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Foreword 

This volume contains papers focusing on forecasting modeling techniques, traffic assignment meth
ods under various conditions, trip chaining, and a network improvement model for programming 
network improvements. 

Among the various forecasting and modeling papers are two that focus on travel forecasting 
models and the calibration of refined circulator and distributor models for the city of Chicago central 
area circulator system. Other papers assess the applicability of the 1990 census Public Use Microdata 
Sample for regional disaggregate automobile ownership choice models, apply a travel demand model 
that uses annual traffic count to convert the 24-hr travel demand model output to peak-hour estimates 
fo travel, construct a continuous measure of income from grouped and missing income data used 
for travel demand models, estimate origin-destination (OD) matrices for freeway corridors by using 
inter-link induction loop data, and compare new solutions produced by various methods of intro
ducing feedback into the four-step forecasting procedure compared with the equilibrium solution of 
a model that combines the trip distribution, mode split, and assignment steps. 

A series of papers focus on various aspects of traffic assignment, a discussion of the gradient 
projection method for traffic assignment compared with path-enumeration algorithms, a model for 
traffic assignment that represents disaggregate trade-offs between time and models that differentiate 
travelers by means of an attribute value-of-time evaluation of traffic. assignment techniques under 
environmental and equity objectives, and assessment of a dynamic assignment (3DAS) as a planning 
tool. 

Also contained in this volume is a proposed model that develops a multiperiod network design 
problem model for the dynamic investment problem. Another paper focuses on the increasing com
plexity of trip chaining related to shopping trip chains. 

v 
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Transportation Network Analysis 
Techniques for Detailed Travel Forecasts 

CATHY L. CHANG AND DAVID L. KURTH 

The city of Chicago is in the preliminary engineering final environ
ment impact statement phase of planning for a central area circulator 
system. Because of the wealth of existing bus and transit serviee and 
the amount of activity taking place in the central area, detailed mod
eling of transit options was required. Described here are enhancements 
to the transportation network coding and analysis made to travel de
mand forecasting models necessary to properly model the various 
transit options. These enhancements include determination of travel 
speeds on the basis of intersection control and signal timings, explicit 
coding of transit stops, and detailed multipath transit assignments. 
Finally the reasonability of applying the detailed network processing 
techniques in typical regional model applications is discussed. 

Chicago's central area is one of the most significant and vibrant 
activity centers in the Midwest. There· · were approximately 
670,000 employees and 56,600 households in the central area in 
1985. This level of activity can be sustained only by use of a 
variety of transportation alternatives. Chicago is served by several 
commuter rail lines to the far suburbs, rapid-rail lines to the close
in suburbs, and iocal and express buses within the city proper. In 
addition taxis and private automobiles are prevalent in· the area. 
The existing public transportation system is focused on the tra
ditional Loop area defined by the elevated rapid-rail tracks. This 
area is roughly bordered by Wacker Drive on the north and west, 
Congress Expressway on the south, and Michigan Avenue on the 
east, as shown in Figure 1. In this compact eight-by-eight-block 
area most transit riders are able to walk from their alighting station 
to their final destination. 

Expanded development patterns coupled with ever-increasing 
congestion have. resulted in longer travel times within the central 
area, which now covers a region stretching from North Avenue 
on the north to Cermak Road on the south and from Halsted Street 
on the west to Lake Michigan on the east. It is an area approxi
mately 4 mi long by 2 mi wide.· As the central area grows in 
shape and size it is no longer reasonable to expect all travelers to 
walk from a transit stop or parking location to their final desti
nation. Because the central area is expanding, the concept of a 
central area circulator, or downtown people mover (DPM), has 
evolved to provide quick and convenient service within the ex
panded central area. The proposed system would consist of either 
an improved bus system or light-rail transit (LRT). 

PREVIOUS MODELING EFFORTS 

The concept of a central area circulator system has been under 
study for more than 20 years. The process was formalized in 1989 
when the city decided to pursue an Alternatives Analysis/Draft 

Barton-Aschman Associates, Incorporated, 820 Davis Street, Evanston, Ill. 
60201. 

Environmental Impact Statement (AA/DEIS) study for a new 
transportation system. A detailed model capable of projecting rid
ership for the extensive transit system in the central area and the 
proposed alternative network configurations was developed for 
the Chicago central area AA/DEIS study (1) on the basis of mod
eling for DPM systems developed for Los Angeles, Miami, and 
petroit (2-4). 

CHICAGO CENTRAL AREA CIRCULATOR 
PE/FEIS STUDY . 

The planning for the locally preferred alternative, an LRT circulator
distributor system, has entered the preliminary engineering/final 
environmental impact statement (PE/FEIS) phase. On the basis of 
experience in applying the travel forecasting models developed 
for the AA/DEIS and the,- need for increasingly detailed travel 
forecasts, a number of refinements to the circulator-distributor 
modeling process were made: 

• Representation of the transit, taxi, and automobile networks 
was refined. 

• Coefficients for the distributor mode-choice model were es
timated on the basis of locally collected data. 

• Model formulations were revised 

The first point, network representation and path-building refine
ments, is the focus of this paper. The last two points are discussed 
by Kurth et al. in another paper in this Record. 

NETWORK MODELING IMPROVEMENTS 

In the past AA/DEIS models were used to test several alternative 
modes and alignments for the circulator. Although the models 
produced the necessary forecasts for the AA/DEIS, several areas 
for refinement were identified through the model application pro
cess. Network-related refinements were identified for (a) estima
tion of automobile, taxi, and bus travel times; (b) coding of bus 
stop locations; and (c) multipath transit assignment improvements. 

For the estimation of AA/DEIS speeds the study area was di
vided into six large districts; with a representative automobile (or 
taxi) speed in each district. The average speed was applied across 
an entire district. This simplified method did not explicitly account 
for signal delay or vehicle acceleration and deceleration delays. 
The signal delay contributed a substantial amount to the actual 
travel time. Alternatively, if a signal was not present, the travel 
time may be less than . that obtained with the average speeds. As 
the trip distances get longer the actual travel speeds more closely 
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resemble the average travel speed. Since taxi speeds were the 
same as automobile speeds and bus speeds were a function of 
automobile speeds, this problem affected all three modes. 

Since walk trips were explicitly modeled, the under- or over
estimation of automobile, taxi, and bus travel times for short dis
tances adversely affected the mode-choice models. As a result 
these models had to adjust for the bias in automobile, taxi, and 
bus travel times for short distances through constants on those 
modes to match observed mode shares. However as trip distances 
increased, the automobile, taxi, and bus travel times were more 
accurately modeled in comparison with the walk travel times. This 
resulted in possible bias in estimations of walk trips for longer 
interchanges. 

The second area for refinement was in the coding of the bus 
stops. In the AA/DEIS study the local buses were allowed to stop 
at any node (at both cross-street and midblock nodes) along the 
bus line, although the express buses and cross-Loop buses were 
modeled to stop only at explicit bus stops on selected "bus-only" 
lanes. Thus the majority of buses provided ubiquitous bus service, 
with stops at every node. This was in contrast to the LRT lines, 
which were coded with explicit stop locations. Thus because of 
coding conventions buses were modeled to provide more acces
sible service than the LRT. 

The third area identified for refinement was in the modeling of 
multipath transit assignments. The modeling software used to im
plement the models, EMME/2, provides a robust algorithm for 
multipath transit path building as part of its normal procedures. 
However in the transit-rich environment of the Chicago central 
area, even the normal EMME/2 transit path-building procedures 
used in the AA/DEIS tended to underestimate the possible paths 
for many interchanges. This resulted in some large shifts in transit 
use on specific lines because of relatively small changes in transit 
travel times. Thus the most detailed transit path-building algo
rithm in EMME/2, which is normally reserved for analyzing in
dividual transit interchanges, was used in the PE/FEIS. 

The PEJFEIS study provided the opportunity to implement the 
refinements identified above, along with some commensurate im
provements to provide additional detail and sensitivity to the 
models. The specific network-related refinements included the 
following: 

• Automobile and taxi speeds were estimated by using traffic 
engineering information, including speed limits, intersection con
trol, signal timing, and link length; 

• The bus network was coded in detail, including explicit cod
ing of bus stop location and type (such as near side, far side, and 
midblock); and · 

•Bus travel times were built up from link length, bus accel
eration and deceleration, number and location of stops, speed lim
its, and bus dwell times. 

The purpose of this paper is to discuss the network modeling 
improvements that were made in the PE/FEIS procedures, in par
ticular the need for increased detail in coding and the use ·of transit 
multipaths. 

DESCRIPTION OF NETWORK 

In a detailed central business study such as the Chicago circulator 
project it is imperative to code the network in detail. Detailed 
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decisions regarding track alignments and station locations are 
made in the PE/FEIS. Changes might be as detailed as moving 
an alignment or station as little as one block, or 440 ft. If the 
modeling procedures are not detailed, it is not possible to analyze 
such changes reasonably. 

An integrated highway and transit network was coded for the 
Chicago central area circulator study area. The highway network 
was necessary for determining automobile and taxi travel times, 
whereas the transit network was needed for determining transit 
mode-specific travel times. A detailed auxiliary (walk) network 
was also coded to represent walk paths and transit access and 
egress. Detailed network coding was important because walking 
was a viable mode and because of the complexity of the transit 
system in downtown Chicago. The detailed network coding in
cluded, for example, the coding of distances to the nearest one
hundredth of a mile and included all sidewalks (streets) and 
pedestrian-only links in the network as well as stair links to sub
way or elevated platforms and the coding of access links from 
transit stops to the street (auxiliary) network with the equivalent 
distance to represent the proper travel time from the platform to 
the street level. 

A detailed zone structure was also necessary to properly analyze 
the trade-offs among walking, taking a taxi, and taking another 
transit vehicle. Although the detailed zone structure was crucial 
for improving ridership forecasts, increases in the number of zones 
increased the difficulty in producing socioeconomic projections 
for those zones. Thus there was also a practical trade-off restrict
ing the level of detail used in the zone structure. The final zone 
structure contained 406 internal zones with an 8-mi2 area, as il
lustrated in Figure 1. Transit external stations were established 
wherever transit lines crossed the boundary of the study area and 
at the six central area commuter rail stations. There were 51 mode
specific transit external stations. If several local buses and an ex
press bus crossed the boundary of the study area on the same 
street, two transit external stations were established-one for the 
local bus lines and one for the express line. This process prevented 
spurious transfers between modes at external stations. In addition 
to transit external stations, 50 automobile external stations were 
established for possible future use (e.g., performing detailed au
tomobile assignments). 

One automobile mode and numerous transit and auxiliary tran
sit modes were used to represent the transportation network. The 
automobile mode was coded to provide access and egress from 
zone centroid to zone centroid over the street network. It was used 
to represent internal-internal automobile travel made by central 
area residents and internal-internal taxi trip options available to 
all central area travelers. The transit and auxiliary modes were 
used in conjunction with another. Auxiliary modes provided ac
cess and egress from zone centroids to transit lines and provided 
for transfer opportunities between nonintersecting transit lines. 

Detailed Highway Network Coding and Path Building 

The highway network was needed to establish automobile (and 
taxi) travel times and costs throughout the study area. Automobile 
and taxi in-vehicle travel times were assumed to be identical. In
vehicle travel times could have been computed by using the AA/ 
DEIS procedures with average speed zones and link lengths. How
ever this procedure had a tendency to incorrectly estimate 
automobile or taxi travel times for short trips. To solve this prob-
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lem it was decided to relate link-specific automobile (and taxi) 
travel times to traffic engineering information. The total link travel 
time is composed of the 

•Link traversal time as a function of link length and speed 
limit. 

• Delay incurred at an intersection because of the type of in
tersection control (5,6). Different delay functions were developed 
for signalized intersections, all-way-stop intersections, two-way
stop intersections and Yield signs. The intersection delay for sig
nalized intersections was taken from the 1985 Highway Capacity 
Manual and is a function of the cycle length, green time-to-length 
(g/c) cycle ratio, volume-to-capacity (v/c) ratio, and lane capacity 
(7). The four-way-stop function was taken from a report by 
Meneguzzer et al. (5). The delay associated with a two-way stop 
was based on the all-way-stop equation with some modifications. 
The delay for Yield signs was taken from the function for signals 
assuming that the yield operated like a signal with a g/c ratio 
of 1.0. 

• Loss time because of vehicle acceleration and deceleration. 

To calculate these travel times detailed traffic engineering data 
were coded on the highway network: This included the following 
data items for each link: 

• Link length, 
• Speed limits for all roadways, 
• g/c ratios for AM. and midday for signalized intersections 

on each approach, and 

TRANSPORTATION RESEARCH RECORD 1443 

•Link approach control (e.g., signal, Stop sign, Yield, no 
control). 

The following data items were coded for each node: 

•Type of intersection control (signalized, all-way stop, two
way stop, or Yield) and 

• Cycle length. 

The "congested" automobile and taxi travel times were calculated 
within the network calculator in EMME/2 by using the travel time 
functions described above. A set of calibration parameters (aver
age v/c ratios by district) was used to match the modeled auto
mobile speeds with the observed average speeds for 1985. The 
various components were summed to obtain the total link travel 
time, which was then stored on the network. 

A small number of observed automobile speeds were available 
for the core area. Although these data were not sufficiently exten
sive to provide a generalization over the entire study area, they 
provided a basis for testing the reasonability of the estimated 
speeds by using the procedures described above. The observed 
speed data showed substantial variation: speeds on the same road
way rose one year and fell the next year. There was also variation 
between the morning and evening peak-hour speeds. Most of the 
peak-hour speeds were between 7 and 10 mph. Table 1 s_hows a 
comparison of the observed and modeled automobile speeds for 
the core area. 

Automobile and taxi paths were obtained by running an all-or
nothing assignment on the highway network using the speed in-

TABLE 1 Selected Automobile Travel Times-A.M. and Midday 

Modeled Travel Characteristics 

Travel Time Speed Observed Speed 

Distance 
(minutes) (mph) (mph) 

Street Dir. From To (miles) A.M. Midday A.M. Midday A.M. Midday 

East-West Streets 

Randolph WB Michigan Wacker 0.66 3.9 4.4 10.2 9.0 9.7 8.3° 

Washington EB Wacker Mich.igan 0.62 4.2 4.8 8.9 7.8 8.4 7.2b 

Madison WB Michigan Des Plaines 1.02 6.0 6.5 10.2 9.4 10.1 8.0h 

Monroe EB Wacker Michigan 0.64 4.3 4.8 9.0 8.1 8.1 5.1° 

Adams WB Michigan Wacker 0.65 4.2 5.0 9.2 7.8 9.3 6.5b 

Jackson EB Wacker Michigan 0.65 4.8 5.6 8.2 7.0 7.6 6.5c 

North-South Streets 

Michigan NB River Oak 0.71 5.4 4.8 7.9 8.8 10.2 11.lb 

Michigan SB Oak River 0.71 5.6 5.0 7.6 8.5 11.0 11.0h 

Michigan NB Congress River 0.88 5.4 5.8 9.8 9.1 10.5 ll.2b 

Michigan SB River Congress 0.88 5.8 6.2 9.2 8.6 10.9 9.0h 
Clark SB Wacker Van Buren 0.70 3.7 4.2 11.3 10.0 9.5 6.0'1 

Dearborn NB Van Buren Wacker 0.74 4.0 4.6 11.1 9.7 7.1 5.3d 

Franklin NB Harrison Erie 1.35 9.4 9.1 8.6 8.9 10.5 11.4" 

Wells SB Erie Harrison 1.33 9.3 9.4 8.6 8.5 9.0 7.9" 

0 0bserved speed from 1988. 

bObserved speed averaged for 1984, 1985, and 1986. 

cobserved speed averaged for 1984 and 1985. 

dObserved speed from 1986. 

"Observed speed from 1984. 
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formation from the link speed calculations. All connector links 
from zone centroids to the network were coded with 3-mph speeds 
to represent walk access to the street network. The in-vehicle 
travel times and travel distances over the shortest time paths were 
summarized into impedance matrices for use in the mode-choice 
models. 

Taxi fares on the shortest paths were calculated in the matrix 
calculator on the basis of the adjusted taxi travel distance. The 
1985 taxi fare structure of a $1.00 drop charge plus $0.10 per 
1/9th mi was assumed for all alternatives. Automobile costs were 
calculated as necessary and include an operating cost of $0.12/mi 
(in 1985 dollars) along with the parking costs. 

Detailed Transit Network Coding and Path Building 

Downtown Chicago is served by a multitude of public transit ser
vices, including commuter-rail lines, express buses, and local 
buses, that must be coded into the networks. The commuter-rail 
lines were assumed to deposit all of their passengers at the ap
propriate station. Thus there was no need to code the commuter
rail lines. The remaining transit services were coded in full detail, 
including explicit stop locations, dwell times, and exact line itin
eraries. No simplifying assumptions were used in the coding of 
the transit lines. The Chicago Transit Authority (CTA) provided 
the input information to properly code the rapid-rail lines and all 
buses. Bus stops were identified as near-side, far-side, or midblock 
stops. Stair links to the elevated and subway portions of the transit 
network were included, as were access links representing the dis.: 
tance from commuter-rail platforms to the walk network. The de
tailed auxiliary (walk) network provided for additional walk ac
cess, egress, and transfer between transit lines. 

For consistency the bus travel times had to be sensitive to the 
same traffic engineering information used for obtaining the auto
mobile travel times. Thus the bus travel times were built up in 
much the same way as the automobile travel times, except that 
the bus characteristics were used. On the basis of information 
from CTA, the bus acceleration was set to 1.6 mph/sec, and the 
bus deceleration was set to 4. 7 mph/sec. The bus travel times 
included the following components: 

• Link traversal time, 
• Delay incurred at intersections, 
• Loss time because of vehicle acceleration and deceleration, 

and 
•Bus stop delay (dwell time) 

Bus travel times included a component for bus stop delay that 
was not included in the automobile travel time calculations. If bus 
stops were independent of intersections, this delay could simply 
be estimated and added for each bus stop. However the amount 
of delay incurred at a bus stop was dependent on the location of 
a bus stop. For instance near-side bus stop dwell time delay and 
intersection delay overlap, whereas a far-side bus stop dwell time 
does not overlap intersection delay. 

EMME/2 treats link travel time and transit dwell times inde
pendently. Dwell time is coded on the transit network by transit 
segment (i.e., the portion of the line between bus stops). In ad
dition a transit travel time function is coded on each segment. 
EMME/2 sums the transit travel time for each link with the dwell 
time for the segment to determine the total link travel time. Four 
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basic transit travel time functions have been coded on the bus 
network: one for near-side stops, one for far-side stops, one for 
midblock stops, and one for no stops. 

For near-side bus stops the link travel time function included 
link traversal time, acceleration and deceleration losses, and the 
maximum of the dwell time or the signal delay. If greater than 
zero the increment of dwell time delay over signal delay was also 
added to the bus travel time. 

For far-side bus stops the link travel time function included all 
of the components of the automobile travel time functions: link 
traversal time, acceleration and deceleration losses, and signal de
lay time. For the acceleration and deceleration loss, only the de
celeration component was included in the calculation because the 
dwell time for the far-side stop already included both acceleration 
and deceleration delays. 

For midblock stops the bus stop delay was simply added to' the 
traversal time, acceleration and deceleration times, and the signal 
delay. 

Only those buses with a stop were coded with one of the above 
transit travel time functions. All other segments were coded with 
a no-stop transit travel time function. This function was identical 
to the automobile travel time function, except that the acceleration 
and deceleration rates used were for buses, not automobiles. 

Average dwell times for buses were measured by field obser
vation. The average AM. peak local bus dwell time was 17 sec, 
whereas the average express bus dwell time was 30 sec. The aver
age midday dwell time for all buses was 21 sec. 

Few data were available to validate the bus travel times. Table 
2 compares the AA/DEIS modeled speeds, the scheduled CTA 
speeds, and the PE/FEIS modeled speeds. The AA/DEIS speeds 
were fairly consistent and close to one another. This was the result 
of the use of average bus speeds based on ' 'speed zones.'' In the 
PE/FEIS model more variation in the modeled speeds resulted. 
The variations in speeds resulted from the explicit modeling of 
bus stop locations and intersection delay. The CTA speeds are 

TABLE 2 Selected 1985 Transit Line Summaries for A.M. Peak 

Average Speed (mph) 

AA/DEIS 1985 CTA PE/FEIS 
Line No. Description Model Scheduled' Model 

120X CNW/Wacker Exp 10 8 9 

121X Union/Wacker Exp 10 9 10 

122X IL Center/CNW Exp 10 9 12 

123X IL Center/Union Exp 10 9 13 

125X Water Tower Exp 9 8 7 

127 CNW /Madison 8 11- 10 

129 CNW /Franklin 10 13 10 

146X Marine/Michigan Exp 10 10 9 

151 Sheridanb 9 9 8 

157 Streeterville 8 6 8 

3 King Driveb 11 12 10 

36 Broadwayb 9 10 8 

56 Milwaukeeb 8 10 13 

"CTA average speeds were calculated using distance and scheduled travel time. 

bRoute numbers 3, 36, 56, and 151 have multiple variations; overall average 
speed is reported. 
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scheduled speeds, not observed speeds. The CTA schedules are 
updated periodically to reflect actual operating conditions. 

The CTA rapid-rail routes were coded fo~ every line in the study 
area. A travel time function was constructed to represent the ac
celeration, deceleration, and cruise time between each station as 
a function of the distance. Acceleration and deceleration rates 
were provided by the CTA, and a maximum speed of 55 mph was 
assumed. 

For the LRT alternatives the Chicago Circulator Design Team 
provided the route itinerary, station focations, dwell times, and 
running times between stations. These times varied by the config
uration of the system, vehicle performance, and operating and 
safety considerations. 

Transit travel times were saved by component-transit in
vehicle time, transit auxiliary (walk) time, and transit wait time. 
The average wait time for a transit vehicle was assumed to be 
one-half the headway. A boarding time penalty of 1 min was used 
to determine the paths but was not included in the transit impe
dance matrices. 

The disaggregate transit trip analysis techniques embodied 
within EMME/2 were used to build the transit paths (8). This 
transit assignment technique is slightly different from the normal 
EMME/2 transit assignment technique. Both transit path-building 
techniques build multiple transit paths, but the enhanced path 
builder provided additional path analysis capabilities that were 
more suited to a transit-rich environment. This will be discussed 
in the next section. 

Because the mode-choice model is a nested logit model with a 
local and premium transit choice, two sets of transit paths were 
necessary: local bus submode and premium bus. Local transit paths 
were allowed to use local services only. Also since walk paths were 
explicitly modeled, the resulting paths were analyzed to ensure 
that a local transit mode was in fact used. Walk-only strategies 
were eliminated from local transit paths. Premium transit included 
the LRT system and any shuttles providing specialized service 
between specific interchanges and with limited stops in between. 
An example of this type of bus service is the commuter shuttle 
serving Illinois Center from the C&NW and Union commuter-rail 
stations. Again the resulting paths were analyzed to ensure that 
premium service was indeed used. Walk-only and walk, local bus 
strategies were eliminated from the premium transit paths. Walk 
travel times were built by using "sidewalk" links coded at 3 mph. 

