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Improved Kalman Filtering Approach for 
Estimating Origin-Destination Matrices for 
Freeway Corridors 

NANNE J. VAN DER ZIJPP AND RUDI HAMERSLAG 

The estimation of origin-destination (OD) matrices for freeway cor
ridors by using inner-link induction loop data is exa~i~ed .. A trip 
generation model is used, and various parameter optumzation and 
statistics-based methods are examined to estimate the split parameters 
in the model. A Kalman-based method that uses the model-predicted 
link-flow variances and covariances while processing the measure
ments is described. A simple but effective solution to the problem of 
initializing the Kalman filter and imposing the natural constraints to 
the estimates is presented. The resulting method is tested on both 
simulated and observed data and is compared with other methods 
such as least squares and constrained optimization, showing that the 
Kalman-based method leads to the best results. 

Vehicle movement estimates are generally summarized in origin
destination (OD) tables. These tables contain the number of trips 
for each combination of origin and destination. For a freeway 
system origins correspond with on-ramps (entrances), whereas 
destinations relate to off-ramps (exits). Dynamically updated OD 
tables are required for various strategies aimed at optimal usage 
of existing freeway capacity. Examples of such strategies are ramp 
metering, route guidance, and incident management. Often induc
tion loop data are the only continuously updated source of infor
mation, producing the number of observed vehicles per time slice. 
Induction loops generate an abundance of traffic counts. To be 
able to analytically calculate an OD table within a time slice, 
however, additional techniques are necessary. A first example of 
such a technique is the use of a traffic model that defines explicit 
relationships between OD flows. A second example is the use of 
an a priori trip table. The distance to this a priori trip table, ac
cording to some criterion, is minimized by using traffic counts as 
a boundary condition. Examples of these approaches can be found 
in Cascetta and Nguyen (1), Hamerslag and Immers (2), Bell (3), 
Hendrickson and McNeil (4), and van Zuylen and Willumsen (5). 

Although the use of such techniques when applied to aggre
gated data sets can be well defended, it is questionable whether 
the inherent assumptions of the above-mentioned techniques are 
valid when applied to subnetworks like intersections or freeway 
corridors. First, these subnetworks contain neither real origins nor 
real destinations. Second, because of low aggregation levels, sto
chastic influences are likely to be dominant. 

Therefore in this paper a class of OD estimators that works 
with a weaker assumption, the assumption of constant split ratios, 
is studied. According to this assumption for each entrance the 
fractions of traffic destined for a certain exit can be assumed to 
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be changing slowly or even remain constant. This assumption 
changes the underspecific problem into an overspecified problem. 

The split ratio approach was first introduced by Cremer and 
Keller ( 6), who used a recursive formula to estimate the unknown 
split proportions. Since then various techniques have been used 
to esti~ate the split proportions. First, the correlation procedure 
was proposed by Cremer (7). This procedure is equivalent to the 
least-squares method. Later the method was improved by Cremer 
and Keller (8), who used constrained optimization. Simultane
ously Kalman filtering was applied to this problem by both 
Cremer and Keller (8) and Nihan and Davis (9). Finally maximum 
likelihood approaches have been employed by Nihan and Davis 
(10) and Bell et al. (11). A combination of split ratio and modeling 
approaches can be found in Keller and Ploss (12), whereas Bell 
(13) added the problem of platoon dispersion. . 

The problem statement used in this paper will show many sim
ilarities to the problem statements used in the above-mentioned 
work. Th~ee new elements are added, however. First, the mea
surement vector contains not only exit volumes but can also con
tain inner-link volumes. Second, the split parameters are inter
preted as split probabilities rather than fixed fractions of entering 
volumes in a trip generation model. The third addition is the in
corporation of a time shift in the problem. Entrance volumes and 
measurements from all locations are processed simultaneously. 
Therefore each measurement must be processed with a delay for 
all measurements to refer to one set of split parameters. 

The main problem with the processing of inner-link volumes is 
the strong measurement dependency due to redundancy. To ade
quately describe the properties of the system and its measure
ments the trip generation model presented by van der Zijpp and 
Hamerslag (14) is used. This model distinguishes between split 
probabilities and split proportions, an idea already used by Davis 
and Nihan (15) and Davis (16) for static OD estimation. The trip 
generation model describes not only how split probabilities 
change through time but also the choice of destination as a random 
choice process and which noise is involved when monitoring en
tering traffic and inner-link volumes. 

