a critical issue in the implementation of this meth
odology. To simplify the application of Bayesian updating, dete
rioration models whose forecasts follow a commonly known 
distribution such as a normal or a log-normal distribution are 
recommended. 

2. Although many choices for the prior distribution are often 
available, a conjugate prior distribution is recommended because 
it facilitates the implementation of this methodology. 

In this paper only parameter b was updated. Parameter a was 
treated as a constant for the sake of mathematical simplicity. The 
empirical study indicated that through updating parameter b the 
forecasting precision increased significantly. It is expected that the 
result will be even more significant if parameters a and b are 
updated simultaneously. The basic updating procedure will be the 
same as the one presented in this paper. 

Generally deterioration models are classified into two catego
ries: disaggregate and aggregate. PAVER (11) is an example of an 
aggregate model. The deterioration model described in this paper 
is a disaggregate model that uses an individual damage measure
ment as a measure of performance. Since an aggregate deterio
ration model represents a combination of different types of dam
age, updating of such model may be more difficult. The 
appropriate way to update such a model may be to update each 
damage model first and then to combine the results properly if 
individual damage models exist. On the other hand if the deteri
oration model used consists of a single condition index it will be 
necessary to perform Bayesian updating on that aggregate model 
directly. The application of Bayes' theorem for this case needs 
further study. 

ACKNOWLEDGMENT 

The authors are grateful to Minghui Chen of Purdue University 
for clarification of some statistical issues in Bayesian 
methodology. 

REFERENCES 

1. Ben-Akiva, M., F. Humplick, S. Madanat, and R. Ramaswamy. Infra
structure Management Under Uncertainty: Latent Performance Ap
proach. Journal of Transportation Engineering, ASCE, Vol. 119, No. 
1, 1993. 

2. PONTIS, Network Optimization System for Bridge Improvements & 
Maintenance. Interim report. Cambridge Systematics, Inc., 1991. 

3. Berger, J. 0. Statistical Decision Theory & Bayesian Analysis. 
Springer-Verlag Inc., New York, 1985. 

4. Benjamin, J. R., and C. A. Cornell. Probability, Statistics & Decision 
for Civil Engineers. McGraw-Hill Book Company, Inc., New York, 
1970. 

5. Cady, P. D., and R. E. Weyers. Deterioration Rates of Concrete Bridge 
Decks. Journal of Transportation Engineering, ASCE, Vol. 110, No. 
1, 1984. 

6. Markow, M., S. Madanat, and D. Gurenich. Optimal Rehabilitation 
Times for Concrete Bridge Decks. In Transportation Research Record 
1392, TRB, National Research Council, Washington, D.C., 1993, pp. 
79-89. 

7. Neter, J., W. Wasserman, and M. H. Kotner. Applied Linear Statistical 
Models. Richard D. Irwin, Inc., 1990. 

8. Wang, Z. X. Probabilities. People's Publishing Inc., Beijing, People's 
Republic of China, 1970. 

9. Lu, Y. A Methodology for Updating Deterioration Models in Infra
structure Management. M. S. thesis. Department of Civil Engineering, 
Purdue University, West Lafayette, Ind., 1993. 

10. Madanat, S. Incorporating Inspection Decisions in Pavement Man
agement. Transportation Research, Vol. 27B, 1993, pp. 425-438. 

11. Shahin, M., and S. Kohn. Pavement Management for Roads and Park
ing Lots. Technical Report M-294. Construction Engineering Research 
Laboratory, U.S. Army Corps of Engineers, 1980. 

Publication of this paper sponsored by Committee on Structures Mainte
nance and Management. 