TRANSIT MULTIPATHS 

In a transit-rich environment the construction of multiple transit 
paths allows for accurate modeling of individual travel behavior. 
Because there can be multiple transit paths between origin
destination pairs, it is inappropriate to utilize single-path or all
or-nothing path builders. An all-or-nothing path builder constructs 
only one path on one mode between any two zones. However if 
competing services are available, travelers may opt to use different 
paths. It is unlikely that all transit users use the shortest (lowest
impedance) path. Rather if more than one transit path exists be
tween two points, rational travelers will pick the transit vehicle 
that arrives at their origin first. 

The EMME/2 software package has an improved path-building 
routine based on the concept of transit strategies (8-10). A strat
egy is a set of rules that allows passage from origin to destination. 
A strategy is a single element of a transit traveler's choice set. 
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The number and types of strategies are dependent on the infor
mation available to the traveler. In EMME/2 it is assumed that 
the only information available to the traveler waiting at a node is 
which line is to be served next. The traveler can then make the 
decision whether to board the vehicle. If two or more alternative 
services exist between an origin node and a destination, travelers 
are assumed to split between the alternative paths in proportion 
to the frequency of service. This occurs as long as the different 
in in-vehicle travel time is less than the difference in headways 
of the routes. 

Consider the example shown in Figure 2. Three alternative 
paths between Zone 1 and Zone 2 are shown in Figure 2: 

• LRT Path A, 
• Local bus Path B, and 
• LRT Path C. 

Normal, non-EMME/2 shortest-transit path-building algorithms 
would select only LRT Path A between Zones 1 and 2, since Path 
A has the minimum travel time. The normal EMME/2 path-building 
techniques would build a stategy by using both LRT Path A and 
local bus Path B. The normal EMME/2 path builder will build 
multiple transit paths from a common node. This common-node 
access location is defined as the node at which the attached con
nector link leads to the minimum expected travel time to reach a 
particular destination. Thus the connector link leaving the zone 
must be on the minimum path. After that, if appropriate, EMME/2 
will build multiple transit paths. The split between two or more 
alternative paths would be based on the relative frequency of ser
vice on the paths. 

Although the normal EMME/2 transit path builder is an improve
ment over the shortest-transit path-building technique, LRT Path C 
is also a reasonable path. However LRT Path C cannot be accessed 
at a common node with Paths Aand B. Thus in EMME/2's normal 
path-building routine LRT Path C would not be chosen. 

EMME/2 has an enhanced path-building technique that is ca
pable of selecting multiple access nodes. The enhanced path
building technique requires additional information regarding rea
sonable transit access and egress nodes for each interchange and 
information on how to distribute the trips between the alternative 
access nodes. In the example shown in Figure 2 the enhanced 
path builder would select all three paths as reasonable paths be
tween Zones 1 and 2. The selection of an access node or nodes 
is dependent on several user-defined parameters set within the 
program (8). The probability for an access node to be chosen is 
computed by using a simple logit model: 

e-<l>u; 

P·=--
, Ie-<t>uj 

where 

/ 0 = set of access nodes, 

(1) 

u; = impedance of trip from access node i to destination plus 
access time from origin coordinates to access node i, and 

<I> = dispersion parameter. 

The dispersion parameter is specified by the user. A large value 
for the dispersion parameter will lead to the selection of only one 
access node (similar to the normal EMME/2 path-building tech
nique), whereas a small value for the dispersion parameter will 
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FIGURE 2 Example transit network. 

tend to split trips more equally among the alternative access 
nodes. The travel times used to determine the split are the in
vehicle travel time plus the straight-line access time from the or
igin zone to the respective access nodes. 

EXAMPLE APPLICATIONS AND COMPARISONS 

The network and path-building refinements have been applied 
in the Chicago central area circulator PE!FEIS study. This section 
discusses an example application and includes comparisons with 
the AA/DEIS process. A full comparison of the enhanced network 
with the procedures used in the AA/DEIS was never performed, 
since the enhanced procedures were developed to address the ob
served shortcomings of the AA/DEIS procedures. In addition the 
choice models used in the PE!FEIS study were updated .. This made 
a direct comparison of the differences in AA/DEIS and PE/FEIS 
results attributable to network processing changes impossible. 

Network Refinements 

The two refinements made in network coding for the PE/FEIS 
models have been applied in a simple example to show their ef
fects. Travel times were computed by using various network cod
ing schemes for the walk, taxi, bus, and LRT modes for a cross
Loop street running from the west-side train stations. Table 3 
shows a comparison of the selected travel times. 

The walk travel times were based on an observed walk speed 
of 3 mph. The average taxi speed was assumed to be 6.5 mph, as 

Total Travel Time From Zone 1 to Zone 2 

LRT Line A-17.3 minutes 

Bus Lile B-18.5 miootes 

LRT Line C-17.8 mirues 

determined in the AA/DEIS study. The AA/DEIS bus travel times 
were based on the 6.5-mph average speed, plus 1.5 min/mi for 
dwell time. The LRT was coded in an identical manner for both 
the AA/DEIS and PE/FEIS studies. The actual bus and LRT stop 
locations are also shown in Table 3. 

In this example the taxi travel times obtained by using the de
tailed network coding are lower than the travel times obtained by 
using the 6.5-mph average taxi speed. This occurred because the 
street modeled had g/c times that favored travel along the street. 
The average speeds account for travel on "local" streets in the 
central area as well as major arterials. As can be seen in Table 3, 
as distances increase, the detailed network travel times approached 
the taxi travel times calculated using the average taxi speeds. 

The bus travel times shown in Table 3 demonstrate the effect 
of the explicit bus stop coding compared with that of ''ubiqui
tous'' stop coding. For the ubiquitous stop coding the walk time 
is 0.4 min to all of the intersecting streets. In comparison the walk 
time for the detailed stop coding varies for each cross street. For 
example at Street C the walk time is only 0.4 min, since Street C 
is a bus stop and only the bus access time is represented. However 
the walk time to Street B is 2.0 min, since it includes the 1.6 min 
necessary to walk the 0.08 mi from the Street C stop back to 
Street B, in addition to the 0.4-min access time. The same is true 
for the walk time at the Street D intersection. 

This example points out the need to explicitly code bus stops. 
As can be seen in the example the total travel time to the different 
cross streets varies substantially depending on the location of the 
bus stop. Total travel times do not necessarily increase with the 
distance of the stop from the starting location. 

The LRT example shown in Table 3 has characteristics similar 
to those of the bus coding. Walk times are related to the distance 
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TABLE 3 Example Travel Times from West-Side Train Station to Intersecting Street 

A B c D E F G H 

Ubiquitous bus stops x x x x x x x x x x 
Explicit bus stops x x x x x x 
LRT stations x x ---------------------------------------------------------------------------
Distance (miles) 0.00 0.15 0.23 0.31 0.39 0.47 0.55 0.64 0.72 0.80 

Walk time (minutes) 0.0 3.0 4.6 6.2 7.8 9.4 11.0 12.8 14.4 16.0 

Taxi (using average 0.0 1.4 2.1 2.9 3.6 4.3 5.1 5.9 6.7 7.4 
speeds) 

Taxi (using detailed 0.0 0.7 1.2 1.7 2.3 3.2 3.6 4.2 4.7 5.4 
network speeds) 

---------------------------------------------------------------------------
Bus (with ubiquitous stops and average speeds) 

In-vehicle travel time• 0.0 1.6 2.5 3.3 4.2 5.1 5.9 6.9 7.7 8.6 

Walk time 0.0 M 0.4 0.4 0.4 0.4 0.4 M 0.4 M 
(stop-specific) 

Total travel time 0.0 2.0 2.9 3.7 4.6 5.4 6.3 7.3 8.1 9.0 

Bus (with explicit stops and built-up speeds) 

In-vehicle travel time• 0.0 1.2 1.2 1.8 1.8 1.8 3.8 4.3 4.9 4.9 

Walk time 0.0 2.0 0.4 M 2.0 l.§ 0.4 M 0.4 w 
(stop-specific) 

Total travel time 0.0 3.2 1.6 2.1 3.8 5.3 4.2 4.7 5.3 6.9 
---------------------------------------------------------------------------

LRT 

In-vehicle travel time• 0.0 1.3 1.3 1.3 

Walk time 0.0 3.0 lA .LQ 
(station-specific) 

Total travel time 0.0 4.3 2.7 2.3 

"From west side train station to nearest transit stop. 

from the closest LRT stop, and in-vehicle travel times are a func
tion of the stop used. The LRT example underscores the impor
tance of explicit coding of bus stops. 

The differences between the AA/DEIS and PE/FEIS travel 
times shown in this example are fairly small-1 to 2 min. Given 
trips of 3 to 4 mi the difference could be in the 8- to 10-min 
range. Also in a detailed analysis in which walking is a viable 
mode even small changes in the travel times could affect the mo
dal shares. The importance of the travel time differences is even 
more pronounced, since the coefficients of in-vehicle travel time 
and walk time are different in the mode choice model. 

Path-Building Refinements 

A second test was set up within EMME/2 to investigate the effects 
of different path-building and assignment procedures. The test in
volved two assignments: the first used the normal EMME/2 transit 
multipath assignment technique, and the second used the enhanced 
EMME/2 transit multipath assignment technique. For each of the 
two assignments 100 trips were assigned to selected interchanges 
over identical networks. All modes (bus and LRT) were assumed 
to be available to the travelers. The resulting volumes are shown 
in Figure 3(a) and (b). 

The effect of the enhanced multipath assignment procedure in 
comparison with that of the normal multipath assignment proce
dure embodied in EMME/2 is evident if the top diagram in Figure 
3 is compared with the diagram below. If the normal and enhanced 

1.3 2.6 2.6 2.6 2.6 2.6 

2.6 Ll .LQ M M ~ 

3.9 3.9 3.5 4.9 6.9 8.3 

LRT assignment volumes. are compared it can be seen that the 
assigned volume on the Riverbank LRT route is 349 riders in the 
enhanced assignment [Figure 3 (bottom)] or 151 riders less than 
the normal multipath assignment [Figure 3 (top)]. In the enhanced 
assignment 56 of the 151 riders are assigned to the Madison Street 
LRT (the volume increases from 507 in the normal assignment to 
563 in the enhanced assignment). The remaining 95 riders are 
assigned to Madison Street buses. 

The enhanced multipath assignment process provides additional 
stability to the assignment process. With the normal multipath 
assignment process some "flip-flop" of volumes on the River
bank and Madison Street LRT lines resulted from relatively small 
changes in travel speeds or route alignments. This occurred when
ever the best stategy changed from the use of the station served 
by the Riverbank LRT line to the station served by the Madison 
Street LRT line or vice versa. With the enhanced multipath as
signment process changes in travel speeds on one of the lines 
cause only incremental changes in assigned volumes on the lines. 

IMPLICATIONS FOR MODELING PROCEDURES 

Several enhancements to the network coding and path-building 
procedures used for a detailed study of transit alternatives in the 
central area of Chicago have been presented. The enhancements
calculation of travel times on the basis of intersection control in
formation, explicit coding of bus stops, and detailed transit multi
path assignments-were crucial for producing the travel forecasts 
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FIGURE 3 Example transit assignment: (top) normal and (bottom) enhanced travel assignment. 

necessary for station sizing and route design for the PEIFEIS. The 
examples demonstrated the modeling error that could be introduced 
into the process by simplified network coding and processing tech
niques. Although this effort was necessary for the Chicago central 
area circulator PE!FEIS, it might be asked whether this level of 
effort is necessary for regional planning or an AA/DEIS. 

It took approximately three times as long as normal to incor
porate the detailed traffic engineering information and explicit bus 
stops. In addition considerable amounts of time and effort were 
expended in obtaining the data and processing it into a usable 
format. After this initial investment the time necessary to code 
alternatives was probably doubled. 

One of the major reasons for the increased network detail was 
the extreme detail necessary for the central area modeling process. 
Most zones were defined by blocks, the walk mode was explicitly 
modeled, and taxi, automobile, and bus travel times were directly 
affected by the location and timing of traffic signals. Most regional 
modeling processes do not approach the detail of the central area 
circulator modeling process. Zones typically encompass many 

blocks, the walk mode is not explicitly modeled (except for bus 
access, egress, and transfer), and the highway network does not 
generally include detail for every street in the area being modeled. 
On the basis of that observation the increased network processing 
effort described in this paper is probably unwarranted for most 
regional modeling processes. 

Nevertheless some of the enhancements described in this paper 
should be considered (possibly in a simplified form) for regional 
modeling processes. The detailed bus stop coding might be appro
priate for most modeling processes in central business districts 
(CBDs). In many regional modeling processes zones in CBDs are 
typically small, a detailed walk network is generally coded, and the 
CBD is typically the focus of most transit services and the transit 
ridership. Thus incorporation of the detailed bus stop coding proce
dures and possibly the intersection-based travel time calculations in 
the CBD would be warranted for many regional modeling processes. 

In addition the Clean Air Act Amendments of 1990 and Inter
modal Surface Transportation Efficiency Act (!STEA) legislation 
might also support increased highway network coding and pro-
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cessing detail. The use of average speeds based on, for example, 
facility type and area type ignores the impact of intersection con
trol on specific streets. This has an impact on the final speeds 
estimated by the models and subsequently affects air quality cal
culations. Use of the intersection-based speed estimation proce
dures described in this paper or simplified versions of those pro
cedures could be an important step in improving speed estimates 
from traffic assignments. Also the desire to explicitly incorporate 
nonmotorized modes in regional travel models would also foster 
the use of increased network coding detail. 

The detailed transit multipath assignment procedures described 
here are most pertinent for detailed studies. However, the normal 
transit multipath assignment capabilities (such as those incorpo
rated in EMME/2) are iµiportant wherever transit services com
pete. In many suburban areas the transit paths and impedances 
from the multipath assignment process will be the same as the 
paths and impedances from traditional shortest-path assignment 
techniques. As transit service increases, however, the multipath 
procedures will provide more realistic estimates of travel impe
dances than shortest-path assignment techniques. For example in 
the case in which an interchange is served by two differrent bus 
lines that have only one intermediate stop not common to both 
lines, the shortest-path algorithms will select only one of the lines, 
whereas normal multipath assignment algorithms will consider 
both lines in the calculation of transit impedances. Competing 
transit services occur in many cities, especially in the fringe and 
urban areas around CBDs. 

Although some of the increased detail described in this paper 
may be unwarranted for regional modeling processes, the Clean 
Air Act Amendments of 1990 and !STEA will require increased 
detail in network coding and analysis for regional models. The 
work reported in this paper has demonstrated that increased detail 
in n'etwork coding and processing can be implemented by using 
readily available modeling software. 
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Enhancements to Circulator-Distributor 
Models for Chicago Central Area 
Based on Recently Collected 
Survey Data 

DAVID L. KURTH, CATHY L. CHANG, AND PATRICK J. COSTINETT 

The city of Chicago is evaluating alternative methods of providing 
for the distribution and circulation of commuters to and workers, vis
itors, and residents in the vibrant and growing central area of Chicago. 
In 1990 and 1991 an alternatives analysis/draft environmental impact 
statement was prepared for a circulator-distributor system for the 
central area of Chicago. The planning for the locally preferred alter
native, a light-rail-transit circulator-distributor system, has now en
tered the preliminary engineering/final environmental impact state
ment (PE/FEIS) phase. Refined travel forecasts are being prepared for 
the PE/FEIS by using refined travel models calibrated with recently 
collected mode-of-egress survey data. The calibration of the refined 
circulator-distributor travel models is discussed. In addition the im
plications for future circulator-distributor and regional modeling ef
forts that incorporate nonmotorized modes in the choice process are 
presented. 

In 1990 and 1991 an alternatives analysis/draft environmental im
pact statement (AA/DEIS) was prepared for a circulator
distributor system for the central area of Chicago. Ridership fore
casts for the AA/DEIS were prepared by using downtown people 
mover (DPM) modeling techniques first pioneered for Los An
geles in the early 1970s and later applied in Miami and Detroit 
(1-3). These models were transferred to the Chicago area and 
were adjusted to reproduce aggregate travel statistics such as av
erage trip lengths by mode and overall mode shares ( 4). 

The planning for the locally preferred alternative, a light-rail
transit (LRT) circulator-distributor system, has now entered the 
preliminary engineering/final environmental impact statement 
(PE/FEIS) phase. On the basis of the experience in applying the 
travel forecasting models developed for the AA/DEIS and the 
need for increasingly detailed travel forecasts, a number of re
finements to the circulator-distributor modeling process have been 
made: 

• Representation of the transit, taxi, and automobile networks 
has been refined. 

• Coefficients for the distributor mode-choice model have been 
estimated on the basis of locally collected data. 

• Model formulations have been revised. 

The last two points are the major focus of this paper. The first 
point, network representation and path-building refinements, is 
documented by Chang and Kurth in another paper in this Record. 

D. L. Kurth and C. L. Chang, Barton-Aschman Associates, Incorporated, 
820 Davis Street, Evanston, Ill. 60201. P. J. Costinett, KJS Associates, 
Incorporated, 500 108th Avenue N.E., Suite 2100, Bellevue, Wash. 98004. 

The travel demand forecasting procedures were applied to a 
portion of the Chicago region including and surrounding the tra
ditional Loop area (Figure 1 ). The area modeled encompassed 
approximately 6.5 mi2. and was projected to have more than 
83,000 households and 890,000 employees by 2010. The area is 
the focus of regional transit services including commuter-rail, 
rapid-rail, and bus lines. 

Figure 1 also shows the detailed zone structure used for the 
modeling process. Zones within the Loop are generally defined 
by blocks. Outside the Loop two or more blocks might constitute 
a single zone. External stations are also defined wherever transit 
lines cross the study area boundary and for the six major commuter
rail stations included in the study area: 

o North Western Station, 
• Union Station, 
• LaSalle Street Station, and 
• Metra Electric commuter-rail stations at Randolph Street, Van 

Buren Street, and Roosevelt Road. 

T\vo types of internal trips are the primary candidates for travel 
on a central area circulator-distributor system: internal-internal 
(circulator) trips and the secondary portion of external-internal and 
internal-external (distributor) trips. These two types of trips are 
characterized by marked differences in terms of peaking, activity 
linkages, regularity, and purpose. Distributor trips are made pri
marily by central area workers who use regional transit to travel 
to and from the central area. In the morning these travelers must 
choose a transit stop at which to leave the transit vehicle that takes 
them to the central area and the mode of travel (walk, circulator
distributor system, taxi, or a portion of another regional transit 
route) from the transit stop to the final destination. In the evening 
the same basic choices are reversed. 

In addition to being a major employment and cominercial cen
ter, the Chicago central area is also a residential area, a cultural 
center, and a convention center. Thus circulator trip-makers can 
be divided into several groups on the basis of whether they are 
residents of the central area, nonresidents of the central area with 
work as their major purpose for being downtown, or nonresidents 
of the central area who are downtown for nonwork purposes. 

For the Chicago central area the above definitions were used to 
stratify the travel forecasting model into manageable submodels. 
T\vo times of day were explicitly modeled: the morning peak pe
riod and midday. Distributor and circulator trips were modeled for 
both. In the morning peak period the main function of the central 
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FIGURE 1 Central area circulator zone structure. 
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area transportation network is the distribution of external-internal 
trips from regional transit services and commuter rail stations to 
final destinations. At midday its main function is to provide for 
central area circulation. The following submodels were developed 
for forecasting travel within the central area: 

• Morning peak period distributor model. 
• Morning peak period circulator model for central area 

residents. 
• Midday distributor model. 
• Midday circulator model for central area workers. 
• Midday circulator model for nonworkers in the central area. 
• Midday circulator model for central area residents. 

Mode-'C:hoice models were developed for the distributor models 
for both times of day for all trips entering the central area through 
one of the six central area commuter-rail stations. 

The submodes considered at the stations are 

•Walk, 
• Transit (local bus, express bus, rapid rail, distributor), and 
•Taxi. 

The submodes provide means to travel from the rail stations to 
the final destinations in the central area. The trips from commuter
rail stations to final destinations are assigned by submode to their 
respective networks. 

The original DPM models (e.g., for Los Angeles) used a mul
tinomial logit formulation to model mode choice. The modeled 
distributor systems were "exotic" transit systems such as auto
mated guideway people movers and were considered unique, in
dependent transit modes. The choice alternatives for this model 
formulation are shown graphically in Figure 2(a). 

For the AA/DEIS the choice model was modified to the form 
shown in Figure 2(b). The distributor alternatives considered for 
Chicago (transportation system management bus and LRT) were 
considered to be within the range of transit alternatives already 
available for distribution purposes. The distributor was modeled 
as an alternative path of a generic transit mode rather than as an 
independent mode. 

For the PE/FEIS a nested-logit formulation was used to account 
for the fact that the proposed alternatives are not truly independent 
[as in Figure 2(a)], and the use of an LRT distributor system is 
not the same as riding local buses to final destinations [Figure 
2(b)]. The PE/FEIS mode-choice model formulation is shown in 
Figure 2(c); "local" represents local bus service, and "premium" 
represents express bus service and LRT. 

External-internal trips entering the central area on rapid-rail and 
bus lines must also be distributed to their final destinations. How
ever unlike trips entering the central area on commuter rail lines, 
travelers entering the central area are not forced to change their 
mode at one easily identifiable transit transfer station within the 
central area. Rather they can ride to the stop nearest their final 
destination and then walk. Since the transit network in the Chi
cago central area is so extensive, the distribution of transit riders 
(i.e., rapid-rail and bus passengers) to their final destinations is 
accomplished solely through trip assignment techniques. The tran
sit assignment process determines the optimal time paths from 
"external" transit stations to final destinations and assigns the 
trips to those paths. The optimal time paths account for in-vehicle 

CHOICE 

WALK TAXI BUS DPM 

(a) 

CHOICE 

WALK TAXI TRANSIT 

(b) 

CHOICE 

WALK DON'T WALK 

LOCAL PREMIUM TAXI 

(c) 

FIGURE 2 Mode-choice model structure: (a) Original DPM 
multinomial logit (b) ANDEIS distributor multinomial logit, 
and (c) PE/FEIS distributor nested-logit. 
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travel times, wait times (for transfers), and walk times for transfers 
and to the final destination. 

The estimation of travel in the central area in the circulator 
mode requires the application of all phases of the travel modeling 
process: trip generation, trip distribution, mode choice, and trip 
assignment. Trip generation is based on models developed by Chi
cago Area Transportation Study (CATS) that generate total person 
trips, including walk trips, and on the results of a downtown build
ing survey. Trip distribution and mode choice are accomplished 
through models estimated specifically for the central area. As with 
the distributor models for trips from commuter-rail stations, cir
culator trips were assigned to their respective networks by sub
mode. Again the circulator was considered to be part of the pre
mium submode. 

A number of observations regarding the simultaneous trip gen
eration, trip distribution, and mode-choice circulator trip modeling 
methodology used for the AA/DEIS were made. First, the model 
was difficult to "control." The variables associated mainly with 
trip distribution interacted with (and sometimes overwhelmed) the 
mode-choice variables and vice versa. In addition no behavioral 
explanation could be attributed to the main distribution variable
the natural log of the area of the zone. Finally a matrix balancing 
technique had to be employed to obtain a reasonable and stable 
trip distribution. 