For prediction purposes the split probabilities have more sig
nificance than the split proportions. The OD estimation problem 
is therefore converted into the estimation of the split probabilities 
in the trip generation model. For this purpose least squares, con
strained optimization, maximum likelihood, and Kalman filtering 
have been considered. Each method is described in terms of the 
variables used in the problem statement, and when necessary com
putational aspects are discussed. From these methods only the 
Kalman filter approach and the maximum likelihood approach al
low the specification of dependency between measurements. From 
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these two the Kalman filter has been selected because it is the 
only method for which tractable expressions for the dependent 
measurement case could be derived. 

Several problems, however, hinder the straightforward appli
cation of a Kalman filter to the problem of estimating the split 
probabilities from induction loop data. First, since the Kalman 
filter is a recursive method, a set of initial conditions needs to be 
available. Second, the measurement properties need to be defined, 
since noise occurs because of differences between split probabilities 
and split proportions and inaccuracies in induction loop observa
tions. Finally there are several equality and inequality constraints 
that apply to the split probabilities. For each entrance split proba
bilities must not only add up to 1 but each individual split proba
bility must also be nonnegative and less than 1. Depending on how 
these problems are solved one can expect a Kalman filter to do 
better or worse. The results presented by Cremer and Keller (8), 
for example, suggest that constrained optimization gives better re
sults than Kalman filtering at the cost of high computation times. 

The section Improved Kalman Filtering Approach describes a 
solution to each of these problems, resulting in an improved 
Kalman-based method. The method is tested against constrained 
optimization and least squares by using both simulated and em
pirical data. The test results are included in the last section. 

PROBLEM STATEMENT 

For the problems treated in this paper route choice is supposed to 
play no role, although this is not really a constraint of the methods 
under consideration; see for example Davis (16). All implemented 
methods take nonzero travel times into account. The problem of 
determining the delays is treated at the end of this section. For 
simplicity of notation the travel times are not mentioned in the 
equations. 

Notation 

The definitions of the terms used in the equations are as follows: 

q(t) = vector of length m whose elements q; (t) are the observed 
volumes at entrance i that are processed during interval 
t. 

y(t) = vector of length p whose elements yh(t) are the counted 
volumes at location h that are processed during interval t. 

B(t) = m X n matrix whose elements biJ{t) are the proportion of , 
trips leaving i destined for j. Let b;:(t) ·represent row i of 
B(t), that is, the split parameters associated with entrance i. 
Then b(t) = [bat) bHf) ... b~:(t)]' is defined as a vector of 
length m X n that contains the elements of B(t) row by row. 

F(t) = m X n matrix whose elements fij (t) give the flow from i 
to j. Let f;,(t) define row i of F(t). Then f(t) = [f;,(t) f~,(t) 
... f~,(t)]' is a vector of length m x n that contains the 
elements of F(t) row by row. 

Trip Generation Model 

The problem is to estimate the unknown parameters B(t). Refer
ring to van der Zijpp and Hamerslag (14), we argue that b;j(t) 
should be considered the probability that a vehicle will leave the 
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network at exit j given the fact that it originated from entrance i. 
Such a probability does not really exist, but for our purposes driv
ers selecting randomly their destination upon entrance onto the 
network is an acceptable model of the system. 

Working with split probabilities rather than split proportions has 
two advantages. First, the assumption that b(t) is a slowly moving 
process can be better defended here since the randomly triggered 
difference between the split proportions and split· probabilities is 
eliminated. Second, some useful properties of the measurements 
can be derived, such as variances and covariances given a set of 
split probabilities. Hence from now on we use the following def
inition for the split parameters: 

bij 6- P [exit at jlenter at i] (1) 

By definition the following constraints apply to the split param
eters: 

0 ~ bij(t) ~ 1 i = 1 ... m, j = 1 ... n (2) 

n 

L b;j(t) = 1 i = 1 ... m (3) 
j=l 

Like in Nihan and Davis (9) we refer to these constraints as the 
natural constraints. The split parameters are assumed to vary 
slowly over time, driven by a zero mean drift parameter w(t): 

b(t) = b(t - 1) + w(t) (4) 

Another aspect we would like to consider is that all volumes are 
observed with noise because of inaccuracy of the induction loop 
observations. Introduce q*(t) and y*(t) as the vectors of real input
and inner-link volumes, whereas q(t) and y(t) are the measured 
values. All noise components are considered to be independent 
and zero mean and have variances <T~ or <T~. Therefore, 

q(t) = q*(t) + r(t) 

E[r(t)] = 0, E[r(t)r(t)'] = <T~/ (5) 

and 

y(t) = y*(t) + s(t) 

E[s(t)] = 0, E[s(t)s(t)'] = cr~/ (6) 

Often the on-ramps are not monitored directly and one must cal
culate these entrance volumes by taking the difference of two 
consecutive inner-link volumes. Experiments have shown that ne
glecting noise in the entrance volume vector seriously affects the 
quality of the estimate, especially when the Kalman filter was 
applied. One reason for this is that the Kalman filter uses the 
entrance volume vector as a boundary condition. Therefore errors 
in the entrance volumes are subscribed to measurement noise. This 
causes a strong dependency among the elements of this noise 
vector. 