1\vo alternatives to the AA/DEIS circulator choice model form 
were considered for the PE/FEIS model. The first was a fully 



14 TRANSPORI'ATION RESEARCH RECORD 1443 

CHOICE 

OTrips 

Destination 1 

I 

I 
Walk Don't Walk Walk 

I 
Local Premium Taxi Auto 

FIGURE 3 Fully nested circulator choice model. 

nested choice model as shown in Figure 3. This model form can 
be hypothesized as a more appropriate structure for the circulator 
models and should resolve many of the difficulties noted with the 
AA/DEIS model form. Unfortunately no disaggregate choice data 
were available to estimate the model coefficients for fully nested 
choice models. The second, chosen, alternative was to disaggre
gate the circulator choice models into their_ component parts and 
use a more traditional sequential modeling process. 

The separation of the simultaneous distribution-mode-choice 
models into their component parts was a drastic change in the 
modeling methodology. To maintain some impact of the entire 
transportation system on the trip distribution, the log sum of the 
mode-choice model was used to define the impedance, or sepa
ration, between zones. A traditional gravity model formulation 
was then used to distribute the trips. Since the original AA/DEIS 
distribution-mode-choice model included a matrix balancing step 
to ensure . trip attraction balancing in all zones, the conversion 
to a gravity-type distribution model with composite impedances 
defined by the denominator of the mode choice model was 
reasonable. 

The circulator mode-choice model form is shown in Figure 4. 
The model form is very similar to the distributor model form 

WALK 

CHOICE 

LOCAL 
BUS 

Make Trip 

Destination 2 

I 

I 
Don't Walk 

I 
Local Premium Taxi Auto 

shown in Figure 2(c), with the exception that the premium transit 
submode is replaced by two submodes: express bus and LRT. This 
was done to allow for the use of a separate mode bias coefficient 
for LRT for· the circulator markets for central area workers and 
central area nonworkers. This procedure is consistent with the 
procedure used in the AA/DEIS and accounts for the hypothesis 
that, all other travel characteristics being equal, travelers in the 
central area worker and nonworker markets will select a light-rail 
vehicle over a bus. 

CALIBRATION OF PEAK DISTRIBUTOR MODEL 

In 1989 Metra performed a mode-of-access survey on commuter
rail lines in the Chicago area (5). The self-administered survey 
was conducted on the trains and included detailed mode-of-egress 
and final destination questions. This provided a rich data base of 
10,741 individual observations for the estimation of central area 
travel models. 

Table 1 summarizes the calibration data. The average walk time 
for walk egress trips was 12.4 min, or about 0.6 mi. This is sub
stantially longer than the 0.33 mi maximum walk distance used 

PREMIUM 
SHUTTLE 

DON'T WALK 

I 
LRT TAXI AUTO 

FIGURE 4 Circulator mode-choice model. 
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TABLE 1 Summary of Metra Calibration Data 

Mean Values for Alternative Modes 

Walk In-Vehicle 
Number Percent of Walk Access Travel 

Chosen of Obser- Obs er- Time Time Time 
Mode vations vations (Minutes) (Minutes) (Minutes) 

Walk 9,694 90.3% 12.4 3.9 2.7 

Taxi 109 1.0% 21.7 3.9 4.9 

Transit 938 8.7% 26.2 4.1 5.9 

as a rule of thumb in many regional modeling processes. However 
for the same trips 3.9 min would be spent, on average, walking 
to and from taxis, and 5.7 min would be spent walking to and 
from transit stops. As would be expected the average walk times 
(for the walk mode) are substantially higher when taxi or transit 
was the chosen egress mode. 

A lo git model estimation program ( 6) was used to estimate the 
peak period distributor market mode-choice model. 1\vo precon
ceived notions guided the calibration. The first was the desire to 
disaggregate travel time into its component parts-walk time, wait 
time, and in-vehicle time. The original Los Angeles DPM models 
used only one travel time variable. This resulted in models that 
were equally sensitive to changes in walk, wait, or in-vehicle 
travel times. This situation was modified in the transfer of the 
models to Chicago for the AA/DEIS through the addition of a 
walk distance variable. This variable was necessary to reproduce 
aggregate mode shares by distance, but since a constant walk 
speed was used in the modeling process, the variable had the same 
effect as increasing the walk time coefficient. The second notion 
was that a nested structure was appropriate for the choice process. 
The results of the model estimation process led to the final nesting 
structure used for the peak distributor model [Figure 2(c)]. 

The final distributor mode-choice model is shown in Table 2 
along with the coefficients for models used for the Los Angeles 
DPM models, the original AA/DEIS study for the Chicago central 
area circulator, and regional models used in Chicago. It was nec
essary to create a composite travel time variable for wait time and 
in-vehicle travel time to obtain a reasonable model coefficient for 
in-vehicle travel time. All attempts at different model structures 
that included in-vehicle travel time as an independent variable 
resulted in positive in-vehicle travel time coefficients. Review of 
the data summarized in Table 1 provides a reason for the incorrect 
sign: in-vehicle travel times occur only for the transit and taxi 
modes, the modes more likely to be used for longer egress trips. 
Thus the existence of in-vehicle travel time becomes a good vari
able for explaining why transit or a taxi is tised. Both taxi and 
transit have very slmiiar travel times for the interchanges included 
in the calibration data set, and taxi has relatively few observations. 

To test the effect of the lack of difference between the transit 
and taxi in-vehicle travel times, a special run was performed. The 
calibration data were modified to reduce the taxi in-vehicle travel 
time by a factor of 2 for all observations in which a taxi was the 
chosen mode. This run resulted in the in-vehicle travel time coef
ficient's being the correct sign and significantly different from 
zero. 

Transit 

Walk 
Access & In-Vehicle 
Transfer Wait Travel Number 

Fare Time Time Time of Fare 
(Cents) (Minutes) (Minutes) (Minutes) Boardings (Cents) 

142 5.7 1.2 2.8 1.01 90.2 

191 6.0 1.7 5.1 1.07 90.9 

215 4.9 1.8 .6.6 1.07 91.0 

These results suggested that it would not be possible to estimate 
a reasonable, independent coefficient for in-vehicle travel time with 
the available calibration data. As a result a composite variable com
bining one-half of the in-vehicle travel time with the wait time for 
transit and one-half of the in-vehicle travel time for taxi (taxi wait 
time was assumed to be zero) was created. This resulted in a model 
in which the ratio of the wait time coefficient and the in-vehicle 
travel time coefficient was 2.0. This ratio was consistent with the 
regional mode-choice model recently calibrated for Metra. 

The creation of a composite travel time variable was not the 
desired method for model estimation. However on the basis of the 
analysis of the calibration data and an analysis of the options 
available it was deemed the best solution. Several other options 
existed. The first would have been to exclude in-vehicle travel 
time from the model. If this had been done a model with reason
able coefficients for wait time, walk time, and travel cost could 
have been estimated. It could be argued that the data showed that 
travelers have little sensitivity to in-vehicle travel time for the 
portion of their trip from the commuter rail station to their final 
destination. However, the resulting model would have been valid 
only for a very limited set of alternatives, since it would not have 
passed a basic "reasonability" test. Specifically one use of the 
model will be to test alternative LRT alignments. If in-vehicle 
travel time is not included in the utility equation, two different 
alignments would give the same mode choice for a specific inter
change as long as walk access and egress distances and headways 
are the same, even if the in-vehicle travel time of one of the 
alignments was twice the in-vehicle travel time of the other. Al
though this example is somewhat illogical, it serves to identify 
the problem: over what range of travel time differences would the 
model be valid? A model that excluded in-vehicle travel time as 
a variable was rejected as illogical. 

A second option would have been to transfer a model from a 
different area. This was the approach used for the AA/DEIS ver
sion of the model. That model produced acceptable · results for 
the AA/DEIS study and could possibly have been refined for the 
PE/FEIS study. It could be argued that this was, in effect, the 
option chosen. The relationship between the in-vehicle travel time 
and wait time coefficients was transferred from a regionaJ model 
estimated by Chicago. Transferring that part of the regional model 
and rigorously estimating the rest of the model coefficients pro
duced a model more specific and applicable to the Chicago area 
than transferring a model from another city. 

One of the most interesting results of the model calibration was 
the need to stratify the walk time variable by walk time. The 



16 TRANSPORTATION RESEARCH RECORD 1443 

TABLE 2 Comparison of Distributor Model Coefficients 

Recommended 
PE/FEIS Model 

LADPM Original Metra CATS 
Coefficient Coefficient (t-Score) Model AA/DEIS Model Regional Model Regional Modelb 
Walk Time -0.09790 -0.2400'2 -0.1122 -0.0468 

0 - 10 minutes -0.09152 (-2.8) 
10( +) - 20 minutes -0.3461 (-6.0) 
20( +) - 30 minutes -0.2385 (-5.6) 
> 30 minutes -0.1736 (-4.3) 

Wait Time -0.09081 (-1.8) -0.09790 -0.0900 -0.1122 -0.0173c 
-0.029a1 

In-Vehicle Travel Time -0.045405 (-1.8) -0.09790 -0.0900 -0.05611 -0.0159 
Travel Cost -0.01125 (-4.6) -0.00954 -0.01065 -0.1837 -0.0085 
Loop Dummy (on Walk) 0.5600 (3.6) 
Nesting Coefficient 0.8943 (6.5) 0.8843' 

0.7064' 
Constants 

Transit (Local & Premium) -4.250 
Taxi -5.380 

Statistics 
Log-Likelihood -2178.6 
p2 (w.r.t. zero) 0.7843 
p2 (w.r.t. constants) 0.3242 
Value of Time $2.42 $6.16 $5.07 $1.83 $1.12 
Year for Dollars 1985 1975 1985 1970 1980? 
Value of Time (1985 $)' $2.42 $12.32 $5.07 $5.07 $1.46 

Walk I IVTT Ratio 2.0-7.6 1.0 2.67 2.0 2.94 
Wait I IVTT Ratio 2.0 1.0 1.0 2.0 1.1-1.8 

°Coefficient on walk distance was converted to time and added to coefficient on walk travel time. 
bf rom CATS regional model for home-based work trips to the Central Business District. 
cFirst wait time. 
df ransfer wa~t time. 
'First nesting coefficient is for lower level sub-mode choice nest and second nesting coefficient is for upper level walk versus drive to 
transit level nest. 
!Conversion to 1985 $made using US average CPI-U values. 

model coefficient for the shortest walk time range, 0 to 10 min, 
is very similar to the coefficient for wait time. This is consistent 
with many regional models in which walk and wait times are often 
grouped into one composite out-of-vehicle travel time variable. 
The disutility for the second walk time increment, 10 to 20 min, 
is more than three times as onerous as that for the first walk time 
increment. Walk times of between 10 and 20 min receive the full 
disutility of walking for 10 min (i.e., -0.9152) plus the incre
mental disutility for the portion of the walk greater than 10 min; 
walk times of between 20 and 30 min receive the full disutility 
for 20 min (i.e., -0.09152 X 10 + -0.3461 X 10 = -4.3762) 
plus the incremental disutility for the portion of the walk greater 
than 20 min but less than 30 min, and so on. 

The Loop dummy coefficient is applied to those trips destined 
to the area bounded by the Chicago River on the north and west, 
Michigan Avenue on the east, and Congress Parkway on the south. 
The dummy variable implies that, all other things being equal, 
travelers are willing to walk longer to destinations inside the Loop 
than outside the Loop. The willingness of commuters to walk 
longer distances to Loop destinations is probably an effect of the 
long history of the traditional Loop area as an employment center 
served by the existing commuter-rail stations and regular bus ser-

vice. Historically very little special service (e.g., shuttles) has been 
provided from the commuter-rail stations to Loop destinations. 

The nested model was not statistically significantly better than 
the root multinomial model with choices between walk, taxi, local 
bus, and premium transit. The chi-square coefficient comparing 
the nested model with an equivalent multinomial model (the only 
difference being the nesting coefficient) was about 0.6. Choosing 
the nested form did not provide any real improvement in the ex
planatory power of the model. Nevertheless the nested model was 
selected since the nesting coefficient was reasonable and the 
model form fit preconceived notions. 

The value of time for the model is about one-half of the value 
of time for the regional mode-choice model recently calibrated for 
Metra and for the model used in the AA/DEIS. The value .of time 
was affected by the use of a composite variable to estimate a 
reasonable in-vehicle travel time coefficient. However the rela
tively low value of time suggests that commuters are less willing 
to pay incremental costs to travel from commuter-rail stations to 
their final destinations. 

Table 3 compares the modeled mode shares with the surveyed 
mode shares by 5-min walk time increments. Figure 5 shows the 
same information in graphic form. As can be seen in Table 3 and 
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TABLE3 Surveyed and Modeled Mode Shares by Distance 

Walle Time Range Surveyed Shares Modeled Trips 
Begin End Walk Transit Taxi Walk Transit Taxi 

0 5 96.5% 3.0% 0.5% 99.7% 0.0% 0.3% 
5 10 99.1 % 0.8% 0.1 % 99.6% 0.2% 0.3% 

10 15 98.3% 1.3% 0.4% 98.2% 1.4% 0.4% 
15 20 91.7% 6.9% 1.3% 92.5% 6.2% 1.2% 
20 25 75.0% 22.2% 2.8% 74.9% 22.3% 2.8% 
25 30 49.3% 45.6% 5.1 % 43.6% 52.6% 3.8% 
30 35 31.1 % 64.2% 4.7% 21.8% 73.8% 4.4% 
35 40 18.9% 81.1 % 0.0% 14.1 % 81.4% 4.5% 
40 45 11.5% 85.2% 3.3% 8.4% 87.8% 3.8% 
45 50 0.0% 93.3% 6.7% 6.0% 90.5% 3.4% 
50 55 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
55 60 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
60 65 0.0% 0.0% 100.0% 0.0% 100.0% 0.0% 
65 70 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 

100% 

90% 

80% 
D Observed Walk 

70% + Observed Transit 

0 Observed Taxi 
60% 

~ b. Modeled Walk I'll 
s::. 

50% C/) 
Modeled Transit CD x 

"O 
0 

Modeled Taxi :::!!: 40% v 

30% 

20% 

10% 

0% 

10 15 20 25 30 35 40 45 50 

Walk Time in Minutes 

FIGURE 5 Observed and modeled mode shares, peak period distributor trips. 

Figure 5, the model reasonably reproduces the observed shares by 
walk distance. The ability of the model to reproduce the mode 
shares for the different distance ranges was improved by the strat
ification of the walk time coefficient into four range categories. 
The model overestimates transit shares and underestimates walk 
shares in the 25- to 35-min time range (on the basis of walk travel 

TABLE 4 Surveyed and Modeled Mode Shares 

Surveyed '.FJO<le Shares 
Station Walle Transit 
Van Buren 93.9% s.1% 
Randolph 93.1 % 5.6% 
North Western 88.5% 10.6% 
Union 88.8% 10.1 % 
LaSalle 93.4% 5.6% 
Total 90.3% 8.7% 

times). However the observed mode shares in these time ranges 
are based on very few observed trips. 

Table 4 summarizes the observed and modeled mode shares for 
five of the six commuter-rail stations in the central area. The 
model reasonably reproduces the mode shares for the stations, 
especially the two largest stations, North Western Station and Un-

'.FJO<leled '.FJO<le Shares 
Taxi Walle Transit Taxi 
1.0% 96.0% 3.4% 0.7% 
1.3% 95.9% 3.3% 0.7% 
0.9% 88.9% 10.1 % 1.0% 
1.1 % 88.0% 10.9% 1.1 % 
1.0% 93.7% 5.3% 1.0% 
1.0% 90.3% 8.7% 1.0% 
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ion Station. Station-specific constants were investigated to im
prove the results, but they were rejected since their main justifi
cation would be to improve the validation results. 

CALIBRATION OF CIRCULATOR MODELS 

No disaggregate data existed to rigorously estimate the circulator 
models. The models were developed on the basis of the relation
ships determined for the ANDEIS versions of the models along 
with the relationships and coefficients determined for the AM. 
distributor mode choice models. The assumptions made in the 
specification of the mode choice model coefficients are summa
rized below. 

• The value of time for AM. circulation trips for central area 
residents is comparable with the regional value of time for work 
trips. 

• The value of time for midday circulator trips for central area 
workers is comparable with the regional value of time for work 
trips. 

• The values of time for midday circulator trips for central area 
nonworkers and central area residents is one-half of the value of 
time for midday circulator trips for central area workers. 

Table 5 summarizes the final trip generation, trip distribution, and 
mode-choice model coefficients used for the six market segments 
used in the modeling process. Table 6 summarizes the observed 
and estimated mode shares and average trip lengths for the various 
circulator segment models. 

SUMMARY 

A detailed distributor mode-choice model was estimated for the 
Chicago central area on the basis of recently collected survey data. 
In effect this model is a transit egress mode-choice model. The 
results of this effort produced several interesting findings: 

• A constant value for walk time is not appropriate when the 
walk time exceeds 10 min. However for walk times of less than 
10 min the disutility of walk time is very similar to the disutility 
of wait time. 

•The implied value of time for the distributor (egress) mode
choice model is about one-half of the value of time for the re
gional mode-choice model. 

• If a nested logit model is used, the proper nesting structure 
is a choice between "walk" and "don't walk" modes, and be
tween the motorized modes beneath the main "don't walk" mode. 

The results of this model calibration effort suggest that future 
DPM modeling efforts should not be based on the Los Angeles 
DPM model calibrated in the early 1970s. Although the original 
model coefficients for travel time and travel cost in Los Angeles 
are similar to the short walk and wait time and the travel cost 
coefficients calibrated in the effort described here, the model for 
Los Angeles did not fully account for the disutility of walking 
long distances. In addition, the model for Los Angeles probably 
overestimated the disutility of in-vehicle travel time. Although the 
likely underestimation of the disutility of long walk time and the 
overestimation of the disutility of in-vehicle travel time have a 
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tendency to cancel each other in DPM-based models for Los An
geles, they could lead to questionable forecasts of future travel on 
circulator-distributor or DPM systems. 

The results of the present model calibration effort also have 
implications for future regional modeling efforts that incorporate 
full mode choice that include nonmotorized modes and for present 
modeling procedures that include walk access and egress times in 
the mode choice model. First, when walk time is considered, the 
disutility of walk time is probably not constant across all time 
intervals. This study suggests that for times under 10 min the 
disutility of walk time is similar to the disutility of wait time. 
Many existing modeling processes will not suffer, since a general 
practice has been to limit walk access and egress to 0.33 mi, or 
about 6. 7 min. However some recent regional modeling efforts 
have stratified walk access into short walk (less than 0.33 mi) and 
long walk (0.33 to 1 mi). The results of the present study suggest 
that the coefficient for the long walk access time should be higher 
than the coefficient for the short walk access time. 

When regional modeling efforts begin to incorporate full travel 
modes that include nonmotorized modes, the effect of varying the 
sensitivity to walk time will need to be considered. It is likely 
that a similar phenomenon will occur for bicycle travel time, al
though the sensitivity might not be the same as that for walk time. 
Very little investigation of the use of walk and bicycle modes has 
been done in the United States, although these modes are typically 
considered in European cities. Typically travel surveys used for 
calibrating regional models have not collected information on 
nonmotorized trips. This has started to change, especially with the 
recent Clean Air Act Amendments legislation passed by the U.S. 
Congress. 

The final nesting structure that was determined for the circulator 
model suggests that nested, regional mode-choice models might 
be very complicated when walk and bicycle modes are added. It 
is likely that simple multinomial logit models will not suffice. 
More likely the main mode choice will be between walk, bicycle, 
and motorized modes or possibly between manual modes (i.e., 
walk and bicycle) and motorized modes. Under motorized modes 
the nested choices might be similar to those for current regional 
mode-choice models. 

As is typically the case more study and data are required. The 
current Chicago central area modeling process has been improved 
by tqe availability of the Metra mode-of-access and -egress data. 
However further improvement could be made to the models for 
the various circulator model segments if comparable data were 
available for travel made by central area residents, workers, and 
nonworker visitors. This need will not disappear. It will continue 
to be necessary as regional planning processes and regional mod
els attempt to consider all travel modes in future modeling efforts. 
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TABLE 5 Trip Generation, Trip Distribution, and Mode-Choice Model Coefficients 

Midday 

AM Peak 
Distributor 
Model 

AM Peak 
Circulator 
Model 

Midday Circulator 
Midday Circulator Model-
Distributor Model- Non-

Midday 
Circulator 
Model-

Coefficient Model Workers Workers Residents 

Trip Generation Moder 
Employment Density 
(Emp/Ac)-On 0-Trip Util 

Attraction Density 
(Attr/ AC)-On 1-Trip Util 

0.0008552 -

0.00767 

0-Trip Constant 2.75 
-:oiSiiihuiOr"i\1.o'der--------~----------~--------~-------~--------~--------~---------

atpha 30 30 30 30 
beta 1.10 0.30 0.30 0.90 
gamma -0.22 -0.50 -0.22 -0.60 
Distance Coefficient~ 

Walk -7.50 -8.37 -6.50 -10.00 
Transit -5.50 -3.50 -1.00 -4.00 
Taxi -4.00 -2.00 0.0 -2.00 
Auto -4.00 -2.00 0.0 -2.00 
-I\1o<ie-cholci~oaer------~----------~--------~-------~--------~--------~---------

Walk Time 
0 - 10 minutes -0.09152 -0.09152 -0.09152 -0.09152 -0.09152 -0.09152 
10( +) - 20 minutes -0.3461 -0.3461 -0.3461 -0.3461 -0.3461 -0.3461 
20( +) - 30 minutes -0.2385 -0.2385 -0.2385 -0.2385 -0.2385 -0.2385 
> 30 minutes -0.1736 -0.1736 -0.1736 -0.1736 -0.1736 -0.1736 

Wait Time -0.09081 -0.09081 -0.09081 -0.09081 -0.09081 -0.09081 
In-Vehicle Travel Time -0.045405 -0.09081 -0.045405 -0.09081 -0.09081 -0.09081 
Travel Cost -0.01125 -0.01125 -0.01125 -0.01125 -0.0225 -0.0225 
Loop Dummy (on Walk) 0.5600 0.5600 
Nesting Coefficient 0.8943 0.8943 0.8943 0.8943 0.8943 0.8943 
Constants 

Walk 
Transit (Local & Premium) -4.250 -1.15 -4.250 -1.94 -1.045 -1.20 
Taxi -5.380 -1.40 -5.380 -3.44 -2.5 -2.55 
Auto 0.0 -3.21 0.0 -0.15 

Value of Time (1985 $) $2.42 $4.84 $2.42 $4.84 $2.42 $2.42 

Walk I IVTT Ratio 2.0-7.6 2.0-7.6 2.0-7.6 2.0-7.6 2.0-7.6 2.0-
7.6 

Wait I IVTT Ratio 2.0 1.0 2.0 1.0 1.0 1.0 
"The trip generation model utilities are "added" to the composite utilities used for trip distribution. The 
choice based trip generation model is used only for trips made by CBD workers. 

"The gamma function has been used to determine friction factors for the gravity model for trip 
distribution: 

where: 
F is the friction factor for the interchange 
I is the composite impedance for the interchange 
e is the base of the natural logarithms (2.7183 ... ) 
a, {3, and ")' are calibrated coefficients 

'The distance coefficients are applied to. the total interchange distance (based on the walk mode shortest 
travel time paths) and "added" to the composite utilities used for mode choice. This additional utility is 
used to help control the average trip length by mode. 
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TABLE 6 Observed and Modeled Mode Shares and Average Trip Lengths, Circulator Model 
Market Segments 

Average Trip Length 
Mode Share (Equivalent Walk Minutes)0 

Market Segment Walk Transit Taxi Auto Walk Transit Taxi Auto 
Peak Circulator-Residents Observed 51.4% 23.2% 12.6% 12.9% 8.5 21.4 20.1 19.0 

Modeled 51.8% 23.4% 12.2% 12.6% 8.5 25.8 19.3 24.1 
Midday Circulator-Workers Observed 90.1% 6.5% 1.6% 1.7% 4.4 24.7 n/a n/a 

Modeled 90.1 % 6.5% 1.6% 1.7% 4.4 25.6 16.9 23.9 
Midday Circulator-Non-Workers Observed 92.7% 3.5% 0.9% 3.0% 4.4 24.7 n/a n/a 

Modeled 92.5% 3.5% 0.9% 3.1 % 5.3 26.0 10.1 25.5 
Midday Circulator-Residents Observed 92.0% 4.0% 1.0% 3.0% 4.4 24.7 n/a n/a 

Modeled 91.9% 4.0% 1.0% 3.1 % 5.8 23.3 12.2 26.4 
0 All trip lengths are measured using the walk travel times for comparison purposes. 
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Using 1990 Census Public Use Microdata 
Sample To Estimate Demographic and 
Automobile Ownership Models 

CHARLES L. PURVIS 

Disaggregate (household-level) automobile ownership choice models 
are typically estimated by using large-scale cross-sectional household 
travel surveys. Automobile ownership choice models typically stratify 
households into households owning zero, one, or two or more vehi
cles. This automobile ownership market segmentation is critical in the 
application of a regional set of disaggregate travel demand models for 
aggregate forecasting purposes. An alternative regional data set for 
estimating disaggregate automobile ownership choice models is the 
1990 Census Public Use Microdata Sample (PUMS). PUMS consists 
of two disaggregate files of individual 1990 census records (household 
and population characteristics) of either 1 percent of an area's house
holds or 5 percent of an area's households (the 1 percent and the 5 
percent samples). Disaggregate workers in household and automobile 
ownership choice (logit) models were estimated on the basis of PUMS 
data files for the nine-county San Francisco Bay Area and the one
county San Diego region. These models were also compared with 
disaggregate models on the basis of the 1990 Metropolitan Transpor
tation Commission household travel survey. The strengths and weak
nesses of both approaches-PUMS versus household travel surveys
are discussed. The primary weakness of PUMS is the lack of data on 
neighborhood characteristics, such as land use density or accessibility 
measures, at a fine enough geographic level (i.e., regional travel anal
ysis zone) for model estimation purposes. The transferability of the 
model estimation methodology to other metropolitan regions is 
discussed. 

The purpose of this paper is to explore the development of dem
ographic and automobile ownership forecasting models by using 
data from the 1990 U.S. decennial census and from household 
travel surveys. Disaggregate (household-level) automobile own
ership choice models were estimated by using data from the 1990 
census Public Use Microdata Sample (PUMS) and the 1990 San 
Francisco Bay Area Household Travel Survey. Comparison of the 
model estimation' results from the two data sets shows that the 
1990 census PUMS is an appropriate data set for use in updating 
metropolitan automobile ownership models. The development of 
PUMS-based automobile ownership models may be appropriate 
in metropolitan areas and states where current household travel 
survey data are not readily available. 

TECHNIQUES FOR FORECASTING 
AUTOMOBILE OWNERSHIP 

Travel demand forecasting techniques have typical! y focused on 
the four-step planning models related to trip frequency choice, 
destination choice, mode choice, and route choice. Much less at-

Metropolitan Transportation Commission, 101 Eighth Street, Oakland, 
Calif. 94607-4700. 

tention is typically paid to the development and evaluation of 
demographic models that feed data into travel demand models. 
These demographic models include automobile ownership models, 
labor force participation rate models, household income models, 
and age cohort survival models. The focus in this paper is on 
automobile ownership models, although the point to be made is 
that the other sets of demographic models are of no less importance. 
The development of robust and credible labor force participation 
rate models, household income models, and so on is key to suc
cessful urban land use, economic, and transportation stimulation 
modeling. Demographic and other inputs to travel demand model
ing have been covered by Hamburg et al. (J) and Bajpai (2). 

Why Is Forecasting Automobile Ownership 
Important? 

Good forecasts of automobile ownership levels are critical in pre
paring adequate travel demand forecasts. Automobile ownership 
variables are typically encountered in most travel demand model 
components, including trip frequency choice, destination choice, 
and mode choice models. 

In terms of trip frequency (trip generation) models, households 
with no vehicles available take markedly fewer trips than house
holds with one or more vehicles available. Cross-classification or 
linear regression trip generation (home-based production) models 
typically include automobile ownership as one of the independent 
variables used to predict trip frequency choice. 

Variables such as the number of automobiles per household, the 
number of automobiles per worker, and the number of automo
biles per licensed drivers have all been used successfully in most 
if not all work and nonwork mode choice model specifications. 
Automobile ownership level is less likely to be used in trip des
tination choice (trip distribution) models, although nested, desti
nation mode choice models invariably include an automobile own
ership variable as an independent variable in the mode choice 
utility. 

Understanding of the numbers of automobiles owned or avail
able to a household and household members is critical in defining 
the captive market and market choice behavior. Households with 
no automobiles available will be captive to transit, ride-sharing 
with nonhousehold members, or nonmotorized means of trans
portation. Households with multiple workers or drivers per house
hold and only one vehicle per household face a partial captivity
which worker (or driver) gets the family car? Households with 
one or more cars available per licensed driver and faced with 
infrequent or inaccessible transit services may essentially be cap-
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tive or forced to use their automobile because of the lack of 
alternatives. 

Underpredicting future automobile ownership levels will have 
the effect of underpredicting total motorized person trips, perhaps 
unpredicting average person trip lengths, overpredicting transit pa
tronage levels, and underpredicting congestion, traffic, and air 
quality emissions. With these considerations in mind it seems im
portant to get the automobile ownership forecasts right rather than 
assuming no change in automobile ownership levels with respect 
to base year automobile ownership levels. The "null model" au
tomobile ownership model (i.e., assuming no change from base 
year automobile ownership levels) may prove to be an undesirable 
characteristic of future travel demand model forecasting systems. 

Aggregate Versus Disaggregate Automobile Ownership 
Forecasting Models 

Simply stated, aggregate automobile ownership forecasting mod
els are estimated on the basis of areawide time series data on 
automobile ownership per capita or per household and various in
dependent variables; disaggregate automobile ownership forecasting 
models are statistically estimated on the basis of household-level 
data and typically stratify households into households by the num
ber of automobiles available (e.g., zero, one, two, or three or more 
automobiles availab_le ). Disaggregate automobile ownership mod
els could also be linear regression in mathematical form and 
would predict the number of automobiles per household, the num
ber of automobiles per capita, the number of automobiles per li
censed driver, or the number of automobiles per worker. 

Aggregate automobile ownership models can also be estimated 
by using aggregate zone-level statistics from decennial census data 
such as the 1980 census Urban Transportation Planning Package 
(UTPP) or the 1990 census Transportation Planning Package 
(CTPP). Pearson (3) discusses aggregate automobile ownership 
models estimated on zone-level data from the 1980 UTPP. Good 
discussions. on aggregate automobile ownership models are in
cluded in a publication of the Organization for Economic Coop
eration and Development (4). Other relevant discussions on au
tomobile ownership trends and saturation levels are included in 
reports by Lave (5) and Pisarski (6). 

The 1960s state of the practice in disaggregate automobile own-. 
ership models is best described by Deutschman (7). These are 
typically linear regression models predicting automobile owner
ship rates: the number of automobiles per household or the num
ber of automobiles per capita. Independent variables include av
erage household size, mean or median household income (or log 
transformations of income), residential density, and single-family 
versus multifamily dwelling units. Independent variables not an
alyzed by Deutschman included the numbers of workers in the 
household and the relative transit accessibility of the residence 
area with respect to working and shopping opportunities. 

Disaggregate automobile ownership rate models (typically lin
ear regression models) can be contrasted with disaggregate auto
mobile ownership level models (typically cross-classification or 
multinomial logit models). The former predict the number of au
tomobiles per household or the number of automobiles per capita; 
the latter stratify households by the number of automobiles (or 
vehicles) owned (or available), say, into categories of zero-vehicle, 
one-vehicle, and two-or-more vehicle households. 
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Current examples of market-segmented automobile ownership 
rate models are provided by Prevedouros and Schofer (8). They 
provide some good exploratory research that may prove to be 
useful in the formulation of operational, practice-oriented auto
mobile ownership models. 

Cross-Classification Automobile Ownership Models 

A good example of a cross-classification automobile ownership 
model is the 1982 version of the Honolulu metropolitan area 
model (9). The dependent variable is the number of households 
stratified by three vehicle ownership levels (zero, one, or two or 
more vehicles per household). Three independent variables are 
used in the final Honolulu model specification: households by 
household size (four groups), households by income level (three 
groups), and households by geographic .area type (three groups). 
Each of the 36 cells in the cross-classification matrix is assigned 
three values to split out the shares of households with zero, one, 
and two or more vehicles. Two other independent variables were 
examined in the Honolulu analysis: households by number of 
workers in the household and housing type (single-family versus 
multifamily units). These two variables were not included in the 
final model specification, basically to keep the cross-classification 
model tractable to users. An independent variable not examined 
in Honolulu included a transit accessibility variable, although one 
could argue that the area type stratification is perhaps a suitable 
surrogate for generalized transit accessibility. 

Disaggregate Choice Models for Automobile 
Ownership 

Theoretical developments in travel behavior modeling led to the 
incorporation of nested multinomial logit models to represent au
tomobile ownership choice as a distinct yet integrated element of 
a "mobility block" of travel demand models [see Lerman (10) 
and Lerman and Ben-Akiva (11)]. Lerman and Ben-Akiva cri
tiqued the 1970s state of the practice of automobile ownership 
forecasting as being a ''side calculation made with simple models 
that rely on trend extrapolations or correlations made between 1 
and 2 variables and car ownership rather than on a strong causal 
theory.'' (A comprehensive review of metropolitan area forecast
ing models may unfortunately reveal that automobile ownership 
forecasting is still treated as a "side calculation.") 

Two examples of multinomial logit atitomobife ownership mod
els, in practice, are the Portland, Oregon (12,13), and Bay Area 
(14,15) travel demand models. Both the Portland and the Bay 
Area models include a series of mobility block models that first 
predict the distribution of households by the number of workers 
in households and then second predict the distribution of house
holds ·by the number of vehicles in the household. Both the Port
land and Bay Area model sets use multinomial logit model speci
fications to predict the number of workers in households and 
automobile ownership choice. 

The Portland workers-in-household model includes four alter
native choices: zero-worker, one-worker, two-worker, or three-or
more-worker households. The utility equations use household size, 
four income categories, and four categories for age of head of 
household as independent variables. The Bay Area nonworking 
household (NWHH) model is a binomial logit model that splits 
households into households without workers and households with 
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workers. The independent variables included in the Bay Area 
NWHH model include household size, household income, and 

· special variables to indicate very low income households and low 
numbers of people per household. 

The Portland household automobile ownership model includes 
four alternative choices: zero-vehicle, one-vehicle, two-vehicle, 
and three-or-more-vehicle households. Independent variables in
clude the number of households by four household size categories, 
the number of households by four workers in household cate
gories, the number of households by four income categories, and 
a generalized transit accessibility variable. This last variable is an 
''average zonal value of employment accessible within 30 minutes 
total travel time by transit.'' Recent revisions to the Portland au
tomobile ownership models, done as part of the 1000 Friends of 
Oregon Land Use Transportation Air Quality Study, added two 
variables: the number of retail employees working within 1 mi of 
the zone of residence and a "pedestrian environment factor." This 
last factor is essentially a score assigned to each regional travel 
analysis zone describing the topography, sidewalk continuity, local 
street pattern, and ease of crossing streets within each zone. These 
urban form variables-employment accessibility and the pedes
trian score-help in explaining the lower automobile ownership 
levels in the central Portland neighborhoods. 

The Bay Area has two automobile ownership models-a non
working household automobile ownership (NWHHAO) model 
and a working household automobile ownership (WHHAO) 
model. Both Bay Area automobile ownership models split house
holds into the number of households with zero, one, or two or 
more vehicles available. Independent variables in the current Bay 
Area NWHHAO model include average household size, average 
household income, and population density. (The original 
NWHHAO model included a log sum-based off-peak transit ac
cessibility variable in the model specification). Independent vari
ables in the current Bay Area WHHAO model include average 
household size, average household income, single-family dwelling 
unit dummy variable, employment density, and a log sum-based 
peak transit accessibility variable (essentially a ratio of the ex
ponentiated transit and automobile utilities from the work trip 
mode choice model). For aggregate model application the Bay 
Area models are applied to zone-level households market seg
mented (split) by three household income levels. 

The output of the Portland set of worker/automobile ownership 
choice models is a prediction of the number of households in a 
travel analysis zone by income groups (four groups), household 
size (four groups), age of head of household (four groups), num
bers of workers in the household (four groups), and number of 
vehicles available in household (four groups), or essentially up to 
1,024 potential market segmentations per zone. The output of the 
Bay Area set of worker/automobile ownership choice models is a 
prediction of the number of households in a travel analysis zone 
by income groups (three groups), number of workers in household 
(two groups), and number of vehicles available in the household 
(three groups), or essentially 18 market segmentations per zone. 
Some of tht:se market segments are likely to be very small in 
magnitude (e.g., high income, working households with no vehi
cles available) if not excluded as a potential alternative choice 
(e.g., three workers in a two-person household). 

What are the pros and cons of cross-classification automobile 
ownership models versus logit choice automobile ownership mod
els? The positive aspects of cross-classification automobile own
ership models are their tractability; their ease of specification, es-
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timation, and application; and their ability to satisfactorily handle 
the highly nonlinear relationships between household income and 
automobile ownership and between household size and automo
bile ownership. Readily available data sources for the estimation 
of cross-classification automobile ownership models include 
standard census products such as the 1990 CTPP and the 1990 
census PUMS. Household travel surveys can also be used for es
timating these cross-classification models. 

The negative aspects of cross-classification models include a 
practical (tractable) limitation to two or three independent vari
ables, and aggregation errors related to grouping of what can be 
considered continuous variables such as household income or resi
dential density. For example a 5 percent increase in mean or me
dian household income in a low-income cohort has no impact on 
automobile ownership levels in the context of a standard cross
classification automobile ownership model application. In areas 
with cross-classification automobile ownership models, changes 
in labor force participation rates, major transit capital investments, 
or increased development of mixed-use developments and multi
family dwelling units have no impact on automobile ownership 
forecasts. An alternative to the standard two- or three-dimensional 
cross-classification model is a more complex-and less tract
able-cross-classification automobile ownership model that could 
contain four or five independent variables, say, household size, 
household income level, the number of workers in the household, 
dwelling unit structure type, and area type or ''accessibility 
class." Large data sets such as the PUMS are ideal for this sort 
of cross-classification model. 

Positive aspects of logit choice automobile ownership models 
include tractability, ease of estimation and application, and ability 
to incorporate many of the independent variables that might in
fluence automobile ownership choice. Independent variables that 
have been included in logit automobile ownership choice models 
include household size, household income, the number of workers 
in the household, structure type, employment density and acces
sibility, transit accessibility to employment, combined transit and 
highway impedance, population density, and urban design factors. 
Household travel surveys are the traditional data sources for the 
estimation of logit choice automobile ownership models. This 
paper explores the use of the 1990 census PUMS in estimating 
simple worker/automobile logit choice models. 

Negative aspects of logit choice automobile ownership models in
clude the challenges related to model specification, especially with 
respect to the treatment of the nonlinear relationships between several 
significant independent variables (e.g., household income and house
hold size) and the dependent variable (the number of households by 
automobile ownership level). In general logit choice models are less 
satisfactory in addressing these nonlinear relationships than cross
classification models. In comparison with cross-classification models, 
logit choice automobile ownership models can be structured to be 
sensitive to such issues as changes in labor force participation rates, 
major transit capital investments, and increases in mixed-use land use 
patterns and multifamily dwelling units. 

PUMS AND ITS USE IN TRANSPORTATION PLANNING 
ANALYSIS 

PUMS is a standard Bureau of the Census data product that was 
first introduced in 1960. The 1990 census version of the microdata 
sample includes what are called the 1 percent sample and the 5 
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percent sample as well as a sample of households with elderly 
householders (16). The PUMS data are basically individual census 
records for a .sample of households and people who answered the 
census "long form." For example in a region the size of the Bay 
Area, with 2.246 million households and 6.024 million people, 
the 5 percent PUMS file for the Bay Area includes disaggregate 
records on 108,491 households and 292,451 people. This amounts 
to 4.8 percent of the households and 4.9 percent of the total Bay 
Area population in 1990. . 

The smallest geographic area for which PUMS data are avail
able is at the Public Use Microdata Area (PUMA). PUMAs may 
not be less than 100,000 people in total population in 1990. This 
large geographic restriction protects the confidentiality of census 
respondents by not providing precise enough geographic informa
tion with which to locate and identify the individual respondent. 
In 1991 the boundaries of the 1990 census PUMAs were defined 
by regional census data center staffs as part of the state census 
data center program. In the nine-county Bay Area, 48 PUMAs 
each with an average population of 125,000 people were defined. 

The PUMS household records include all housing unit data from 
the 1990 census long form plus recoded variables such as the num
ber of people in the family and the presence of people age 65 years 
and over. "Allocation" flag variables are included to denote if data 
values were imputed or allocated by the Census Bureau. 

The PUMS person records include person information from the 
1990 census long form as well as recoded variables (e.g., recode 
of place of birth and recode of person's total earnings) and allo
cation (imputation) flags. 

Bay Area transportation planners required 1980 census PUMS 
data for market segmentation adjustments in the aggregate appli
cation of disaggregate choice models (17). Conversion factors 
were derived from 1980 census PUMS data to convert demo
graphic characteristics of total households into characteristics of 
households with workers. For example adjustments are needed for 
four sets of demographic variables included in the Bay Area re
gional work trip mode choice model TW: 

• Income per working household/income per total household; 
• Number of people per working household/number of people 

per total household; 
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• Number of workers per working household/number of work
ers per total household; and 

• Number of automobiles per working household/number of au
tomobiles per total household. 

Income per working household was 14 percent higher than income 
per total household, according to the 1980 census PUMS for the 
Bay Area. Household size in working households was 8 percent 
higher than household size in total households. The number of 
workers per working households was 26 percent higher than the 
number of workers per total household, and the number of auto
mobiles per working household was 11 percent higher than the 
number of automobiles per total household. 

Other PUMS data were used as supplementary data inputs to 
the Bay Area travel model system to adjust demographic inputs 
by market segment, namely households by three automobile own
ership levels, households by three income levels, and working 
versus nonworking households. 

Summary tabulations for the 1990 census PUMS for the San 
Francisco Bay Area and the San Diego region are included in 
Tables 1 through 3, which show the number and characteristics 
of households by three household income levels and three auto
mobile ownership levels, stratified by total households, working 
households, and nonworking households, respectively. Informa
tion extracted from the 1990 census PUMS is critical for market 
segmentation adjustments in travel forecasting model systems. 
These data are also used for the aggregate validation of the workers
in-household model. 

Data from the 1990 census PUMS can be charted to show non
linear relationships between the share of the region's households 
with no workers in comparison with household income, household 
size, and age of head of household (Figures 1 through 3, respec
tively). A graphical exploratory analysis of these demographic re
lationships assists the model developer in setting up model speci
fications to properly treat the nonlinear relationships that may 
appear. Households with a 1989 mean household income of less 
than $40,000 have a much higher likelihood of having no workers. 
One- and two-person households also have a higher likelihood of 
having no workers. As the age of the head of the household ap
proaches and exceeds 60 years, the likelihood that the household 
has no workers present increases dramatically. 

TABLE 1 Characteristics of Total Households in Bay Area and San Diego 1990 Census PUMS 

1 ld b Th H h ld I Tota House io s 'Y ree ouse o ncome Levels 
Number and Share of Households Veh/HH Veh/HH P/HH P/HH Emp/HH Emp/HH 

Bay San Bay San Bay San Bay San 
Area % Diego % Area Diego Area Diego Area Diego 

Low Income 783,977 35.0% 378,160 42.7% 1.092 1.236 2.060 2.299 0.737 0.860 
Medium Income 791,942 35.3% 316,911 35.8% 1.842 1.995 2.708 2.879 1.482 1.541 
High Income 666,635 29.7% 190,503 21.5% 2.439 2.510 3.140 3.171 1.962 1.891 
Total 2,242,554 100.0% 885,574 100.0% 1.757 1.782 2.610 2.694 1.364 1.326 .. .. .. .. " .. realer than 60 000. Note: Law Income =less than $30,000. Medium Income - $30,000 $60,000. High Income g $ , 

. l 0 h" L Total House11olds b11 Three Vehic e wners 1p eves 
Number and Share of Households Income Income P/HH P/HH Emp/HH Emp/HH 

Bay San Bay San Bay San Bay San 
Area % Diego % Area Diego Area Diego Area Diego 

Zero-Vehicle 235,568 10.5% 71,585 8.1% $19,299 $15,446 1.873 2.117 0.588 0.532 
One-Vehicle 729,040 32.5% 296,776 33.5% $33,379 $27,601 1.932 2.039 0.929 0.863 
Two-plus Vehicles 1,277,946 57.0% 517,213 58.4% $64,603 $54,594 3.132 3.150 1.755 1.701 
Total 2,242,554 100.0% 885,574 100.0% $49,693 $42,384 2.610 2.694 1.364 1.326 
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TABLE 2 Characteristics of Working Households in Bay Area and San Diego 1990 Census PUMS 

k Wor ing House h Id b Th 0 s '1/ 1 Id I ree House 10 ncome L eves 
Number and Share of Households Veh/HH Veh/HH P/HH P/HH Emp/HH Emp/HH 

Bay San Bay San Bay San Bay San 

Area % Diego % Area Diego Area Diego Area Diego 

Low Income 441,614 24.8% 235,687 34.2% 1.292 1.424 2.344 2.620 1.308 1.380 

Medium Income 707,365 39.7% 278,915 40.4% 1.885 2.052 2.808 3.003 1.659 1.751 

High Income 632,065 35.5% 175,180 25.4% 2.483 2.576 3.210 3.279 2.069 2.057 

Total 1,781,044 100.0% 689,782 100.0% 1.950 1.971 2.836 2.942 1.717 1.702 

" " " Note: "Low Income"= less than $30,000. 'Medium Income = $30,000 - $60,000. High Income =greater than $60,000. 

Working Households b11 Three Vehicle Ownershiv Levels 
Number and Share of Households 

Bay San 
Area % Diego % 

Zero-Vehicle 100,411 5.6% 27,052 3.9% 

One-Vehicle 517,763 29.1% 200,106 29.0% 
Two-plus Vehicles 1,1q2,870 65.3% 462,624 67.1% 
Total 1,781,044 100.0% 689,782 100.0% 

It is anticipated that transportation planners of the 1990s will 
use the 1990 census PUMS for various policy and planning analy
ses, including the following: 

• Describing the characteristics of commuters in corridors tar
geted for congestion pricing programs or major transit or highway 
capital investments; 

• Describing the characteristics of commuting submarkets, in
cluding carpoolers, transit passengers, people who work at home, 
bicycle commuters, disabled people, elderly people and so on; 

• Analyzing market segmentation for travel demand forecasting 
models; and 

• Describing the commuting habits by household life cycle 
stage, occupation of worker, industry, educational attainment, and 
so on. 