The above assumptions define the trip generation model that 
was presented earlier by van der Zijpp and Hamerslag (14). This 
model is summarized in Figure l(a), which shows a system in 
which b(t + 1) is obtained from b(t) and drift variable w(t), which 
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FIGURE 1 Modeling assumptions: (a) trip generation model, 
(b) selecting simultaneously processed measurements, and 
(c) matching entrance volumes with measurements. 

will be considered a random input. The variables b(t) are used as 
probabilities in a drawing process. For each entrance qt(t) exper
iments are done. The observed entrance volume vector q(t) is ob
tained by taking the sum of q*(t) and r(t), as described in Equation 
5. The results of the drawing processes are merged into a link 
volume vector y*(t), to which (see Equation 6) a noise vector s(t) 
must be added to obtain the measured values y(t). 

Measurements are available as traffic counts, which are ob
tained from induction loops. By definition these counts are linear 

TRANSPORT'ATION RESEARCH RECORD 1443 

combinations of flows. Since the route choice issue is neglected 
here, an OD flow is either totally or not at all contained in a 
measurement. Therefore, 

y*(t) = U'f(t) (7) 

with U denoting an mn X p matrix whose elements can either be 
one or zero, indicating that a flow does or does not contribute to 
the measurement. Note that this matrix does not depend on the 
time period. The transpose was used solely to keep conformity 
with literature. By using Equations 1 and 5 the following approx
imation for the flows can be derived: 

(8) 

Substituting this approximation in Equation 7 and combining this 
with Equation 6 allows us to calculate an mn X p matrix H(t) 
with 

y(t) = H'(t)b(t) + v(t) (9) 

This equation will later be referred to as the measurement equa
tion. The vector v(t) accounts for all measurement errors and the 
effects of the random selection process described in the trip gen
eration model. The properties of this measurement error are dis
cussed in the section Improved Kalman Filtering Approach. 

Calculating Correct Time Delay 

The measurements are processed with a time delay to let all mea
surements refer to the same set of split parameters and entrance 
volumes. However the time axis is divided into intervals, and the 
average travel times between entrances and measurement locations 
generally do not match the length of the intervals. To minimize 
errors a two-step process was followed. 

The first step involves the selection of the measurements that 
will be processed simultaneously. To apply the natural constraint 
(Equation 3) to the estimate of b(t), for each entrance this estimate 
must represent the splits during only one interval. To optimally 
fulfill this condition the relative travel times between the mea
surement locations are calculated and rounded to an integer num
ber of intervals. This is illustrated in Figure l(b ), which shows 
the delay (in periods) as a function of the distance s (in kilom
eters). The locations of origins 01 through 04 and measurement 
locations Ml through M4 are indicated on the x-axis. The gradient 
of the line corresponds to the average speed. In the experiments 
described at the end of this paper this average could be derived 
directly from the input data, because measurements are carried out 
with double induction loops that monitor both intensity and speed. 

The second step involves the selection of the corresponding 
entrance volumes. Since the average travel times do not exactly 
equal an integer number of periods, entrance volumes from at least 
two periods are assumed to contribute to a measurement. There
fore a weighted sum of the entrance volumes should be substituted 
in Equation 8. The weight factors can be determined from Figure 
l(c). They correspond to the length of the vertical intervals in 
Figure l(c). The arrows join the weight factors with the corre
sponding delay. By taking a weighted sum of two entrance vol
umes the optimal approximation of the entering volume during a 
certain period is obtained. However the entering traffic cannot be 
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assumed to be evenly spread over time, and the travel times are 
not exactly known. Therefore it is inevitable that an error is in
troduced in the entering volume observation. For this· reason the 
noise variable r(t) was included in the trip generation model. 

ESTIMATION OF SPLIT PARAMETERS 

When we use the trip generation model described in the previous 
section, the problem of estimating the OD matrix is reduced to 
estimating the split parameters in the trip generation model. In 
this section five existing methods are described. Since these meth
ods have been described in other contributions, this paper provides 
only a brief summary showing how the methods can be applied 
to problems in which the measurements contain inner-link vol
umes instead of exiting volumes only. The methods being consid
ered here are the least-squares method, inequality-constrained 
least-squares method, constrained optimization, maximum like
lihood, and Kalman filtering method. The first three methods can 
be classified as parameter optimization methods, whereas the other 
two are statistics-based methods. 