The PUMS files are treasure chests of disaggregate household, 
person, and commuter characteristics that are waiting to be mined 
by adventurous transportation planners and policy analysts. 
Needed are case studies to explore conventional and nonconven-

Income Income P/HH P/HH Emp/HH Emp/HH 
Bay San Bay San Bay San 

Area Diego Area Diego Area Diego 

$28,029 $21,706 2.277 2.758 1.380 1.408 

$37,835 $30,221 2.058 2.222 1.308 1.280 

$67,278 $56,498 3.231 3.265 1.929 1.902 

$56,506 $42,384 2.836 2.942 1.717 1.702 

tional ways of using PUMS data to advance transportation plan
ning practice. 

MODEL ESTIMATION RESULTS FOR BAY AREA AND 
SAN DIEGO: 1990 CENSUS PUMS AND 1990 BAY AREA 
TRAVEL SURVEY 

Three different choice models were estimated in this research: 

•Nonworking household (NWHH) model, 
• Nonworking household automobile ownership (NWHHAO) 

model, and 
• Working household automobile ownership (WHHAO) model. 

The NWHH model is a binomial logit choice model predicting 
whether a household has zero or one or more workers. The 
NWHHAO model is a multinomial logit choice model further split
ting nonworking households into households with zero, one, or two 
or more vehicles available. The WHHAO model is also a multi-

TABLE 3 Characteristics of Nonworking Households in Bay Area and San Diego 1990 Census PUMS 

N k h Id b on-Wor inx House o s 111 Three Household Income Levels 
Number and Share of Households Veh/HH Veh/HH P/HH P/HH Emp/HH Emp/HH 

Bay San Bay San Bay San Bay San 
Area % Diego % Area Diego Area Diego Area Diego 

Low Income 342,363 74.2% 142,473 72.8% 0.835 0.924 1.693 1.768 0.000 0.000 
Medium Income 84,577 18.3% 37,996 19.4% 1.480 1.578 1.865 1.970 0.000 0.000 
High Income 34,570 7.5% 15,323 7.8% 1.636 1.755 1.852 1.940 0.000 0.000 
Total 461,510 100.0% 195,792 100.0% 1.013 1.116 1.737 1.820 0.000 0.000 

" " " " " " Note: Low Income =less than $30,000. Medium Income = $30,000 - $60,000. High Income =greater than $60,000. 

N Wk" H h Id b Th on- or inx ouse o s '1/ h' l 0 ree Ve 1c e wners h iv Leve s 
Number and Share of Households Income Income P/HH P/HH Emp/HH Emp/HH 

Bay San Bay San Bay San Bay San 
Area % Diego % Area Diego Area Diego Area Diego 

Zero-Vehicle 135,157 29.3% 44,533 22.7% $12,814 $11,644 1.573 1.729 0.000 0.000 
One-Vehicle 211,277 45.8% 96,670 49.4% $22,458 $22,178 1.624 1.660 0.000 0.000 
Two-plus Vehicles 115,076 24.9% 54,589 27.9% $37,566 $38,458 2.136 2.178 0.000 0.000 
Total 461,510 100.0% 195,792 100.0% $23,401 $24,321 1.737 1.820 0.000 0.000 
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FIGURE 1 Percent zero-worker households by household 
income ranges, 1989 dollars, 1990 census PUMS, San Francisco 
Bay Area. 

nomial logit choice model that splits households with workers into 
households with zero, one, or two or more vehicles available (Fig
ure 4). The models as estimated are similar to previous versions 
of Bay Area travel demand models, with simplifications and en
hancements as noted. 

Six to 10 model specifications were tested for each component 
model. Only the best model is reported here for the sake of brev
ity. Three data sets were used in the research project: 

• 1990 Bay Area Household Travel Survey, 
• 1990 census PUMS 5 percent sample for the Bay Area, and 
• 1990 census PUMS 5 percent sample for the San Diego 

region. 

The 1990 Bay Area Household Travel Survey was a telephone
based trip diary survey of 10,838 households conducted during 
the spring and fall of 1990. Households that refused or did not 
answer the household income question on the 1990 survey (ap
proximately 30 percent of survey respondents) were excluded from 
the model calibration file. The 5 percent PUMS for the nine-county 
Bay Area contains 108,491 household records. The 5 percent 
PUMS for the one-county San Diego region contains 41,987 house
hold records. All PUMS records, including households for which 
income was imputed, were included in the model specification tests. 
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FIGURE 2 Percent zero-worker households by number of 
people in household, 1990 census PUMS, San Francisco Bay 
Area. 

Commercially available software was used for preprocessing 
the rather immense PUMS data sets on a mainframe computer 
before downloading the calibration files to a microcomputer. Logit 
models were estimated by using a commercially available logit 
estimation package. 

All of the coefficients were reviewed for reasonableness in 
terms of coefficient magnitude and sign. All of the t-statistics for 
all of the coefficients in the summary tables are significant (>2.0) 
although some of the coefficient signs are counterintuitive. For 
the present purposes a magnitude of less than a 10-fold difference 
in model coefficients between data sets is considered a reasonably 
consistent result (i.e., in the same ''ballpark''). 

The nonworking household model was one of the more difficult 
models to estimate, although the final rho-bar squared statistics 
(>0.40) are acceptable for disaggregate choice models (Table 4). 
The most troublesome variables were the household size variables. 
The persons per household coefficient for the San Diego PUMS 
model has the incorrect (negative) coefficient. The low household 
size variable (dummy variable of 1 if one-person household and 
O if two-or-more-person household) apparently misbehaves in all 
models. The income coefficients are quite well behave~ and are 
correct in sign and magnitude. The low-income variable is nec
essary to correct for the nonlinear relationship between zero
worker household shares and household income. A strong cross-
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FIGURE 3 Percent zero-:worker households by age of head of 
household, 1990 census PUMS, San Francisco Bay Area. 

FIGURE 4 Structure of Bay Area automobile ownership 
models. 

TABLE 4 NWHH Model Specifications 

Model #4 

Bay 

Altem. Area 

0 1+ Variable Survey 

v Constant -5546 

v Income 1.32E-05 

v Persons/HH 0.2035 

v Low Income 1.16E-04 

v LowPers/HH -0.108 

v Age of Head 0.08612 

rho-bar squared 0.427 

where: 

Income= mean household income in 1989 constant dollars. 

Persons/HH =persons in household 

Low Income= MAX((30000 - Income), 0) 

Low Pers/HH = MAX((2 - Persons/HH), 0) 

Age of Head =age of head of householder, or householder 
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Bay San 

Area Diego 

PUMS PUMS 

-5.619 -6.310 

l.36E-05 9.20E-06 

0.2777 -0.1442 

l.05E-04 1.15E-03 

-0.0539 -0.2478 

0.08959 0.09252 

0.469 0.455 

correlation between household size and household income is a 
main culprit in explaining the incorrect signs for the household 
size coefficients. 

The age of the head of household, as well as the average age 
in the household, was tested in the nonworking household model. 
The age of the head of household is an extremely powerful vari
able and basically doubles the rho-bar squared statistics from 
about 0.24 to 0.43 and above. Inclusion of the age of the head of 
household variable in the NWHH model raises an important issue: 
this variable clearly reduces model specification error. On the 
other hand including the age of the head of household in the 
model increases model measurement error. How can demogra
phers accurately and confidently forecast the age of the head of 
household at a zonal level for 20 years into the future? Extensive 
further disaggregate validation checks are required to determine 
the value of inclu.ding age in this demographic model. 

With the exception of the household size variables, the esti
mation results for the NWHH model are quite encouraging when 
comparing results from the household travel survey with estima
tion results from the PUMS files for the two California regions. 

The nonworking household automobile ownership models show 
excellent consistency between the Metropolitan Transportation 
Commission travel survey-based model and two PUMS-based 
models (Table 5). The household size variable for the one
automobile alternative is rather unstable and probably should be 
dropped from any final model. The model based on the natural 
logarithmic transformation of household income seems to work 
slightly better than that based on mean household income. The 
single-family dwelling unit dummy variable (1 for single-family, 
0 for multifamily) is a strong, intuitive variable that suggests that 
automobile ownership increases as the share of single-family 
housing units in a neighborhood increases. The rho-bar squared 
statistics are quite low (0.16) but are characteristic of multinomial 
logit choice automobile ownership models. 

The working household automobile ownership models are 
structured similarly to the NWHHAO models (Table 6). The 
household size variable in the one-automobile utility was dropped 
because of counterintuitive (negative coefficient) results. Mean 
household income was used instead of the logarithm of household 
income. The number of workers per working household variable 
was added to the two-or-more automobile utility equation to show 
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TABLE 5 NWHHAO Model Specifications 

Model #5 

Alternative 

0 2+ Variable 

v Constant (0) 

v Constant (2+) 

v Log Income 

v Log Income 

v Persons/HH 

v Persons/HH 

v Single Family DU 

v Single Family DU 

rho-bar squared 

where: 

Bay 

Area 

Survey 

6.453 

-9.988 

0.8108 

1.567 

-0.2815 

0.3622 

0.7166 

1.796 

0.158 

Bay 

Area 

PUMS 

5.439 

-9.513 

0.5779 

1.297 

0.0453 

0.4723 

0.9588 

2.290 

0.163 

San 

Diego 

PUMS 

5.861 

-9.673 

0.6900 

1.445 

-0.0862 

0.3703 

0.8685 

1.934 

0.161 

Log Income= natural logarithm of mean household income in 1989 constant dollars. 

Persons/HH =persons in household. 

Single Family DU =single family dwelling unit dummy variable, where: 

1, if single family dwelling unit. 

0, if multiple family dwelling unit. 

the impact of multiworker households on increasing the probabil
ity of owning two or more vehicles. All coefficient signs are cor
rect in direction. Coefficient magnitudes tend to fluctuate more in 
this model than in the NWHHAO model, but all coefficients are 
in the same ballpark. 

The model estimation results are basically encouraging and 
show the utility of using unconventional data sources, that is, the 
1990 census PUMS, in statistically estimating selected demand 
models for a regional travel forecasting system. Results are gen
erally consistent when comparing survey-based models with 
PUMS-based models and when comparing PUMS-based models 
between different metropolitan areas. The prospects for the trans
ferability of these models and methodologies to other metropolitan 
areas are quite good. The San Diego PUMS models are quite 
similar to the Bay Area PUMS models. Prospects for the ease of 

access to PUMS data will increase as the PUMS files are released 
by the Census Bureau in CD-ROM format. 

The basic and critical weakness of these PUMS-based auto
mobile ownership models is the lack of sensitivity to land use 
density, urban form, and transit accessibility characteristics. These 
types of variables cannot be estimated from PUMS because the 
lowest geographic area is the PUMA, or a district of 100,000-plus 
population. Transit accessibility has been used successfully in the 
Bay Area and Portland model systems and should probably be 
incorporated (or at least attempted to be incorporated) into travel 
forecasting models in large metropolitan areas with significant 
transit ridership levels and significant shares of zero-automobile 
households. 

The NWHH model is essentially a demographic model that 
splits households in a travel analysis zone into households by the 

TABLE 6 WHHAO Model Specifications 

Model #7.5 

Bay 

Alternative Area 

2+ Variable Survey 

v Constant (0) -1.384 

v Constant (2+) -3.451 

v Income 4.22E-05 

v Income 6.02E-05 

v Persons/HH 0.3902 

v Single Family DU 1.2740 

v Single Family DU 2.234 

v Workers/HH 0.998 

rho-bar squared 0.221 

where: 

Income= mean household income in 1989 constant dollars. 

Persons/HH =persons in household 

Single Family DU= single family dwelling unit dummy variable, where: 

1, if single family dwelling unit. 

0, if multiple family dwelling unit. 

Workers/HH =employed residents in household 

Bay 

Area 

PUMS 

-0.736 

-2.951 

2.12E-05 

3.95E-05 

0.2908 

0.7576 

2.070 

0.812 

0.245 

San 

Diego 

PUMS 

-1.139 

-2.973 

3.03E-05 

5.60E-05 

0.2232 

0.2742 

1.341 

1.015 

0.235 
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number of workers in the household. Neighborhood variables such 
as accessibility or density are probably appropriate for exclusion 
from a worker choice model. This means that the PUMS file is 
an appropriate data set for developing final workers-in-household 
models for metropolitan areas. Automobile ownership models, es
pecially for working households, are probably better estimated by 
using household travel survey data and incorporating zone-level 
density and accessibility measures. 

CONCLUSIONS 

The study described here shows the ease and utility of developing 
demographic and automobile ownership models by using the 1990 
census PUMS data sets. PUMS-based demographic and automo
bile ownership models can be developed for metropolitan areas 
and states that do not have access to recent household travel sur
vey data. PUMS-based automobile ownership models can be de
veloped either as cross-classification or as logit choice models. 
Without further disaggregate validation tests it is arguable whether 
automobile ownership logit choice models are superior to auto
mobile ownership cross-classification models. These PUMS-based 
models would exclude potentially important independent variables 
such as density, urban form, and transit accessibility, but are im
provements on the rudimentary cross-classification automobile 
ownership models that are typically limited to just one or two 
independent variables. 

Forecasting the independent variables included in automobile 
ownership models-household income, household size, age, 
workers in household, accessibility, density, and so on-is argu
ably as important as the automobile ownership model specifica
tions. Credible automobile ownership forecasts must be based on 
credible forecasts of the necessary demographic input variables. 
Research on the development of forecasting models for demo
graphic variables is equally as important as travel behavior 
research. 

Final, revised Bay Area travel demand models will be based 
on models estimated from the 1990 Bay Area Household Travel 
Survey rather than the 1990 census PUMS. Final Bay Area travel 
demand models will build on the insight gleaned from this PUMS
based analysis. A basic conclusion is that the 1990 census PUMS 
is a "second-best" data set for demographic and automobile own
ership model development and is no substitute for a comprehen
sive household travel behavior survey. 
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Practical Approach to Deriving Peak-Hour 
Estimates from 24-Hour Travel Demand 
Models 

CHARLES C. CREVO AND UDA y VIRKUD 

The Clean Air Act Amendments of 1990 have created a need for 
accurate and reliable estimates of peak-period travel and the speeds 
at which vehicles operate during that time period. State transportation 
agencies are faced with the problem of generating the volume and 
speed data needed to develop mobile source emissions inventories. 
This problem is compounded by the absence of current time-of-day 
travel characteristics. Although some of the software vendors that de
veloped programs for the four-step travel demand forecasting process 
are also developing postprocessors that prepare the 24-hr model out
put for input to the emissions calculations models, a critical need to 
be able to respond to clean air agency needs required the development 
of an immediate response mechanism. The focus is on the application 
of a travel demand rriodel and an annual traffic count program as the 
prime ingredients for a process that can be used to convert the 24-hr 
travel demand model output to peak-hour estimates of travel. The 
approach is a practical, how-to procedure that enables the user to 
estimate volumes and speeds for any hour of the day and for any day 
of the year, with the ultimate objective of preparing a base year in
ventory of mobile on-road emissions. Current data sources are eval
uated and applied in the process. 

The need for peak-hour travel information, particularly estimates 
of vehicle miles traveled (VMT), has become more pronounced 
since the Clean Air Act Amendments of 1990 requirement for 
mobile source emissions inventories to establish conformity. 
There are several sources of estimated VMT on a transportation 
network: 

• Link-based VMT estimates from regional or statewide traffic 
counts and roadway segment lengths; 

• VMT estimates from fuel sales, vehicle registrations, roadway 
mileage, population, or a combination of these data; 

• Highway Performance Monitoring System estimates for 
VMT, which are basically derived from traffic count data; and 

• Travel demand forecast model estimates of VMT and network 
travel speeds. 

Because most states have some type of travel demand models 
at the urban, regional, or statewide level, the information gener
ated by these models is a readily available source of future travel 
estimates that can serve as a base for emissions estimates. The 
24-hr models available in these areas usually generate average 
annual daily traffic (AADT) forecasts that were originally devel
oped to project travel for corridor-level analyses. Some of the 
software vendors who developed commercial programs to process 
the traditional four-step travel demand models are developing 

Vanasse Hangen Brustlin, Inc., 101 Walnut Street, Watertown, Mass. 
02172. 

postprocessors that prepare 24-hr model output for input to the 
emissions calculation phase through the application of user
provided factors or program-supplied default values. 

The Delaware Department of Transportation (DelDOT) is one 
of the agencies required to develop a credible and viable base for 
calculating emissions for an evening peak 2-hr period. The 
DelDOT preferred not to use generalized factors or default values 
in its efforts to derive emissions estimates. The needs are further 
compounded by the requirement that speeds for the travel condi
tions during the peak period also must be available. In its effort 
to prepare accurate and reliable motor vehicle emissions for New 
Castle County (NCC), DelDOT required a process that would pro
vide an opportunity to examine potential emissions levels under 
a variety of temporal conditions. Estimates of vehicular travel for 
daily peak periods are required, with an ability to also provide 
estimates on a seasonal basis. The resulting VMT estimates for 
1990 were used to develop a 1990 mobile on-road emissions in
ventory for the Department of Natural Resources and Environ
mental Control, the state's clean air agency. 

The approach and procedure used to convert DelDOT's NCC 
24-hr travel demand model to volume and speed estimates for a 
2-hr evening peak period are described. Because of time con
straints the technique had to rely on existing data, be practical, 
and produce credible results. 

APPROACH 

1\vo components of model-generated estimates need to be ad
dressed: zone-to-zone travel and intrazonal travel. The approach 
to converting the zone-to-zone estimates generated by the 24-hr 
models to a peak period relies basically on the manipulation of 
the existing procedures to enable the user to factor certain of the 
trip tables that make up the eventual assignment. The method 
presumes that a valid and calibrated model is available, which is 
the case with DelDOT. The NCC model configuration is the tra
ditional four-step generation, distribution, model split, and assign
ment technique. The method for converting 24-hr model data to 
the peak period is relatively simple in concept and straightforward 
in application. The trip tables created by the distribution process 
for internal-internal (1-1) and external-internal (E-1) movements 
are factored by values that represent the percentage of travel in 
NCC during the desired hours. External-external (E-E) travel has 
two basic components of interest: truck and nontruck. These 
movements are factored by a similar approach. The key to this 
process is dependent ort the availability of the data required to 
establish the necessary factors. 
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Three different approaches were considered for this task: 

1. Across-the-board factoring of 24-hr link volumes by one av
erage peak period factor, 

2. Application of selective peak-period factors, on the basis of 
traffic count data to different functional classes of roadway, and 

3. Adaptation of the 24-hr travel demand model through the 
application of peak-hour factors by purpose and type of 
movement. 

Some advantages and disadvantages of each approach are given 
in Table 1. The comparisons are relative to each other and assume 
that the 24-hr model assignments are generated by a calibrated 
model. 

DelDOT considered the first two approaches to be too gener
alized and decided to pursue the travel demand model option. The 
adaptation of the 24-hr model to peak hour is based on the ability 
to apply peak-hour factors to the various travel components of the 
system by movement (I-1, E-1, and E-E) and by purpose (work, 
shop, other, school, non-home-based, and trucks). Trucking is 
technically a mode but is treated here as a purpose. 

The focus in this effort was on the evening peak period, but it 
can be applied to morning, midday, or anytime of the day by any 
day or season of the year. For example if peak period volumes 
are required for days in August considered to be the "hot" days, 
this approach is also applicable. 

Because a 120-min peak period was identified for the emissions 
calculations, the procedure was applied to two evening peak hours 
(in this case 4:00 to 5:00 and 5:00 to 6:00 p.m.) separately. This 
approach is necessary because in the assignment process hourly 
capacities are used for restraint values. The emissions calculations 
are performed for each of the peak hours and are summed to 
obtain a value that represents a peak period. 
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ZONE-TO-ZONE VMT ESTIMATES 

Procedure 

If a 24-hr model has been run for the specific year for which 
emissions calculations are required, the basic components are 
available and the procedure for the peak-hour processing can be 
initiated. 

The initial steps are concerned with the usual procedures for 
building a binary network, skimming trees, and updating the skim 
trees with intrazonal and terminal times. The key difference for 
peak-hour model processing is that the highway link data records 
must contain roadway capacities that are expressed in hourly ca
pacities rather than 24-hr capacities. The NCC procedures create 
trip tables by purpose for the 1-1 and E-1 movements for 24-hr 
travel as presented in Table 2. 

The 1-1 person trips are subjected to the model-split process to 
generate two trip tables: one for transit person trips and one for 
nontransit person trips. Vehicle occupancy factors, by purpose, are 
applied to the nontransit person trip table to create a vehicle trip 
table for the 1-1 movements. At this point in the process the trip 
tables represent vehicular AADT volumes and are ready for con
version to peak-hour volumes. Special treatment was applied to 
certain purposes and movements as shown in Figure 1 and de
scribed below. 

Convert Work Trips to Peak Hour 

The 1-1 and E-1 home-based work (HBW) trip tables are treated 
differently from those for nonwork purposes because of the peak
ing characteristics. Work trips tend to be concentrated in the morn
ing and evening. The structure of the trip generation and distri
bution models creates trip tables that are essentially unbalanced 

TABLE· 1 Advantages and Disadvantages to Approaches to Converting 24-hr Model Data to 
Peak Period 

Approach 

Across-Board 
Factoring 

Link Factoring 

Travel Demand 
Model Adaptation 

Advantages 

- Ease of application 

- Relatively simple 
application 

- Refines estimates by 
considering trip 
purpose 

- Ability to separate truck 
and non-truck travel 

- V/C ratios are based on 
peak hour volumes and 
capacities 

- Provides speed data 
associated with time 
period 

- Directional splits can 
be obtained 

Disadvantages 

- Too general 
- Does not generate speed data 
- Questionable reliability at link 

level 

- Estimates are average and 
not focused on peaks 

- Does not generate speed 
data 

- More complex procedure 
- Requires detailed 

traffic count data 
- Requires hourly data 

by purpose 



TABLE 2 NCC Trip. Purpose Categories 

Movement 

1-1 

E-1 

1-1 & E-1 
Work 

Trip Tables 

l 
Factor to I 
Peak Hour I 

I 

J. .L 

AM Peak PM Peak 

Person Trips 

HBWork 
HB Shop 
HB Other 
NHB 

1-1 & E-1 
Non-Work 
Trip Tables 

! 
1 Factor to 
I Peak Hour 

I 

I 
J. 

Purpose 
Vehicle Trips 

1-1 & E-1 
Truck 

Trip Tables 

l 
Factor to 

I Peak Hour 

Truck/Taxi 
School 

Trucks 
Work 
Shop 
Other 

E-E 

Trip Table 

l 
I Factor to 

I Peak Hour 

l 
Transpose to 'Factor to 

I 

Balanced Trucks in 
Peak Hour 

Non- Transpose to 

J. 

Transposed 
Trip Tables 

Combine 
AM Peak.Hour 

Trip Tables 

.L 
Assign 

AM Peak.Hour 
Trip Table 

I 

Directional 
Trip Tables 

J. 

AM Peak.Hour 
Link 

Volumes 

AM Peak.Hour 
Link 

Speeds 

Trip Tables 

l 
Subtract 

. Trucks from ...___ 
Total 

.L .L 

Peak Hour 
Truck 

Trip Table 

Peak Hour 
Non-Truck 
Trip Table 

do 

Combine 
PM Peak Hour 

Trip Tables 

.L 
Assign 

PM Peak Hour 
Trip Table 

PM Peak Hour 
Link 

Volumes 

PM Peak Hour 
Link 

Speeds 

FIGURE 1 Peak-hour conversion process. 
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in their original form when the trip interchange pairs represent 
productions and attractions (P&A). A subsequent step in the pro
cess transposes the trip tables into an origin and destination (0-D) 
format that represents a balanced trip table. The primary difference 
between the P&A and 0-D matrices is the recognition of the zone 
of residence. Thus the P&A table is skewed to an AM., or morn
ing, peak. To appropriately represent an evening peak the P&A 
trip table is transposed, or flipped, to skew the trip interchange 
pairs to the evening peak. This treatment of the 1-1 and E-1 HBW 
trip tables is considered to more accurately portray the directional 
aspects of work-oriented travel. Factors are applied to convert the 
work purposes to the peak hour. 

Convert Nonwork Trips to Peak Hour 

Following a logic similar to that applied to work trips, the 1-1 and 
E-1 nonwork trip components of daily travel have peaking char
acteristics that are unlike work trip components, and therefore the 
directionality is not as critical. Home-based shopping, other, and 
school trips generally have patterns that occur throughout the non
peak hours and can be appropriately described in the balanced 
0-D format. The factors for these purposes are applied to the 
nonwork trip tables generated by the distribution model and bal
anced by normal procedures. 

Convert Truck Trips to Peak Hour 

1\vo components of truck travel are addressed separately: 

• 1-1 Trucks. The movement of internal truck traffic is consistent 
with the concept of balanced morning and evening peak travel. 
The factors developed for truck travel described earlier are applied 
to the trip table transposed into the balanced 0-D format. 

• E-1 Trucks. The movement of trucks into and out of the study 
area is also considered to be balanced. The key difference is in 
the factor to be applied to represent the evening peak. 

Convert External Travel to Peak Hour 

The final component of the travel demand model that requires 
conversion is the E-E component, or through travel. Traffic count 
data are available for each external station in the NCC modeling 
system. Factors were developed for each external to establish two 
characteristics: 

• Peak hour as a percentage of AADT. 
• Trucks as a percentage of peak hour. 

The factors were applied by using the Fratar technique to model 
the external stations and establish peak-hour values. The second 
step was to create a trip table for trucks by applying the truck 
percentages to the peak-hour trip table, also through the use of 
Fratar. Finally the peak-hour truck trip table is subtracted from 
the total-peak-hour trip table to create a peak-hour nontruck trip 
table. The separation of trucks at this point allows the user to 
combine the 1-1, E-1, and E-E truck trip tables if a special analysis 
is required or desired for emissions calculations. 

33 

Peak-Hour Factors 

To make hourly and seasonal estimates possible, significant traffic 
count data are needed in addition to the 24-hr travel demand es
timates. The technique relies on the availability of hourly counts 
from permanent count stations and classification data to establish 
hourly volumes as a percentage of daily travel. The classification 
counts provide estimates of truck and non-truck data. The follow
ing kinds of data are available from DelDOT for NCC: 

• Permanent Count Stations. There are 20 stations in NCC at 
which 24-hr counts are recorded hourly for 365 days each year. 
The data from each of these locations were arrayed to calculate 
hourly percentages. Directionality was also maintained in the pro
cess to identify directional splits. The resulting information 
formed the base for identifying the evening peak hours and the 
percentage of the total 24-hr count of each one. 

• Traffic Count Stations. Shorter-term counts are taken at var
ious locations throughout NCC and are expanded to an AADT 
volume. The report in which these counts are summarized by 
maintenance road section also includes peak-hour and truck per
centage information. 

The peaking characteristics of traffic on a regional basis tend 
to remain consistent over time, and the peak-hour data used in 
this process can be assumed to remain valid for forecast years. 
However the peak-hour percentages should be evaluated for ap
plicability to forecast years, particularly if major land use changes 
are anticipated to occur, as evidenced by the allocation of popu
lation or employment growth in certain traffic analysis zones. 

Peak-hour truck travel percentages for 1-1 and E-1 movements 
were borrowed from an FHWA report (J). Of the data provided, 
Louisville, Ky., appeared to be an area most comparable to NCC. 
Figure 2 presents the percentages of internal and external truck 
travel by hour of day. Since the application of these data DelDOT 
has translated its traffic count data into a geographic information 
system, which will expedite access to time-of-day data for trucks 
and nontrucks for future efforts. 

Information regarding the percentage of travel by purpose dur
ing the peak hour is also required for nontruck travel. Because the 
travel demand models were developed in the mid-1960s in most 
states, the source data from the household surveys were aggre~ 
gated to zonal averages and the original detail was lost. Therefore 
a reconstruction of travel characteristics was not possible. This 
situation required that a more current source of time-of-day travel 
data by purpose be identified, evaluated, and applied. One reliable 
source of current information is the Nationwide Personal Trans
portation Survey (NPTS). The percentage of travel by purpose 
[work, shop, other, non-home-based (NHB)] can be estimated 
from these data. For this effort a special tabulation was generated 
to create a matrix of trips by purpose and hour of day. Because 
of the survey's sample size the information could not be focused 
on Delaware specifically. The most statistically reliable level 
available was for the South Atlantic Region, which covers the area 
along the East Coast from Delaware to Florida. 

To convert the 24-hr NCC travel demand model to represent 
peak-hour travel, a series of factors had to be developed. The 
nontruck 1-1 and E-1 purposes were factored with values derived 
from NPTS. These distributions are represented graphically in 
Figure 3. It would have been more desirable to have such infor
mation in smaller time increments, such as 15-min slices, to more 
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FIGURE 2 Hourly distribution of truck travel (1). 

accurately evaluate peak-period spreads. Although the data might 
indicate a peak hour from 4:00 to 5:00 p.m., it might actually be 
4:15 to 5:15 p.m. Because the DelDOT traffic counts and the 
NPTS data are reported in hourly increments, an inspection of the 
peak-hour percentages for the 20 permanent count stations in NCC 
suggested evening peak hours of 4:00 to 5:00 and 5:00 to 6:00 
p.m. A similar review of the NPTS data also showed evening 
peaks of 4:00 to 5:00 and 5:00 to 6:00 p.m. Therefore the percent 
breakdowns for trip purposes according to NPTS were applied to 
the NCC data as shown in Table 3. 

The identification of hourly travel percentages for external sta
tions was accomplished by processing of permanent traffic count 
data in NCC. Data from selected stations were summarized to 
establish the 24-hr increments as a percentage of the total. When 
regional travel demand models are developed, the travel inventory 
usually records data for travel on nonholiday weekdays, and the 
resulting trip generation relationships represent average weekday 
traffic (AWDT). To obta~ an estimate of travel that was as ac
curate as possible for application to emissions modeling, AWDT 
counts were obtained by deleting weekend days and major holi
days from the permanent count station data. Peak-hour percentage 
factors were developed from the traffic count data for each of the 
external stations. 

INTRAZONAL VMT ESTIMATES 

Because intrazonal trips are not loaded onto the network, estimates 
of travel, or in this case VMT, are underestimated. Furthermore 

for em1ss1ons calculations intrazonal trips are usually made at 
speeds lower than the speeds that trips on the rest of the system 
are made, thereby probably creating a relatively greater volume 
of pollutants. 

The options for estimating intrazonal VMT are somewhat lim
ited. Because the effort to derive link VMT and speeds had a 
practical orientation, available resources were used. NCC tree 
building and skimming were accomplished with DelDOT's soft
ware of choice, which has an option that allows the user to esti
mate intrazonal travel times by averaging the travel times to ad
jacent zones. This approach generally recognizes the size of the 
zone and results in a reasonable approximation of the intrazonal 
travel times. 

For the NCC system an average intrazonal travel speed of 15 
mph was used. Given the time value of intrazonal travel and an 
average intrazonal speed the distance was easily calculated. 

When the intrazonal travel distances are calculated they are ar
rayed as the diagonal cells of a to-from matrix. Likewise the in
trazonal volumes in a trip table are represented in a similar di
agonal. To obtain a total intrazonal VMT estimate the values in 
the diagonals of the distance matrix and the factored trip tables 
for each purpose are multiplied and summed. Figure 4 graphically 
represents the process for estimating intrazonal VMT. 

ASSIGNMENT PROCEDURE 

The final step in estimating peak-hour travel is to combine each 
of the factored purposes arid movements into one trip table for 
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use in the assignment process. For NCC the equilibrium technique 
was used, with the assigned volumes restrained by the hourly ca
pacities represented on each of the network links. Speeds were 
also saved to provide the user with the volumes and speeds for 
each link in the network that are received to calculate emissions 
on a link-by-link basis. 

Because emissions estimates were required for a peak 120-min 
period and because the assignment technique uses capacity as a 
restraint, two peak-period hours were selected and separate as-
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signments were executed. The emissions were then calculated in
dividually for each hour and were combined for the total peak 
period. 

At the time of the effort described here the base traffic 
count data in Delaware were recorded in hourly increments, and 
the hour was the smallest time unit that could be applied. Some 
data bases might be available in 15-min increments, thereby 
providing the user with more flexibility in defining the peak 
period. 
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TABLE 3 Peak-Hour Factors (J) 

Movement 

1-1 

E-1 

1-1 
E-1 
E-E 

Purpose 

HBWork 
HB Shop 
HB Other 
NHB 
HB School 
Work 
Shop 
Other 
Trucks 
Trucks 
Trucks 
Non-Trucks 

NPI'S - PH Factorsl (%) 
4-5 P.M. 5-6 P.M. 

9.7 
9.6 
6.1 
9.2 
0.12 

9.7 
9.6 
6.1 
8.23 

5.93 

Variable4 

Variable4 

11.5 
8.8 
8.3 
8.6 
0.12 

11.5 
8.8 
8.3 
5.13 

5.33 

Variable4 

Variable4 

Notes: 

.. , 

~ , 

1. Source: NPTS, South Atlantic Region. These values represent the percent of 24-hour travel for the 
purpose and hours shown. 

2. A nominal value was assigned to school trips (HBSc) expected to occur during the evening peak period. 
3. A 1972 report by FHWA (Analysis of Urban Area Travel by Time of Day, FM-11-7519) reported general 

information for Louisville, KY (determined to be comparable in character to NCC) internal and external 
truck travel. 

4. Truck and non-truck PH percentages were obtained for each external station from the Department's 
1990 Traffic Summary Report. 
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CONCLUSIONS 

The derivation of peak-hour travel volumes for the calculation of 
vehicle emissions in urban, regional, or statewide study areas re
quires innovative and creative techniques because of the absence 
of available data and procedures developed for that specific pur
pose. Most existing travel demand models offer a viable data base 
that, when combined with a comprehensive traffic counting pro
gram and travel data from other sources, can be factored and ma
nipulated to provide reasonable estimates of hourly volumes and 
speeds for any hour of the day and for any day of the year. These 
features enable the user to examine morning, midday, or evening 
peak hours or periods for any seasonal needs and offers a practical 
and credible approach to adapting the travel demand models to 
peak-hour data. 

The process provides more flexibility by allowing the user to 
separate truck travel in calculations of vehicle emissions in con
trast to the flexibilities of other broader methods, such as across
the-board peak-hour factoring or application of peak-hour factors 
by route type. The example used in this paper is specific to NCC 
in Delaware. The procedure can be applied for most model struc
tures to represent the variety of temporal conditions required to 
prepare a mobile on-road emissions inventory. Estimates of emis
sions, and particularly reductions in emissions owing to improved 
transportation system components for future transportation system 
scenarios, will depend on application of the same procedures and 
factors described above. As· with most modeling techniques base 
year relationships are assumed to carry forward to the future. With 
the types of data used to factor the 24-hr models by the procedure 
described here, there is an opportunity to review trends over time 
and make adjustments as necessary. 
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Shopping Trip Chains: Current 
Patterns and Changes Since 1970 

HYUNGJIN KIM, ASHISH SEN, SUM SOOT, AND ED CHRISTOPHER 

National demographic patterns are changing. In absolute terms house
hold and automobile growth exceeds population growth, resulting in 
an increase in the number of trips and traffic congestion. The evidence 
from the Chicago region, however, suggests that the number of trips 
per capita has not changed in 20 years, trip chains per capita are 
declining, travel per households has declined, and perhaps most sur
prisingly shopping trips per capita have declined noticeably. Howe~er, 
through increasing trip-chain complexity, more out-of-home destma
tions are reached with a constant number of trips, indicating a higher 
degree of trip mobility. Trip making is becoming. more efficient, a~d 
the time spent shopping is not increasing even with fewer per capita 
shopping trips. Although many of these trips are conducted during 
the peak and add to congestion, since they a~e chained w!th the. work 
trip, moving these trips to the off peak may mcrease vehicle mile~ ~f 
travel (VMT). Moreover, relatively few trip chains follow the mim
mum path, thereby adding to VMT. These conclusions are drawn from 
1970 and 1990 household travel data collected by the Chicago Area 
Transportation Study for DuPage County, a fast-growing area west of 
Chicago. The authors encourage others to examine the temporal 
changes in travel behavior in their locales. 

During the last several decades the transportation community be
gan to change its focus of travel analysis from individual trips to 
trip chains. This change acknowledges the importance of multi
purpose trip making. Concurrently there has been a proliferation 
of models addressing trip chaining (1-4). Although considerable 
strides were made in modeling this behavior, the demographics 
and the demand for transportation services have changed, affecting 
these model constructs. The number of jobs has grown dispro
portionately to population growth as women have entered the la
bor force in large numbers. Rapid job formation encouraged the 
automobile population to grow rapidly, which contributed to a 
decline first in transit use and subsequently in carpooling. All of 
these factors together with the new questions being asked regard
ing the environmental effects of travel suggest a need to review 
existing travel demand models. 

The purpose of the study described here is to examine some of 
the current chaining characteristics as they describe shopping trips 
and more generally to identify some of the changes in trip chain
ing behavior since 1970. Although the emphasis is on current 
shopping trips, other trips are also examined, particularly in con
trasting 1970 and 1990 data. The study concludes that as the num
ber of work trips per capita has increased, the number of shopping 
trips has declined, despite the implicit increase in income stem
ming from job growth. Moreover, the time spent shopping is not 
increasing, despite the declining frequency of these trips. As has 
been asserted by many (5-7), changes in household structure have 

H. Kim, A. Sen, and S. Soot, Urban Transportation Center, MC 357, 1033 
West Van Buren Street, Suite 700, University of Illinois at Chicago, 
Chicago, Ill. 60607-2919. E. Christopher, Chicago Area Transportation 
Study, 300 West Adams Street, Chicago, Ill. 60606. 

resulted in modifications in trip-making behavior, but as discov
ered here, because trips are increasingly linked together, there has 
been littie change in the number of trips per person. Nevertheless 
the number of out-of-home stops has increased, made possible by 
increasing chain complexity. Mobility seems not to suffer since 
more destinations are reached with fewer trips and chains. 

Lastly in the study of shopping trips and chains it is inevitable 
that one becomes involved with other trip purposes. Shopping 
chains frequently include many nonshopping stops. 

BACKGROUND: TRIP CHAINING 

Definitions 

Several terms need to be defined or clarified before proceeding. 
First, a chain is defined as a series of trips that begin and end at 
home. A trip is the movement or link from one stop to another. 
A shopping trip is a trip in which shopping is the purpose at the 
destination. Second, chains can consist of any number of stops 
and may have any combination of purposes. Shopping chains, 
then, may have numerous nonshopping stops but at least one stop 
must be to shop. Third, home-to-shop-to-home is a simple shop
ping trip chain; complex chains have more than two out-of-home 
stops. Home-to-work-to-bank-to-shop-to-home is an example of a 
complex shopping trip chain. Because of the process of linking 
stops together and the definitions, shopping stops constitute a mi
nority of nonhome stops in complex chains. 

Previous Studies 

A wide variety of approaches has been developed, beginning 
largely from a Markovian base (8,9). Subsequently advances were 
made in formulating the theoretical basis for trip chaining (10,11), 
and a method has also been provided to estimate the amount of 
trip chaining (12). Many of these papers include extensive dis
cussions regarding previous work (13,14), including trip chaining 
as it pertains to pedestrian travel (15); therefore, it is not necessary 
to restate these developments. 

T\vo studies merit attention, however. These empirical studies 
have examined trip chaining with data collected in the last ten 
years. Strathman et al. (7) examined data collected in Portland, 
Oregon, and addressed the degree to which nonwork trips were 
chained to work trips. Compared with DuPage County, Illinois, 
the Portland study found a lower propensity to conduct complex 
chains: 24 percent of all trip chains versus 37 percent in DuPage 
County. Simple chains to work and to shop, however, were found 
in similar proportions. Home-shop-home accounted for 9.6 per-
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cent of all trip chains in Portland and 9.0 percent in DuPage 
County. The respective figures for simple work trip chains are 25.1 
and 23.0 percent. 

The recent examination of travel data collected in the Seattle 
region between 1986 and 1989 shows the greatest amount of 
chaining by women in suburb-to-suburb trips and the fewest com
plex chains by men from the suburbs to the city (16). It also 
identified a high frequency of trip chaining by women during the 
midday. Given the general propensity to trip chain, it was con
cluded that transit could not well serve complex chains and that 
transit potential was consequently negatively affected by this 
phenomenon. 

DATA AND STUDY AREA 

Household and Survey Data 

The data used for the present analysis were extracted from two 
different travel data bases used by the Chicago Area Transporta
tion Study (CATS), the metropolitan planning organization for 
northeastern Illinois. The first set . of data was selected from a 
CATS 1970 home interview survey that contained a 0.8 percent 
sample, or 17 ,385 households. For just over 20 years it was this 
data base that was used by CATS in most of its travel forecasting 
and planning work. A total of 1,110 households represent DuPage 
County, the area examined in the study. 

The second data source was the recent (1988 to 1991) CATS 
Household Travel Survey, which consisted of a 0. 7 percent sample 
of households regionwide and a 1. 7 percent sample in DuPage 
County. For the region this data base contained information from 
19,313 households, of which 5,098 were in DuPage County. Table 
1 presents the size of the data bases with a focus on the expanded 
number of trips and trip chains in DuPage County. 

Both surveys and their resultant data bases have been well 
documented, and each carries a wealth of information (17-19). 
For the 1990 data only the DuPage County portion has been fac
tored and adjusted. Consequently these data are preliminary. How
ever the final data are expected to closely match the preliminary 
set. 
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DuPage County 

For the decade of the 1980s DuPage County demonstrated one of 
the largest absolute population gains outside of the Sun Belt states. 
In 1970 the county had 491,882 residents and 199,352 workers 
(Table 2). By 1990 the population had swelled to 781,666 people, 
425,284 of whom were employed. In terms of jobs the increases 
were staggering. In 1970 there were approximately 115,200 jobs, 
which grew to 528,444 in 1990, an increase of 359 percent (20). 
DuPage County is representative of a fast-growing suburban 
community. 

SUMMARY OF 1990 SHOPPING TRIPS AND 
CHAINS 

A review of the number of shopping trips and shopping chains in 
DuPage County reveals that trip chains are for a variety of pur
poses and that only a small proportion of chains are for a single 
purpose. There are a total of 619,170 trips in the shopping trip 
chains, but only 36.6 percent (226,399) of these are shopping 
trips. Further examination reveals that 58. 7 percent of the shop
ping trips are made in conjunction with other purposes. Shopping 
chains include nonshopping activities, whereas shopping trips re
fer only to trips with shopping at the destination. 

Trip and Chain Lengths 

At least two aspects of trip and chain lengths are of importance: 
(a) the number of miles and (b) the degree of distance minimi
zation in the trip chains. The trip lengths were derived by deter
mining the quarter-square-mile ,origin and destination zones and 
then computing the airline distance between the zone centroids. 
Distance minimization pertains to the sequence of stops and how 
closely this route comes to the minimum path through the stops. 

Trip Lengths 

An examination of trip lengths by link and chain size reveals 
important patterns. The first link was only 2.51 mi in simple 

TABLE 1 DuPage County Data Bases, 1970 and 1990 

Number of Number of Number of 
Description Households Trip Chains Trips 

Universe Sample* Total Shopping Total shopping 

1970 Survey 
Region wide 2,183 17,385* 6,798 1,676 16,757 2,101 
DuPage County 142 1,110* 619 171 1,518 210 
1990 Survey 
Region wide 2,773 19,313* NA NA NA NA 
DuPage County 279 5,098* 792 184 2,178 226 
Percent 
Increase in 96% - 28% 8% 43% 8% 
DuPage County 

* All numbers in thousands except for sample size 

Source: Chicago Area Transportation Study (CATS) 1970 Home Interview data base, 1990 
Household Travel Survey results and Preliminary factored results for DuPage County 1990 
data. 
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TABLE 2 DuPage County Population Characteristics, 
1970 and 1990 

I 1970 I 1990 I % Change 

Population 491,882 781,666 58.9 
No. of HH. 142,408 279,344 96.2 
No. of Person per HH. 3.41 2.76 

. No. of Work~rs 199,352 425,284 113.3 

chains and 2.89 mi in complex chains, indicating the prevalence 
of trips to nearby retailers in simple chains. In complex chains 
not only is the first link longer as the chain becomes more com
plex but each subsequent link distance is longer except for chain 
size 6, in which sample size begins to play a role (Table 3). Since 
the return trip home is frequently not the longest trip in the course 
of these chains, however, the trip maker begins to travel home
ward before the last link. 

Minimum Path Behavior 

Given the stops made during the course of the day, several authors 
(13,21) have examined the propensity to minimize travel distance 
in connecting these stops and found that many trip makers do not 
utilize the minimum distance. 

Figure 1 illustrates numerous possible trip chains given five 
stops. The minimum covers a distance of 39 units and consists of 
connecting the nearest unvisited stop. The maximum travel dis
tance covers 60 units, yielding a range of 21 units between the 
minimum and the maximum. These maximum-distance paths are 
frequently chosen when there is a necessary chronology to the 
stops made or if the entire chain- cannot be planned and trips are 
made spontaneously. A path requiring 44 distance units is illus
trated in Figure 1, and v'isual inspection reveals that it is close to 
the minimum. Since it is 5 units longer than the minimum, it is 
24 percent of the length of the range from the minimum to the 
maximum. Similarly there are other sample paths in Figure 1; their 
distances and the portions of the range covered are again ex
pressed as a percentage. 

The evidence in DuPage County indicates that distance mini
mization de".reases with the complexity of the chain (Table 4). Chain 
sizes 4 to 6, for which the sample size and degree of complexity 
permit comparisons, show minimum distances declining from 47.3 
percent of the trips to 8.8 percent. Similarly the maximum-distance 
chains also declined from 21.7 to 2.7 percent. The major gains 
occur in the middle levels, in which the distance traveled is 20 to 

TABLE 3 Mean Trip Lengths of Shopping Trips by Trip Chain 
Sizes 

Chain Size I Link 1 I Link 2 I Link 3 I Link 4 I Link 5 I Link 6 

2 2.51 2.51 * 
3 2.76 3.75 2.73* 
4 3.09 3.41 3.63 3.71* 
5 2.81 2.65 3.62 3.81 4.00* 
6 5.44 3.55 2.97 3.34 

Only trip chain sizes 2 to 6 included in this table 
* Returning home trip; not a shopping trip 

4.73 4.21* 

Unit = zone centroid to centroid airline distances in miles 
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FIGURE 1 Six path choices with travel 
distances and percentage of range 
from minimum to maximum. 