Least-Squares Method 

The least-squares method is aimed at solving the following 
problem: 

(10) 

By expanding this expression and setting the derivatives to b(t) 
to zero, the least-squares estimate can be calculated by 

b(t) ; [ t H(k)H'(kf [ t H(k)y(k) l (11) 

A unique solution is guaranteed if mn independent columns can 
be found in the matrices H(l) ... H(t). From Equation 11 it can 
be seen that it is possible to employ the least-squares method 
by using a constant amount of storage space by the following 
algorithm: 

b(t) = HH;;,;(t)HY101(t) 

HHro,(t) = HH,0 ,(t - 1) + H(t)H'(t) 

HYro,(t) = HYi01(t - 1) + H(t)y(t) (12) 

By introducing a discounting factor the method can be adapted to 
track a time-varying b(t). This transforms the problem into 

ipin ~ A.'-k l[y(k) - H' (k)b(t)U2 
b(t) Ir-I 

Again putting the derivatives to zero gives a minimum: 

(13) 

(14) 

This gives rise to the following algorithm: 

b(t) = HH;;,1

1(t)HY,01 (t) 

HH10, (t) = AHH,01 (t - 1) + H(i)H' (t) 

HY,oi(t) = AHY,0 ,(t - 1) + H(t)y(t) 

Inequality-Constrained Least-Squares Method 
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(15) 

Equation 15 does not guarantee that the natural inequality con
straint (Equation 2) is met. Imposing this condition would 
therefore improve the solution. On the other hand this would 
convert the problem from an unconstrained minimization into an 
inequality-constrained minimization problem: 

6c~) t l[y(k) - H' (k)b(t)W (16) 

subject to 

l=l ... mn (17) 

This problem consumes much more computation time than the 
unconstrained problem. When solved by an interior steepest
descent method the computation times tend to be high because of 
the ill-conditioned matrix HH,01 • Not only does this hinder the 
testing of the method (an average test run would take 2 hr for the 
cases described in this paper) but also in case of real-time appli
cations the duration of the computation could easily exceed the 
time available. 

Therefore_ a less time-consuming algorithm is needed. For the 
time being the best results are obtained with an iterative algorithm 
that employs conjugate search directions that are projected on the 
feasible region when necessary. Moreover the searches are re
stricted to the feasible region, and the search direction is reset to 
steepest descent after each truncated search or change of active 
constraints. Calculation times are approximately 10 times longer 
than those by the straightforward matrix inversion method that 
could be used for the nonconstrained case. This suffices for prob
lems of the size studied in this paper. 

Constrained Optimization 

If both the inequality and equality constraints (Equations 2 and 
3) are imposed, an even better solution should be obtained. The 
satisfaction of the equality constraint (Equation 3) can be guar
anteed by substituting the following in Equation 10: 

b(t) = b0 + Gb1{t) (18) 

with b0 satisfying the equality constraints in Equation 3 and G 
being a mn X m(n - 1) matrix chosen in such a way that Gb1(t) 
does not disturb the satisfaction of the equality constraints for all 
b1(t). Although many combinations of b0 and G satisfy the nee-



58 

essary conditions, for practical reasons we use 

0 
I 

0 
-1/n -1/n ··· -1/n 

b
0 = , G = 

0 

0 
-1/n -1/n ··· -1/n 

(19) 

This substitution transforms the problem in Equation 10 into 

~in i l[y(k) - H'(k)(b0 + Gb1(t))ll2 

b (t) k=l 

subject to 

bJ(t) 2: 0 l = 1 ... m(n - 1) 

n-1 

L bli-l)(n-l)+lf) :::; 1 
j=l 

i = 1 ... m 

(20) 

(21) 

Solving this inequality-constrained problem and substituting the 
resulting b1(t) in Equation 18 gives a solution for b(t) that satisfies 
all required conditions. For solving the problem in Equation 20 
the algorithms of the inequality-constrained problem can be used, 
although the projection of the search direction on the feasible 
region requires more computation time because of the nonorthog
onal inequality constraints. 

Maximum Likelihood 

The previous methods can all be considered parameter optimiza
tion methods. They are designed to minimize the distance between 
measured and predicted values. Apart from these methods we dis
tinguish the statistics-based methods. These methods are defined 
in terms of the probability distributions related to the unknown 
parameters b(t). The most common statistics-based method is the 
maximum likelihood (ML) technique. When applied to the prob
lem of determining the split parameters in the trip generation 
model the ML solution would be defined by 

max A 

b(t) P[y(l) ... y(t)lb(t)] (22) 

Calculation of the ML solution normally requires the derivation 
of a probability distribution from the system shown in Figure l(a), 
which is not tractable. Nihan and Davis (10) presented an ML 
approach that did not require this derivation by using the EM 
algorithm proposed by Dempster et al. (17). However this was 
done for the simplified system in which b(t) was constant rather 
than slowly varying and in which no noise on the entrance volume 
observations was present. Moreover the resulting algorithm was 
nonrecursive. 

Another ML approach has been presented by Bell et al. (11). 
This approach is fully disaggregate but is computationally too 
demanding to be useful in practice. So although ML estimators 
have desirable properties no ML estimator that suits our needs is 
available. 
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Kalman Filtering 

Another statistics-based estimation technique is the Kalman filter. 
The Kalman filter is a widely applied method for parameter esti
mation in dynamic systems. Before a Kalman filter can be used 
two equations must be supplied: the state equation and the mea
surement equation. The state equation describes how the unknown 
parameters evolve through time. The measurement equation de
scribes the relation between the unknown parameters and the 
measurement. In both equations it is possible to specify uncer
tainty by way of. noise terms. In our case the state parameters 
represent the split probabilities. These parameters are assumed to 
change only slowly over time. Therefore we use the following 
state equation: 

b(t) = b(t - 1) + w(t) (23) 

The measurement equation describes the way the state parameters 
are observed. In this case we can use Equation 9: 

y(t) = H' (t)b(t) + v(t) (24) 

In these equations w(t) and v(t) must be zero mean noise processes 
with known covariance matrices; 

E[w(t)w(p)'] = Q181P 

E[v(t)v(p)'] = R181P (25) 

with 8,P equal to 1 if t equals p and zero otherwise. On the basis 
of these equations and a knowledge of the covariance matrices a 
widely used estimation technique has been derived: the Kalman 
filter. A description of this technique can be found in many text
books [see for example Anderson and Moore (18) and Catlin 
(19)]. The Kalman filter equations for the problems in Equation 
23, 24, and 25 are: 

b(t) = b(t - 1) + Kr[y(t) - H'(t)b(t - 1)] 

K, = Lr_
1
H(t)[H(t)' Lr- 1H(t) + Rrr 1 

Lr= Lr-1 - Lr-1H(t)[H(t)'Lr-iH(t) + Rrr 1H'(t)Lr-i +Qr (26) 

These equations define a recursion that should be started with an 
initial estimate b(O) and an initial covariance matrix ~0• Given the 
assumptions in Equations 23 through 25, the Kalman filter leads 
to the minimum variance linear estimator; that is, the estimate is 
a linear function of the measurements y (1) ... y (t), and the filter 
implicitly finds the matrix A and vector c that solve the following 
problem: 

nnA·n E[llb(t) -A.[y(l) ... y(t)] - cii2] 
,c 

(27) 

Moreover this estimate can be shown to be unbiased. If besides 
earlier assumptions the noise terms and the initial state have Gaus
sian distributions the Kalman filter can be shown to produce un
biased estimates that have minimum variance over all estimators 
[see Anderson and Moore (18)]. 

The advantages of the Kalman filtering method are the com
putational efficiency of the method and the possibility of process-
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ing interdependent measurements. Other advantages are that the 
calculations can be done recursively and that together with the 
estimate for the split matrix a variance-covariance matrix is cal
culated. This matrix gives an indication of the reliability of the 
estimate. 

IMPROVED KALMAN FILTERING APPROACH 

Despite the nice theoretical properties of the method several prob
lems hinder the straightforward application of a Kalman filter. The 
first problem is that no initial values b(O) and Lo are available. 
Some experimenting shows that the problem of initializing the 
filter cannot be seen apart from a second problem: how to impose 
the natural inequality constraints in Equation 2. It seems natural 
to specify very large diagonal values of L0, since this expresses a 
lack of information about b(O) and results in forgetting the initial 
value b(O) as quickly as possible. On the other hand the initial 
variance is bounded above since the split parameters are bounded 
to the interval (0,1 ]. Also specifying large initial variances results 
in many violations of the inequality constraints during the start
up phase of the filter. The problem of dealing with these inequality 
constraints has already been treated by Nihan and Davis (9), who 
proposed several constraining ~lgorithms. This paper shows that 
a much simpler and effective way of dealing with both initial 
conditions and inequality constraints is possible. 

Another problem is the lack of information about the noise 
covariance matrices Q, and R, in Equation 25. The results pro
duced by the Kalman filter strongly depend on these matrices. 
Therefore a good approximation of these matrices should improve 
the estimate. In this section the measurement noise covariance 
matrix is derived from the trip generation model shown in Figure 
l(a). This derivation produces the matrix R, as a function of the 
split probability b(t). This is an approximation since only an es
timate of b(t) is available. The last problem treated in this section 
is the use of the natural equality constraints (Equation 3). In Nihan 
and Davis (9) a normalization procedure is used to impose these 
constraints. In this paper the natural equality constraint is imposed 
via the perfect measurement concept [see Anderson and Moore 
(18)]. The consequences for the method are discussed. 