60 percent of the range from the minimum to the maximum 
distance. 

Table 4 also indicates that distance minimization is more com
mon when the differences between minimum and maximum dis
tances are high. When distances are maximized, on average, the 
distance that could be saved by minimizing is 4.5 mi or less. 
Conversely when total travel is at the minimum or close to it, the 
maximum distance would frequently be more than 10 mi longer. 

A closer examination of the differences between distance maxi
mization and minimization reveals that work trips are a part of 
the maximum-distance shopping chains 66 percent of the time 
(chain size of 4, Table 5). In fact in chain size 4, which includes 
a work trip, there are almost -equal numbers of minimum and 
maximum chains. It is likely that few of these trip makers have 
a choice in altering their trip sequences. 

TABLE 4 Distance Minimization in Path Chosen by Shoppers by 
Chain Sizes 

Frequency of Chosen Paths (in percent) 

Chain Mini- 0- 20 - 60 - Maxi- Number of 
size mum 20% 60% 100% mum Chains 
4 47.3 21.3 5.8 3.8 21.7 520 
5 16.7 35.5 21.8 16.4 9.5 293 
6 8.8 42.2 33.3 12.9 2.7 147 

Mean Values of Range between Maximum and Minimum Distance 

Chain Mini- 0- 20 - 60 - Maxi- Number of 
size mum 20% 60% 100% mum Chains 
4 3.7 6.7 1.7 1.7 2.6 520 
5 7.3 12.7 6.0 4.4 4.0 293 
6 11.2 20.0 9.8 8.3 4.2 147 
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TABLE 5 Path Choice Behavior of Shopping Trip Chains by Chosen Path 
Category (chain size of 4) 

Description Mini- 0- 20 - 60- Maxi-
mum 20% 60% 100% mum 

Number of Trip Chain 246 111 30 20 113 
Number of Work Trips 74 32 10 9 75 
Activity Time (minute) 237 252 274 349 324 
Mean Distance of Trip Chains 13.9 18.3 14.4 21.9 18.9 
Mean Distance between Min and Max 3.7 6.7 1.7 1.7 2.7 

0 - 5 34 10 2 2 11 
Number of Trip-chains 5 - 10 79 27 9 4 26 
by Distance Traveled 10 - 20 89 37 15 5 38 
(miles) 20 - 30 22 18 2 3 19 

30 + 22 19 2 6 19 

Socioeconomic Characteristics of Individuals 

Mean Age 
Number of Trip-chains Male 
by Gender Female 

Full Time 
Number of Trip-chains Part Time 
by Employment status Homemaker 

Student 
Retired 

Further contrasting the minimum and maximum trip chains re
veals that maximum trip chains are longer both in travel distance . 
and in time duration at the stops (Table 5). Also those making 
maximum-length trips tend to be younger and are more likely to 
be men and employed full time than those making minimum
distance trips. 

Trip Sequence 

The DuPage County data indicate a clear sequence in most chains. 
When work is included in the chain, in the majority of cases 
shopping occurred after rather than before work. Table 6 illustrates 
the rates of occurrence for all possible four-trip chains and the 
high and low extremes for five-trip shopping chains. Almost uni-

TABLE 6 Frequency of Sample Shopping 
Trip Chains 

Chain Size I Chain Type I Percent 

H-S-X-S-H 4.8 
H-S-S-X-H 6.0 
H-S-S-S-H 6.5 

4 H-S-X-X-H 9.2 
H-X-S-S-H 14.4 
H-X-S-X-H 26.9 
H-X-X-S-H 32.1 
H-S-S-S-S-H 2.0 

5 H-S-X-X-X-H 6.1 
H-X-X-S-X-H 19.1 
H-X-X-X-S-H 31.7 

6 H-X-X-X-X-S-H 21.0 

H =home, S =shop, 

46.2 46.5 43.3 47.1 43.l 
62 37 8 7 38 

184 74 22 13 75 
99 52 14 8 58 
53 15 5 4 17 
69 28 9 3 32 
24 9 4 1 16 
48 26 2 4 14 

formly the highest rates were with shopping occurring near the 
end of the chain, and low rates were common for shopping oc
curring early in the chain. 

For chain size 4, in 26.5 percent of the cases shopping occurred 
on the first stop, but in 57.8 percent of the cases it occurred at 
the last stop preceding the trip home (Table 6). Considering all 
complex shopping chains, in the majority of chains shopping was 
the last stop before returning home. Conversely a sizable per
centage of shopping is independent of the home location. In 26.9 
percent of the chains (chain size 4) the home was not the preced
ing or the subsequent stop. 

COMPARISON OF 1970 AND 1990 
TRIP-CHAINING BEHAVIOR 

In the Chicago area there is a long tradition of transportation and 
socioeconomic data collection and analysis. The 1990 Household 
Travel Survey follows in that tradition and provides an opportu
nity to examine changes in travel behavior. 

Several modifications in data collection procedures merit dis
cussion. First, the 1970 effort was a home interview, whereas the 
1990 data were collected by a mail-out-mail-back survey; both 
sets of data were subject to an extensive factoring procedure. Sec
ond, the 1990 survey dropped personal business as a trip purpose 
and added banking and eating out. In a pretest too many individ
uals interpreted personal business to mean work activity, and it 
was consequently deleted and the purpose choices were therefore 
changed. Because of the extent to which banking or eating out 
may have incorrectly contributed to shopping in 1970, the 1990 
data are more clearly defined as shopping and consequently shop
ping as a destination category may be recorded slightly less. Con
versely the 1970 data were collected over the entire 5-day work 
week, but the 1990 effort included only Thursday travel, a tradi-
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tional shopping day in the Chicago-area market. It is likely that 
these two counteracting effects may balance, and if they do not, 
there may be a slight bias toward more shopping being recorded 
in the 1990 data. The authors found, however, the since per capita 
shopping trips have declined, there is little evidence of a pro
shopping bias. As a whole care must be exercised in drawing 
precise comparisons from data such as these. 

Changes in Numbers of Trips and Trip Chains 

With the population expansion there has been a growth in the 
number of daily trips, from 1.5 million to 2.2 million, and an 
increase from 619,000 to 792,000 trip chains (Table 1). Never
theless this represents a decline in several categories: trip chains 
per household, trips chains per person, and trips per household 
(Table 7). The only rate that remained stable was trips per capita. 

On the surface this may seem surprising but it is in keeping 
with (a) the trends displayed by the Nationwide Personal Trans
portation Survey (NPTS) (22) and (b) the expectation that trips 
would be bundled into chains as time constraints mount. The 1983 
NPTS shows a decline in the number of trips per capita from the 
1977 survey, but the 1990 NPTS figure is approximately 5 percent 
higher than that in 1977. Suffice it to say that given large increases 
in the automobile population, there has been remarkably little 
change in the number of trips per capita on the basis of both NPTS 
and DuPage County data. 

The declines in the other three rates may be attributed to demo
graphics. The trips and trip chains per household rates are declin
ing because of smaller household sizes. The decline in per capita 
trip chains is plausible even with increasing mobility. Figure 2 
illustrates two hypothetical households. Household A completes 
three simple chains, visiting three out-of-home destinations. 
Household B, however, completes only one chain with five trips. 
but visits one more out-of-home site. It is therefore possible to 
visit more sites with fewer chains and with fewer trips. This has 
occurred in DuPage County. Although the number of trips per 
person has declined modestly, from 4.3 to 4.2 trips per day per 
person, there has been a 13 percent increase in the number of out
of-home sites visited between 1970 and 1990. This marks a sig
nificant modification in which individuals can reach more desti
nations with less travel; that is, they are more "mobile" but travel 
less. 

Changes in Shopping Chains 

With increased trip chaining each excursion from the home in
cludes more destinations, and the instances of travelers conducting 

TABLE 7 Comparisons of 1970 and 1990 DuPage County 
Daily Travel Data 

I Variable 1970 1990 
No. of Trips* 1.5 2.2 
No. of Trips/Person 4.3 4.2 
No. of Trips/Household 10.3 9.1 
No. of Chains/Person 1.8 1.3 
No. of Chains/Household 4.3 2.8 
No. of Trips/Chain** 2.3 2.9 
* .. 

Number m rmlhons 
** Change mode is excluded 
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3 out-of-home 
destinations 

6 trips 
3 trip chains 

lllH®seffij1aletm 

4 out-of-home 
destinations 

5 trips 
1 trip chain 

FIGURE 2 Two hypothetical trip patterns. 

a trip for only one purpose on a chain are decreasing. The authors 
are therefore rather liberal in their definition, which includes all 
chains that have at least one shopping destination; many shopping 
chains include more nonshopping stops than shopping stops. 

Numbers of Shopping Chains and Shopping Trips 

As with all travel shopping chains and shopping trips have in
creased since 1970 but not always in proportion to population. 
There has, however, been a dramatic decline (30.6 percent) in the 
number of simple shopping chains (Table 8). Other simple chains 
have increased in number such as trips to work, but the practice 
of going to a store and returning has declined even with the large 
population increase. 

To compensate there have been significant increases in the num
ber of complex shopping chains, most noticeably in chains with 
four and more destinations, all of which have more than doubled 
in number. Still an increase of only 8 percent in the number of 
shopping trips is unexpected. Increasing from 210,000 to 226,000, 
the rise does not reflect the 60 percent increase in population, let 
alone the increasing disposable income brought about by in
creased participation in the labor force. 

Duration of Shopping 

The number of shopping trips per capita has declined even with 
the proliferation of shopping centers and scattered retailing sites. 
It would seem reasonable that to accommodate the needs met by 
shopping, the amount of time spent shopping might increase. Miti-

TABLE 8 Number of Trip Chains per Day in DuPage County, 
1970 and 1990 

All Chains Shopping Chains 
Chain Percent Percent 
Size 1970 1990 Change 1970 1990 Change 

2 481,582 499,216 +3.7 102,986 71,484 -30.6 
3 85,200 137,905 +61.9 47,573 53,381 +12.2 
4 32,828 83,910 +155.6 12,815 28,122 +119.4 
5 10,491 33,857 +222.7 4,443 15,349 +245.5 

6+ 9,299 37,168 +299.7 3,453 16,653 +382.3 
Total 619,400 792,056 +27.9 171,270 184,989 +8.0 
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gating against that is the increase in the number of people in the 
labor force and the consequent constraints on time to shop. Also 
as chain complexity increases, the average time spent at each stop 
tends to decrease. 

The 1990 CATS survey shows an average amount of time spent 
at the shopping destination to be 42 min, down from 49 min in 
1970 (travel time not included; Table 9r An examination of the 
shopping duration distribution indicates that the greatest change 
was in the decline in long shopping trips (in excess of 90 min), 
which can be attributed to time constraints common to multiple
worker households. 

It appears that the constraint on people's time was a slightly 
stronger force, resulting in a decrease in shopping duration. This 
can be seen in the declining duration at each shopping stop as the 
trip chain becomes more complex. The amount of time spent 
shopping in simple chains was 49.8 min, and it declined to 30.8 
min for chains of seven and more links, for a difference of almost 
20 min. The increasing tendency over time to trip chain makes 
shopping a more directed activity and is less of a social or rec
reational experience, which was more frequently the case in the 
past. This reduces the fuzzy distinction between shopping and 
recreation, which is common to some shopping trips and which 
contributes to poorly defined trip purposes in transportation 
surveys. 

Shopping Trip Lengths 

There are also at least two competing forces on shopping trip 
lengths. First, the increased number of shopping sites throughout 
DuPage County has brought many more shopping choices closer 
to places of residence and therefore would contribute to shorter 
shopping trips. Second, the shortest links in 1990 were in the 
simple chains, which have declined precipitiously since 1970 
(Table 3). These links averaged 2.5 mi, whereas most others aver
aged over 3 mi and some averaged more than 4 mi. As these 
simple chains decline the average distance should increase. 

The data show that the change in average shopping trip distance 
has stayed stable, rising only from 3.08 mi in 1970 to 3.11 mi in 
1990 (Table 10). The distance distribution has also changed very 
little. Approximately 60 percent of all shopping trips in both sur
veys were less than 2.5 mi, and roughly 1 in 20 was more than 
10 mi. Indeed the slight increase in trip length can be attributed 
to the modest decline in short trips (less than 2.5 mi), many of 
which were simple chains. It appears that the decline in simple 

TABLE 9 Frequencies of Shopping 
by Duration Categories (time spent at 
each shopping destination; travel not 
included) 

Duration 1970 1990 
(minutes) (percent) (percent) 

0 - 14.99 20.6 23.3 
15 - 29.99 21.8 25.1 
30 - 44.99 17.1 17.8 
45 - 59.99 13.9 11.7 
60 - 89.99 11.8 13.3 

90 + 14.8 8.8 
Total 100.0 100.0 

Average 49 minutes 42 minutes 
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TABLE 10 Frequencies of Shopping by Distance 
Categories 

Distance 1970 1990 
(miles) Frequency Percent Frequency Percent 

0.0 - 2.49 131,068 62.3 134,594 59.5 
2.5 - 4.99 42,335 20.1 52.836 23.3 
5.0 - 9.99 27,214 12.9 28,282 12.5 

10.0 + 9,786 4.7 10,678 4.7 
Total 210,403 100.0 226,399 100.0 

Average 3.08 miles 3.11 miles 

chains was stronger than the effect of increased density of stores, 
which permits shorter trips. 

CONCLUSIONS AND IMPLICATIONS 

Although there are differences between how 1970 home interview 
and the 1990 Household Travel Survey data were collected and 
the questions asked, it is possible to identify broad findings. The 
most significant finding is that trip making appears to be more 
efficient and shopping as an activity is declining as the number 
of per capita work trips rises. There is little change in the number 
of trips per capita, but since there are more complex trip chains, 
travelers achieve more out-of-home stops with a fixed number of 
trips. It takes six trips to visit three places if all are simple chains, 
but if these six trips are linked in one chain, five places can be 
visited, almost twice the number. Still the increase of only 8 per
cent for shopping trips was unexpected, given the population in
crease and the rising incomes through an expanded labor force. 

With the decline in the number of simple shopping chains, 
which are typically short trips, there is the potential for average 
trip lengths to increase. This tendency is partially but not com
pletely offset by a greater density of stores, which contributes to 
shorter trips. 

Despite the stable shopping trip distances and the small rise in 
the total number of shopping trips, highways are becoming more 
congested, and there are few better examples than DuPage County. 
In DuPage County the gross densities are very low, the population 
is affluent, vehicle ownership is high, and the populace is modi
fying travel behavior by stringing trips together into complex 
chains. This may be a reaction to less actual or perceived leisure 
or nonwork time, but the consequence is that the total travel in 
1990 was more efficient for the individual than in 1970, but it 
contributed to severe peaking and congestion. 

Contemporary travel behavior increasingly links trips for non
work activity to the work trip, many of which occur during the 
peak. It may reduce congestion if trips for nonwork activity were 
rescheduled to other times, but this would be a return to the 1970 
pattern, in which a large number of simple chains characterized 
household travel. This could add to vehicle miles of travel (VMT) 
and may not be desirable unless work travel occurred during the 
off peak or the shoulder of the peak, as would be the case with 
staggered work hours. These travel patterns also have implications 
for cold starts, which would also likely increase if chaining de
clined. Additional work is encouraged to ascertain the merits of 
peak-hour trip chaining and the trade-<_?ff between reduced con
gestion and increased VMT. 

There are also clear implications for trip distribution modeling. 
These models need to consider more closely the origin and des-
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tination of the trip since many trips are now made without the 
home at either end, yet the location of the home is undoubtedly 
important in selecting nonhome destinations. 

This analysis underscores the fact that there are considerable 
archives of travel data, perhaps more than can be analyzed. Still 
there are many unverified conjectures about how travel has 
changed. The authors encourage other work to examine these 
changes and explore ways that this work can be used to improve 
the transportation modeling and planning process. 
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Estimation of Travel Demand Models with 
Grouped and Missing Income Data 

CHANDRA BHAT 

A method to impute a continuous value for household income from 
grouped and missing income data for use as an explanatory variable 
in travel demand estimation was developed. Many data sets collect 
income in a discrete number of categories or in grouped form to 
simplify the respondent's task and to encourage a response. In spite 
of such grouped data collection, many respondents refuse to provide 
information on income, leading to missing income values. The issue 
of constructing a continuous measure of income from grouped and 
missing income data that, when used in travel demand models as an 
explanatory variable, enables consistent estimation of the model pa
rameters is addressed. 

Household income is an important sociodemographic explanatory 
variable in travel demand models such as car ownership models 
(1), trip generation models (2), and mode choice models (3). In 
almost all transportation data sets and in many other data sets ( 4) 
household income, an inherently continuous variable, is measured 
in a discrete number of categories or intervals; that is, it is mea
sured in grouped form (e.g., between $15,000 and $30,000). The 
income question is also notorious for its high nonresponse rates, 
leading to missing income observations in most data sets. 

Income is measured in grouped form for two related reasons. 
First, such a measuring scale provides a greater degree of protec
tion of confidentiality compared with a continuous measure (the 
degree of protection being a function of the size of income inter
vals), thereby increasing response rates (5). Second, it renders the 
sensitive income question relatively innocuous during survey ad
ministration. Questions that seek a continuous measure on income 
can offend respondents, particularly in a telephone survey or in a 
personal interview survey in which respondents are put "on the 
spot." 

Although income is measured in grouped form, it is the con
tinuous measure of income (or some function of this continuous 
measure) that frequently appears as an explanatory variable in 
travel demand models. It is important that this continuous measure 
be a reliable measure of the true income value to enable the de
velopment of an accurate and reliable relationship between travel 
demand variables and their explanatory variables and thus facili
tate good prediction of travel demand variables [the research by 
Hamburg et al. ( 6) indicates that the estimates in a travel demand 
model are highly sensitive to the accuracies of sociodemographic 
input variables and emphasizes the need for accurate measures of 
the input variables]. This paper proposes a method for construct
ing such a continuous measure of income for all observations in 
a cross-sectional data set with grouped and missing income data. 

The next section of this paper discusses the motivation for de
veloping methods to explicitly accommodate the grouped and 

Department of Civil and Environmental Engineering, University of 
Massachusetts, Amherst, Mass. 01003. 

missing nature of income data in travel demand modeling. The 
subsequent section presents the need to develop a model relating 
household income and factors affecting household income to im
pute a continuous income measure from grouped and missing in
come data for use as an exogenous variable in travel demand 
models. The following section advances an econometric frame
work used to impute a continuous income measure through the 
development of a model relating income to variables influencing 
income. Empirical results obtained by using a Dutch data set are 
then presented. The final section provides a summary of the re
search and highlights important findings. 

MOTIVATION FOR TREATMENT OF GROUPED AND 
MISSING INCOME DATA 

The motivation for the treatment of grouped and missing income 
data originates from the need to develop a consistent relationship 
between travel demand variables and their explanatory variables 
(including income). The dependent variable in the demand model 
may be an observed continuous variable such as trip generation 
or a latent continuous variable that is a reflection of an observed 
discrete choice decision such as utilities in the case of a mode 
choice decision or car ownership propensity in the case of an 
ordered car ownership model. Unfortunately current procedures 
for constructing a continuous measure from grouped data and 
commonly used techniques for handling missing income data do 
not enable consistent estimation of travel demand models. This 
inconsistency in commonly used demand estimation procedures 
without and with missing income data is discussed below. 

Commonly Used Estimation Procedures 

Grouped Without Missing Income Data 

Commonly used estimation procedures construct a continuous 
value of income from grouped data by assigning the midpoint of 
the income threshold bounds that determine each category to each 
observation in that category. If the threshold bounds for income 
category j are aj-I (the lower bound) and ai (the upper bound), 
then a continuous income value ~ is constructed for all observa
tions in category j as 

a1-1 + ai 
~;!(income category = j) = 

2 
(1) 

In the case of the two categories at either end of the income 
spectrum, an arbitrary truncation point is used as the representa
tive value. 
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This midpoint method of constructing a continuous measure 
from grouped data has serious limitations. Consider an underlying 
linear regression between a demand variable y; and the actual (but 
unobservable) income variable rt as follows [the following pre
sentation is based on Hsiao (7) and is confined to the case when 
the dependent demand variable is an observed continuous variable 
for ease i~ presentation]: 

where 

i = index for observations, 
a and 13 = parameters to be estimated, and 

U; = an error term. 

(2) 

Assume the standard regression conditions that u; is an indepen
dent and identically distributed (iid) random error term with a 
mean of zero and I;* is · uncorrelated with the error term. If the 
actual income value rt for an observation is replaced by the mid
point of the corresponding income category, the regression may 
be rewritten as 

(3) 

where V; = U; + 13(I;* - {;). In this case when the midpoint values 
are used, the coefficient of 13 is given by (using Equation 2) 

L (y; - Y)({; - D L (rt - /*)({; - ') 

~mid= i 2: ({; - ')2 = 13 i 2: ({; - ')2 (4) 

To simplify this expression write the actual (but unobserved) con
tinuous income rt for an observation i falling in the grouped in
come category j as the sum of three components: the midpoint of 
the category j, {;, as computed in Equation 1; an error term T; 
representing the difference between the expected value of rt given 
that it falls in category j (or the expected value of the marginal 
distribution of the continuous income variable between the thresh
old bounds of category j) and the midpoint of category j; and a 
random error term, W;, representing the difference between the 
actual continuous income rt and the expected value of Ii given 
that it falls in category j. That is, 

(5) 

where T; = E [Jtlcat.j] - {; and W; = rt - E[Jilcat.j]. By using 
Equation 5 one can write rt - I* = ({; - ~) + ( T; - T). By 
substituting this expression into Equation 4 one can rewrite the 
least-squares estimate of 13 by the midpoint method as 

(6) 

Thus the parameter estimate on income obtained by the mid
point method converges to the actual value of 13 in the travel 
demand model if and only if Cov( T;, {;) converges to zero. How
ever this will generally not be the case. The magnitude and di
rection of Cov(T;, {;) depend on the shape and distribution of the 
actual (but unobserved) income variable. Earlier studies (8,9) have 
indicated that a log-normal form is theoretically and empirically 
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appropriate for the income distribution. Cov(T;, {;) is, in general, 
not equal to zero for a log-normal distribution. No general result 
regarding the direction and magnitude of Cov( T;, {;) (and therefore 
the direction and magnitude of the bias of the midpoint method) 
can be established for the log-normal distribution. A more defin
itive result can be established if it is assumed that Ii in Equation 
2 represents the logarithm transformation of actual income. In this 
case rt is normally distributed (since actual income is log
normally distributed). Assuming small tail distributions, T; de
creases from a positive value for the lower income categories (the 
expected value of the normal distribution between the threshold 
bounds of category j is greater than the midpoint) to a negative 
value for the higher income categories (the expected value of 
the distribution between the threshold bounds of category j is 
lower than the midpoint) as indicated by Haitovsky (10). On the 
other hand the midpoint of income categories increases as one 
proceeds from lower to higher categories. Thus the covariance 
term, Cov(T;, {,), is negative and the midpoint estimate ~mid in 
Equation 6 underestimates 13. 