Initial Conditions and Inequality Constraints 

The Kalman filter described in the previous section has one coin
monly recognized interpretation, that is, that of a linear minimum 
variance estimator. However the Kalman filter can also be inter
preted as an example of Bayesian estimation [see Catlin (19)]. As 
shown by Maher (20), assuming a Gaussian a priori distribution 
of the state vector and performing a Bayesian update with a mea
surement that has a Gaussian distribution (conditionally to the 
state vector) leads to a Gaussian a posteriori distribution. The 
equations derived for the scalar measurement case in Maher (20) 
can be shown to match the Kalman filter measurement update 
equations. In van der Zijpp and Hamerslag (21) the results are 
generalized to nonconstant state parameters and nonscalar mea
surements. A central role in this derivation is played by Bayes 
rule: 

p[b(t)lY(l) . .. y(t)] = 

p[y(t)lb(t), y(l) ... y(t - 1)] p[b(t)lY(l) ... y(t - 1)] 

p[y(t)lY(l) ... y(t - 1)] 
(28) 
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The validity of Bayes rule follows from the definition of condi
tional probability. According to Bayes rule the a posteriori distri
bution can be derived from the a priori distribution and the like
lihood function of the measurement vector. Figure 2( a) illustrates 
the principle of Bayesian updating for a scalar Gaussian random 
variable and a scalar measurement. The a posteriori distribution 
is obtained by multiplying the a priori density and the likelihood 
function and normalizing the result. 

Inequality Constraints 

Since natural inequality constraints bound the split probabilities 
b(t) to an mn-dimensional hypercube (0,1 ], the a priori probability 
function should be zero outside this hypercube. One way in which 
this can be achieved is by multiplying the a priori probability 
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function with an indicator function I[0,1 ]Q. This function equals 
1 if all elements of b(t) satisfy the inequality constraints and is 
zero elsewhere. This leaves the shape of the distribution of b(t) 
intact on the hypercube [0,1 ], whereas it defines a zero probability 
elsewhere. To ensure that the new function integrates to unity the 
a priori function should be multiplied by a factor FQ. FO can be 
expressed as a function of b(t - 1) and L 1_ 1• In this way we get 
a truncated MVN distribution. 

p[b(t)[y(l) ... y(t- 1)] 

~IL,-1 + QJ(v'21rr 

1 A 

X exp -2 [b(t) - b(t- 1)]' 

X (Lr-I+ Q,)-I [b(t) - b(t - 1)] 

X / 10•11[b(t)] (29) 

If we check how this assumption affects the derivation of an a 
posteriori distribution we conclude that when Equation 29 is used 
Equation 28 must be multiplied by the indicator function IO and 
by a factor FO, and also the value of the normalizing constant 
p[y(t)jy(l) ... y(t - 1)] will be different. 

However this operation does not affect the shape of the a pos
teriori distribution within the hypercube [0,1]. Therefore the a pos
teriori distribution will still be defined by a truncated MVN dis
tribution, characterized by some b(t) and L 1• Moreover the recur
sion that determines b(t) and L1 from b(t - 1) and L1_ 1 has not 
been changed. Therefore- the Kalman filter equations can be used 
without modification, despite the presence of inequality con
straints. Because of the modified circumstances, the Kalman filter 
results need another interpretation. The variables b(t) and L 1 still 
characterize the probability distribution but can no longer be used · 
as mean and variance [see Figure 2(b)]. Therefore the filtered re
sults need some postprocessing before a point estimate can be 
presented. A first option, calculation of the true mean, requires 
the evaluation of an integral for which no analytical solution ex
ists. Numerical integration is no option either because b(t) is a 
high-dimensional vector. The second-best option is finding the 
maximum a posteriori (MAP) estimator for b(t) [see Beck and 
Arnold (22)]. This can be found by maximizing the a posteriori 
density of b(t): 

b(t)], 

0 :::; b;(t) :::; 1, i = 1, 2 . . . mn (30) 

To find the minimum solution the methods for constrained opti
mization can be used. These methods were described in a previous 
section. A potential drawback of this approach is the increase in 
computation time. When computation time is a bottleneck one can 
option for a suboptimal postprocessing method. 

Initialization of Filter 

In ·the foregoing we used the principle of Bayesian updating to 
derive a version of the Kalman filter that incorporates inequality 
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constraints. As it will turn out, simultaneously we find a solution 
to the problem of initializing the Kalman filter. A common way 
of initializing a Bayesian filter when no a priori information is 
available is to use a uniform distribution. This expresses that, on 
the basis of the a priori information, every solution is equally 
likely. Working with the indicator function enables us to define 
an initial distribution that is arbitrarily close to the uniform dis
tribution simply by defining Lo as a diagonal matrix with very 
large diagonal elements. Figure 2(c) illustrates how a truncated 
Gaussian distribution approaches a uniform distribution if the 
variance increases. 

Derivation of Measurement Noise Properties 

The estimate obtained from a Kalman filter strongly depends on 
the assumed variance-covariance matrix for the measurement 
noise. Therefore in van der Zijpp and Hamerslag (14) such a ma
trix was derived on the basis of the trip generation model shown 
in Figure l(a), which shows a system that is clearly different from 
the one described by the measurement Equation 24, since the 
measurements are numbers of successful experiments rather than 
linear combinations of the unknown parameters. However in terms 
of the expected value and the variance there is no difference be
tween both systems. Therefore as far as the Kalman filter is con
cerned, we can treat the measurements from Figure l(a) as if they 
were obtained from a linear system, as long as a covariance matrix 
R1 for the noise vector v(t) is supplied. 

A starting point for the derivation of such a matrix is the con
ditional distribution of the flows, given the entrance volume, 
qt(t), which is defined by a multinomial distribution: 

q;*(t)! Iln 
P[.f;i(t) ... . f:nCt)lqt(t)] = n bij(fti<r> (31) 

TI fq(t)! j=l 

j=l 

By combining this with Equation 5 it can be shown that the fol
lowing equations define the covariance matrix for the measure
ment y(t) = U'f(t) as a function of the split vector b(t). 

R1 = cov[y(t), y(t)] = U' cov[f(t), j{t)]U (32) 

with 

cov[f;lt), fhk(t)] = q;(t)bij(t)'Oih'Ojk 

+ [CJ~ - q;(t)]b;lt)bhk(t)'Oih (33) 

Since the exact value of the split vector is unknown, the estimate 
of the split vector is used instead. The covariance matrix is there
fore only an approximation to the true matrix. 

Equality Constraints 

Another way of improving the Kalman filter estimate is by im
posing the natural equality constraints (Equation 3). For the pur
pose of imposing the natural equality constraints Niham and Davis 
(10) proposed a normalization procedure. Since that procedure 
was meant to act separately from the active parameter estimation 
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method, it does not take full advantage of the possibilities of Kal
man filtering. 

Because the natural equality constraints are just another linear 
combination of the unknown split parameters, these constraints 
can be imposed as measurements to the Kalman filter. These kinds 
of measurements are referred to as perfect observations, because 
no noise on these observations is present. In matrix notation, 

[ ~ J , F' = [ l ... \ ... 1 J e = F'b(t), e = 

1 1 ... 1 
(34) 

Anderson and Moore (18) show two ways to deal with these kinds 
of observations. The first way is to reduce the order of the filter 
by an order m (m denotes the number of entrances). This can be 
done by a change of coordinate basis, similar to the one used 
while calculating the solution to the constrained optimization 
problem. The second way is to proceed as with any measurement 
by using a zero matrix for the measurement noise matrix. In this 
case a recursion similar to Equation 26 is valid. For ease of im
plementation the latter method was used in the study described in 
this paper. 

Define b + (t) and L7 as the updated estimate and variance
covariance matrix after performing a measurement update by 
Equation 34. Now b + (t) and L7 are obtained via: 

b+(t) = b(t) + K7[e - F'b(t)] 

(35) 

These update equations lead to a singular variance-covariance ma
trix L7. However b + (t) and L7 still define the density function of 
b(t) on the domain in which b(t) satisfies the natural equality con
straints. Outside this domain the density function is zero. As a 
result Equation 30 transforms into: 

0 :::s; b(i-I)n+lt) :::s; 1, i = 1 ... m, j = 1 ... n 

n 

2: b(i-l}n+lt) = 1, i = 1 ... m 
j=l 

(36) 

where pinv is defined as the pseudo-inverse operator [see also 
Anderson and Moore (18)]. 

EXPERIMENTS 

Experiments were carried out with both simulated and real data. 
The advantage of using simulated data is that the original matrix 
is available to evaluate the different methods. However these ex-
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periments give only limited insight into whether a method would 
work in practice. Therefore a second series of experiments was 
done by using minute-by-minute induction loop data from the 
Amsterdam beltway. 

First Experiment, Simulated Data 

The simulated data have been obtained by programming the trip 
generation model shown in Figure l(a). The on-ramp volumes 
were generated by using a Poisson random generator. The split 
probabilities were obtained by taking a weighted sum of two ex
treme split vectors: 

B(t) = cx(t)B1 + [1 - cx(t)]B2, 

1 
cx(t) = 2 [1 + cos(2'1Tt/1)], T = 144 (37) 

The network used consists of four entrances and four exits [Figure 
3(a)]. 

As an evaluation criterion the square root of the mean squared 
error (RMSE) of the split parameters was used, that is, 

RMSE= (38) 

All methods described in this paper were tested. To make a fair 
comparison all methods were optimized for parameters that reflect 
the rate of change in the dynamic OD. The results from the pre
vious section were used to determine the noise error covariance 
matrix required by the Kalman filter and to the natural constraints. 
For this experiment the Kalman-based method produced the best 
results; this was followed by constrained optimization, inequality
constrained least squares, and ordinary least squares [see Figure 
3(b)]. The results are also presented in scatter diagrams [see Fig
ure 3(c)]. These diagrams show for a number of periods the es
timated split values plotted against the real values. 

Second Experiment, Empirical Data 

The second series of experiments was done by using induction 
loop data from the Amsterdam beltway. For this experiment one 
direction of an 11-km freeway corridor was selected. This corridor 
has five entrances and five exits and is equipped with 19 detector 
stations. All data were aggregated to periods of 5 min. Again 
various methods were compared. This time only the diagonal el
ements of the variance covariance matrix prescribed by Equation 
32 were used while applying the Kalman filter. 

For this experiment observed trip matrices were not available. 
Therefore the evaluation criterion in Equation 38 could not be 
used. Instead the flow-predicting capabilities for a set L of refer
ence locations were used. Set L is a set of nL reference locations. 
It contains induction loops on locations for which the volumes 
are expected to be sensitive to the split parameters, for example, 
between off-ramps and on-ramps. To prevent data from being used 
at the same time to calculate and evaluate b(t), the volumes were 
predicted by multiplying 5-min-old split parameter estimates by 



62 TRANSPORTATION RESEARCH RECORD 1443 
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FIGURE 3 Simulation results: (a) simulation setup, (b) simulation 
results, and (c) true versus estimated b(t), t > 100. 

With the evaluation criterion in Equation 39 it was not possible 
to prove major differences in performance between Kalman fil
tering, constrained optimization, and inequality-constrained least 
squares. Only the nonconstrained least-squares method clearly 
gave results worse than those obtained by the other methods. After 
the evening rush hour the RMSE for all methods increased, prob
ably because of suddenly changing OD patterns. When data from 
other days were evaluated RMSE plots with similar patterns ap
peared. This indicates that it might be useful to use a historic data 
base in which the permitted rate of change or even the direction 
of the changes in OD patterns are stored. Of all of the evaluated 
methods the Kalman filter seems the most suitable one for use in 
working with such a data base. 

Although RMSE values do not differ significantly, comparing 
the split proportions estimated by different methods shows ·sig
nificant differences in estimated value; see for example Figure 

4(b ), which shows estimated splits for both the Kalman filter and 
the constrained least-squares methods. 

To decide which of the two sets of parameters is more likely 
to correspond to the observed volumes, a second measure of ef
fectiveness is introduced: the value of the likelihood function of 
the observations y(t). Again b(t) is replaced by b(t - 1) to prevent 
the use of observed volumes for estimation and evaluation pur
poses at the same time. The resulting likelihood is defined by 

A 1 1 
p[y(t)lb(t)] = (21Ty12v1/CJ exp - 2 

X [y(t) - H'(t)b(t - 1)]' 

x R;=_\[y(t) - H'(t)b(t - 1)] (40) 
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FIGURE 4 Empirical results: (a) moving average of RMSE, 
(b) estimated splits, entrance 4, and (c) moving average of log 
(likelihood). 

In Figure 4(c) the moving average of the logarithm of this like
lihood is displayed. Figure 4(c) shows that a test of the hypothesis 
by using a likelihood ratio would generally favor the Kalman 
filter-generated solution. 

CONCLUSIONS 

The problem of estimating dynamic OD matrices was converted 
to the problem of estimating split parameters in a trip generation 
model. A Kalman-based method was compared with other meth
ods like least squares and constrained optimization. 

A new way of initializing the Kalman filter and of imposing 
the natural inequality and equality constraints was derived from 
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theory. A measurement noise covariance matrix that was derived 
from the trip generation model was used. 

The resulting method was programmed and tested. Tests with 
simulated data indicate that the Kalman-based filter method per
forms better than the other methods. Tests with real data indicate 
that results can be improved by using a Kalman filter combined 
with a data base in which optimal tuning parameters for the filter 
are stored. 
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