The midpoint method leads to inconsistent parameter estimates 
(a parameter estimate ~ is said to be a consistent estimator of the 
true 13 if, as the sample size gets infinitely large, the probability 
that 113 - ~I will be less than any arbitrary small positive number 
approaches 1) in the travel demand model because T; is not equal 
to zero. However if a consistent imputed estimate of income (that 
is, a consistent estimate of the expected value of rt given that it 
falls in category j) is used instead of the midpoints, 'T; is zero and 
one obtains consistent parameters in the travel demand model (the 
reader will observe that as the number of income categories in
creases, or more appropriately as the size of the income interval 
within each income category decreases, T; becomes closer to zero 
in the midpoint method and the inconsistency resulting from use 
of the midpoint method is reduced). 

The results regarding the inconsistency of the midpoint method 
are generalizable to the case of many explanatory variables in the 
travel demand model. Specifically use of the midpoint income 
estimate as an explanatory variable leads to inconsistent parameter 
estimates on all of the explanatory variables in the model, not just 
the income variable (7). 

Grouped with Missing Income Data 

The discussion above assumed that there are no missing income 
observations. Now consider the limitations of commonly used 
methods when missing income data are present. Current methods 
adopt one of two strategies to estimate travel demand models from 
grouped and missing income data. The first strategy is to assign 
the midpoint of income categories for observations with observed 
(grouped) income values and to assign the average value of the 
midpoint estimates of the observed income observations to the 
missing income observations. As discussed earlier the midpoint 
method does not provide consistent estimates of the travel demand 
model. Also this assignment of the average of observed income 
observations to missing income observations assumes that the aver
age income of respondent households (i.e., households that report 
income) is identical to that of nonrespondent households (i.e., 
households that do not report income). This may not be true be
cause of systematic variations in observed and unobserved char
acteristics affecting income earnings between members of respon
dent and nonrespondent households (11). Observed characteristics 
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may include the education levels of the members of the household, 
whereas unobserved characteristics may include sensitivity to pri
vacy and fear of governmental or other uses of the data. If such 
systematic variations are present between members of respondent 
and nonrespondent households, assigning the average income of 
respondent households to nonrespondent households is inappro
priate and will further contribute to inconsistency in the parameter 
estimates of the demand model. 

The second strategy for estimating travel demand models from 
grouped and missing income data is to assign the midpoint of 
income category thresholds for the observed (grouped) income 
data and to drop all missing income observations. It was already 
shown that the midpoint method provides inconsistent travel de
mand parameters. In addition another dimension of inconsistency 
arises when all missing income observations are dropped. If sys
tematic variations in income level are present between respondent 
and nonrespondent households, then the relationship between in
dependent variables and the travel demand variable for nonre
spondents may be different from that for respondents. Thus the 
travel demand relationship obtained by dropping all nonrespon
dent households will not be a representative relationship for the 
entire population. This second strategy of dropping missing in
come observations also results in a loss of observations, resulting 
in inefficient estimation. 

It is clear from the discussion above that commonly used pro
cedures for dealing with grouped and missing income data are 
inadequate or waste valuable data. The next section discusses the 
need to develop a dependent income model, that is, a relationship 
between household income (the dependent variable) and a set of 
variables affecting household income (the independent variables), 
to impute a continuous income measure from grouped and missing 
data for use as an explanatory variable in travel demand models. 

NEED FOR DISAGGREGATE INCOME MODEL FOR 
IMPUTING INCOME 

This section discusses the need to develop a dependent income 
model to impute a continuous income measure. Cases in which 
there are no missing income data and in which there are missing 
income data are discussed. 

No Missing Income Data 

Earlier it was indicated that use of a consistent imputed estimate 
of income (that is, assigning to each observation falling in income 
category j the expected value of the income distribution bounded 
by the category thresholds) in a travel demand model provides 
consistent parameter estimates. This method assigns a single value 
to all income observations in a category. It does not use infor
mation on observed variables likely to affect income earnings 
(such as education level and number of employed adults in a 
household) that can help to differentiate among the incomes of 
different households within a particular grouped category. Devel
oping a dependent income model (using the grouped observation 
on income) and combining the instrumental variable estimate of 
income from such a model with the information on income cate
gories will enable construction of a consistent and efficient im
puted income measure for use in travel demand models. The struc-
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ture and estimation procedure for imputing income values from 
grouped data are discussed later in this paper. 

Presence of Missing Income Data 

The need to develop a dependent income model is critical when 
missing income data are present, since such a model is the only 
means of imputing an income measure for the missing data while 
at the same time accounting for any systematic variations in the 
observed characteristics (such as education level and number of 
employed adults) between respondent and nonrespondent house
holds. The model should also account for systematic variations in 
unobserved characteristics between respondent and nonrespondent 
households. A consistent and efficient imputed estimate of income 
for use in travel demand models can be obtained from grouped 
and missing income data by combining the instrumental variable 
estimate of income from the model with information on whether 
a household responded to the income question or not and the 
income category in- which a household's income falls (if the 
household responded). The structure and estimation procedure for 
imputing income values from grouped and missing income data 
are discussed later in this paper. 

The discussion above emphasizes the need to develop a depen
dent income model to impute a continuous income estimate from 
grouped or grouped and missing income data for use as an ex
ogenous variable in travel demand models. The remainder of this 
paper presents the econometric framework for imputing income 
through the development of a dependent income model and pre
sents empirical results of the dependent income model and asso
ciated imputed estimates by using a Dutch data set. 

ESTIMATION METHODOLOGY 

The methodology used to develop a dependent income model and 
to impute a continuous income value from grouped and missin~ 
data in two stages is discussed in this section. In the first stage it 
is assumed that there are, no missing income values. The meth
odology is then extended to accommodate missing income values 
in the second stage. The program routines for all estimations in 
this paper were written and coded by using the GAUSS matrix 
programming language. 

No Missing Income Data 

Assume that the actual but unobserved logarithm of household 
income, rt, is a function of a vector x; of exogenous variables as 
follows: 

rt = -y'X; + E; (7) 

where 

-y = vector of parameters to be estimated, 
X; = vector of explanatory variables, and . 
E· =a random disturbance term assumed to be homoscedastlc, 
' independent, and normally distributed with mean of zero 

and a variance of cr2 (a logarithm form is adopted for the 
dependent income variable because as indicated earlier a 
log-normal form has been found to be theoretically and 
empirically appropriate for the income distribution). 
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The observed data on income indicate that they fall into a pre
specific interval. The relationship between the grouped observed 
income data /; and the continuous unobserved (log) income value 
It is written as follows: 

I;= j if aj-l < Ii :::; aj, j = 1, ... J, i = 1, ... N (8) 

where the a/s represent known threshold values (which represent 
the logarithm of the actual income threshold bounds) for each 
income category j. Representing the cumulative standard normal 
by <I>, the probability that household income falls in category j 
may be written from Equations 7 and 8 as 

(9) 

Defining a set of dummy variables 

M-. = {1 if I;* falls in the jth category (i = l, 2, ... N, j = l, 2, ... J) 
'
1 0 otherwise, 

(10) 
the likelihood function for estimation of the parameters -y and u 
is 

Initial parameter values for the maximum likelihood search are 
obtained by assigning to each income observation its conditional 
expectation on the basis of the marginal distribution of /* and 
regressing these conditional expections on the vector of exoge
nous variables. The reader will note that the likelihood function 
of Equation 11 differs from that of the standard ordered probit 
model. In particular u is unidentifiable and the threshold values 
(the a/s) are unknown parameters to be estimated in the ordered 
probit model. In contrast in the current model the threshold values 
are known, and (as a consequence) u is identifiable. 

Defining the standard normal density function by <f>(.), an im
puted value for household (log) income may be computed for all 
the observations from the estimates of -y and u obtained from 
maximizing the likelihood function in Equation 11. The imputed 
value for an income observation in category j may be computed 
by using the properties of doubly truncated univariate normal dis
tributions (12) as follows: 

<t>( a;_,, ~ ).'X,) _ <t>( a;; -& ).'X,) 
+ &~~~~~~~~~~~~~ 

<t>( a;,; -& ).'X,) _ <I>( a;_,,, ~ ).'X,) 
(12) 

These imputed values represent unbiased and consistent mea
sures of (log) income and can be used as an explanatory variable 
in travel demand models (the imputed values are also guaranteed 
to fall within the lower and upper boundaries of the observed 
income categories). If an alternative function of income (other 
than the log function), g(/i), appears as the explanatory variable 
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in the travel demand model, an imputed value may be computed 
as: 

g(I[) = g(it) (13) 

This imputed value of the function of (log) income is not un
biased, since in general the expected value of a continuous func
tion of a variable is not equal to the function of the expected value 
of the variable. However it is consistent by Slutsky's theorem and 
thus will enable consistent estimation of travel demand models. 

Presence of Missing Income Data 

If missing income values are present in the data (as is almost 
always the case), one of two approaches may be used to construct 
a continuous value for all observations: (a) the naive approach or 
(b) the sample selection approach. 

Naive Approach 

The naive approach employs the method described above to es
timate -y and u by using only the observed (and grouped) income 
values. A continuous (log) income value is then imputed by using 
Equation 12 for observed income values and using it = 1'X; for 
missing income values. The naive approach accounts for system
atic differences in the observed characteristics (represented by the 
X vector in Equation 7) that affect income between households 
that provide income and those that do not. However it fails to 
accommodate for systematic differences in the unobserved char
acteristics that affect income between respondent and nonrespon
dent households; that is, it ignores any "self-selection" in the 
choice of households to report income. Specifically unobserved 
factors that affect household income may also influence the de
cision of individuals (or households) to report income. For ex
ample it seems at least possible that households with above
average incomes, other things being equal, will be more reluctant 
than other households to provide Information on income [Lillard 
et al. (11) indicate that this is so in their study of the 1980 Census 
Population Survey]. Because of this potential sample selection 
[see Mannering and Hensher (13) for a detailed review of sample 
selection-related issues], the naive approach will not, in general, 
provide consistent (continuous) estimates of income for observed 
or missing income data [the method proposed by Stem (14) for 
imputing income from grouped and missing income data falls un
der the naive approach]. To obtain consistent estimates the deci
sion to report income should be considered endogenous, as' dis
cussed in the next section. 

Sample Selection Approach 

The sample selection approach uses two equations, one for income 
reporting and the other for household income, and accounts for 
the correlation in error terms between the two equations. Thus it 
accommodates systematic differences in unobserved characteris
tics between respondent and nonrespondent households. The 
model system is as follows: 

rt = -y;Xri + Eri• r; = 1 if rt > 0 and r; = 0 if rt :::; 0 (14) 
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Ii = -y;X1i + Eii } observed only if r~ > 0 
Ii = j, if aj-1 < I;* ::5 aj ' 

(15) 

where 

ri = observed binary variable indicating whether or not 
income is reported (ri = 1 if income is reported 
and ri = 0 otherwise), 

ri* = underlying continuous variable related to the ob
served binary variable ri as shown above, 

Xri and X1i = vectors of exogenous variables, 
'Yr and 'Yi= vectors of parameters to be estimated, and 
Er; and Eli = normal random error terms assumed to be inde

pendent and identically distributed across obser
vations with a mean of zero and variance of one 
and u}, respectively. 

The error terms are assumed to follow a bivariate normal distri
bution (the author is not aware of any earlier application of sample 
selection in econometric literature in which the variable subjected 
to sample selection is observed only in grouped form). 

The probability that income is observed and falls in income 
category j from the model system of Equations 14 and 15 is: 

. (aj - -yJX1; , ) 
Prob(r; = 1, /; = J) = <1>2 CIJ ' "(rXri' - P 

<I> (
aj-1 - -y;X1; 'X ) 

- 2 ' 'Yr ri' - P 
Ch 

(16) 

where p is the correlation between the error terms Eri and E1i, and 
<1>2 is the cumulative standard bivariate normal function. 

Defining a set of dummy variables M;j as in Equation 10 for 
the observed income observations, the appropriate maximum like
lihood function for estimation of the parameters in the model sys
tem is 

N [ ]1-r 
:£! = CT 1 - <l>(-y;Xri) i 

{ITJ [ (aj - -y;X1i , ) 
X . <1>2 ' "frXri' - P 

j=l U'1 

(17) 

Initial start values for the ML iterations are obtained by assign
ing to each reported income obserVation its conditional expecta
tion on the basis of the marginal distribution of the underlying 
latent continuous variable I;*. These values are now treated as the 
actual continuous (log) income values, and a Heckman's two-step 
method (15) is applied for sample selection models to obtain start 
values for the parameters. 

The continuous value of (log) income for households that re
ported income may be computed from the parameter estimates 
obtained from maximizing Equation 17. By using the properties 
of doubly truncated bivariate normal distributions (16) and defin
ing the following quantities, 

aj-l - ~;xii k = -'-----'--
U1 

~;Xri + kp 
g= V1=p2 

~:Xri + mp 
h = V1=p2 

k + ~:XriP 
r = V1=p2 

m + ~;xriP 
s = V1=p2 

one can write 
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A <f>(k)<l>(g) - <f>(m)<l>(h) + p<f>(-~;Xri)[<l>(s) - <l>(r)] 
+ U'i <l>z(~;Xri• m, - p) - <l>26:Xr;, k, - P) 

(18) 

The above expression collapses to Equation 12 if the correlation 
between the error terms in the reporting equation and the income 
equation is zero. 

The continuous value of (log) income for households that did 
not report income may be imputed as follows: 

A I ) A 'X A A ( <t>6:xri) ) 
I;* (Xri• xii• ri = 0 = 'Yi Ii - PU'1 1 - <I>6:Xr;) (19) 

EMPIRICAL RESULTS 

This section discusses the data used to develop the dependent 
income model and to impute income from grouped and missing 
income observations and also presents estimation results. 

Data 

The data source used in the present study is from a Dutch National 
Mobility Survey. The survey involved weekly travel diaries and 
household and personal questionnaires collected during the spring 
of 1988 [for a detailed description of this survey see van Wissen 
and Meurs (17)]. The sample included 889 households, 55 of 
which have missing income data. Household income was available 
in three categories (for the observed income observations) in the 
data: (a) less than or equal to 24,000 guilders, (b) from 24,001 to 
38,000 guilders, and (c) greater than 38,000 guilders. 

Empirical Specification and Results 

The variables considered in the income reporting equation and 
household income equation are listed in Table 1. They included 
household age and education (see definitions in Table 1), number 
of employed adults in the household, number of kids in the house-
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TABLE 1 Exogenous Variables in Model 

Variable Definition 

household age average age of adults in the household (age of adult 
in single adult households) 

household age > 35 (household age-35) if household age greater than 35, 
0 otherwise 

household age > 45 (household age-45) if household age greater than 45, 
0 otherwise 

household secondary 1 if education of all adults in the household is at 
education secondary level, 

0 otherwise 

household high- 1 if education of adults in household is a mixture of 
secondary education high and secondary, 

0 otherwise 

household high 1 if education of all adults in the household is high, 
education 0 otherwise 

number of employed number of employed adults in the household 
adults 

number of kids number of children less than 12 in household 

returning young adult 1 if household has a returning young adult 
(RY A) family 0 otherwise 

unemployment rate unemployment rate in the municipality of household 
residence · 

Note: The base for the household education variables is household primary education; that 
is, households with one or more adults with primary education. 

hold, an indicator of whether the household has a "returning" 
young adult, and unemployment rate in the municipality of house
hold residence. The household age variables enable nonlinear es
timation of the age effect on income reporting and income earn
ings. The education variables indicate the effect of different levels 
of education of the adults in the household relative to that for 
households with one or more adults with primary education. 

The naive method and the sample selection method were used 
to estimate the parameters in the household income equation. The 
naive method estimates parameters from observed income obser
vations by using Equation 11, whereas the sample selection 
method estimates parameters from all observations by using Equa
tion 17. The results are shown in Table 2. The naive method 
estimates only the income equation, whereas the sample selection 
method estimates both the reporting equation and the income 
equation and accounts for the correlation in unobserved factors 
that affects these equations simultaneously. In both models the 
level of household education and the number of employed adults 
have a positive effect on income. The magnitudes of the param
eters on household education are consistent with the expectation 
that higher levels of education have a greater effect on income. 
The unemployment rate in the municipality of the household res
idence has a significant negative effect. The reporting equation 
estimation results in the sample selection model indicate that 
households with older adults, households whose individuals have 
a high level of education, and households with a returning young 
adult have a significant negative effect on reporting. Thus there 
are systematic differences in the observed characteristics between 
households that report income and those that do not. 

The magnitude and significance of the correlation term p in the 
sample selection model indicate that there is a significant (and 
rather high) negative correlation in the unobserved factors that 
affect the reporting equation and the household income equation; 
that is, households that did not report their incomes were, all ob
served characteristics being equal, likely to have higher incomes 
than households that reported their incomes. This indicates that 
the naive method provides biased and inconsistent estimation re
sults. In particular the naive method tends to underestimate the 
magnitudes of parameters on the exogenous variables that have a 
positive effect on income and tends to overestimate the magni
tudes of parameters on the exogenous variables that have a neg
ative effect on income in the income equation because of the neg
ative correlation between the error terms in the reporting and the 
income equations (although the difference in coefficient estimates 
between the naive and the sample selection approaches appears to 
be small, the reader should note that the dependent variable is the 
logarithm of income, and thus even small coefficient differences 
could translate into moderate differences with respect to income 
earnings; the small coefficient differences may also be attributable 
to the small number of missing income observations in the current 
data set). 

The mean values of imputed (log) income for households that 
reported income and those that did not report income obtained by 
using the midpoint method, the naive method, and the sample 
selection method are shown in Table 3. The mean values for the 
midpoint method depend on the representative value used for the 
lowest and the highest income categories. In the computations 
shown in Table 3 a value of log (15,000) was assigned for the 



TABLE 2 Estimation Results 

The naive approach The sample selection 
Equation Variable approach 

Coefficient t stat. Coefficient t stat. 

constant - - 2.218 1.77 

household age 

entire range - - 0.002 0.04 

> 35 years - - 0.065 0.90 

> 45 years - - -0.141 -2.31 

Reporting household education 
equation 

secondary /high - - -0.762 -3.50 

high - - -1.114 -4.54 

number of kids - - -0.150 -1.27 

RYA family - - -0.759 -2.08 

constant 10.053· 57.35 10.051 56.75 

household age 

entire range(xl0-1) -0.006 0.12 -0.002 0.05 

> 35 years 0.012 1.54 O.Ql 1 1.42 

> 45 years -0.006 -0.94 -0.004 -0.62 

Income household education 
equation 

secondary 0.188 6.63 0.188 6.60 

secondary /high 0.364 10.67 0.382 11.05 

high 0.414 10.12 0.446 10.59 

number of employed adults 0.258 10.83 0.258 10.73 

unemployment rate -1.125 -3.20 -1.117 -3.19 

u 0.267 19.36 0.273 18.15 

I Correlation II p I 
-

I 
-

I 
-0.694 

I 
-2.33 

I term 

# of observations 834 889 

Log Likelihood (slopes=O, p=O) -800 -1006 . 

Log Likelihood (convergence) -621 -797 

TABLE 3 Mean Values of Imputed Income 

Mean imputed (log) income 
Category 

Midpoint Naive Sample Selection 
Approach Approach Approach 

Households which reported income 10.419 10.550 10.528 
(respondent households) (0.319) (0.245) (0.317) 

Households which did not report 10.419 10.713 11.036 
income (non-respondent households) (0.000) (0.280) (0.240) 

Note: Numbers in parentheses are centered standard deviations. 
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"less than or equal to 24,000 guilders" category and a value of 
log (43,000) was assigned for the "greater than 38,000 guilders" 
category. The inconsistency and the ad hoc nature of the midpoint 
method of imputing income were discussed above. Furthermore 
the mean value of imputed (log) income was identical for both 
respondent and nonrespondent households by the midpoint 
method because the midpoint method does not account for sys
tematic variations in the observed and unobserved characteristics 
that affect income between respondent and nonrespondent 
households. 

The naive method accounts for systematic variations in ob
served characteristics between respondent and nonrespondent 
households. The higher mean estimate for nonrespondent house
holds compared with that for respondent households indicates that 
nonrespondent households have higher values than respondent 
households for the observed characteristics that increase income. 
This is readily observed in the reporting equation estimates of the_ 
sample selection model in Table 2, which indicate that nonre
spondent households are characterized by adult members with a 
higher education level than those of adult members in respondent 
households. 

The sample selection method accounts for systematic variations 
in the observed and unobserved characteristics that affect income 
between respondent and nonrespondent households. The differ
ence in the mean value of imputed (log) income for respondent 
and nonrespondent households between the sample selection and 
naive approaches comprises two components. The first component 
is an underestimation of income by the naive method on the basis 
of the observed characteristics that affect income because of the 
biases in parameter estimates of the naive approach in Table 2. 
This first component leads to an increase in imputed (log) incomes 
for both respondent and nonrespondent households in the sample 
selection method compared with those in the naive method. The 
second component is the effect of the unobserved characteristics 
that affect reporting status and income. It leads to a decrease in 
imputed (log) income for respondent households and an increase 
for nonrespondent households. The naive method does not con
sider this second component; only the sample selection model 
does. The difference in the mean value of imputed (log) income 
between the sample selection and naive approaches is small for 
respondent households because the two components mentioned 
above act in opposite directions and tend to offset each other. On 
the other hand the mean value of imputed (log) income from the 
sample selection approach is substantially larger than that from 
the naive approach for nonrespondent households because the two 
components mentioned above reinforce each other. Aside from the 
magnitude of the -difference between the estimates of the sample 
selection and the naive approaches, however, the naive approach 
provides inconsistent imputed estimates both for respondent and 
for nonrespondent households because the correlation in the unob
served factors that affect reporting status and income earnings is 
significantly different from zero in Table 2. In general the sample 
selection method is the only approach that provides consistent 
imputed income estimates from grouped and missing income data. 

CONCLUSION 

This paper developed a methodology for imputing a continuous 
value of income from grouped and missing income data for use 
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as an explanatory variable in travel demand models. The method 
was applied to data from the Dutch National Mobility Survey. In 
addition to indicating the applicability of the procedure developed 
in the paper to accommodating grouped and missing data, the re
sults show that there are systematic differences in observed and 
unobserved characteristics between households that report income 
and households that do not. Failure to accommodate for this sample 
selection results in biased and inconsistent imputations. Use of 
such inconsistent imputed income values as an explanatory vari
able will result in unreliable travel demand models. 

The methodology developed in this paper is particularly rele
vant because almost all transportation-related data bases record 
income in grouped form and because there is a trend for an in
creasing percentage of respondents to refuse to provide income 
information in travel and travel-related surveys (11). The meth
odology developed in the paper is easy to apply and has been 
coded for use with the GAUSS programming language. 
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Improved Kalman Filtering Approach for 
Estimating Origin-Destination Matrices for 
Freeway Corridors 

NANNE J. VAN DER ZIJPP AND RUDI HAMERSLAG 

The estimation of origin-destination (OD) matrices for freeway cor
ridors by using inner-link induction loop data is exa~i~ed .. A trip 
generation model is used, and various parameter optumzation and 
statistics-based methods are examined to estimate the split parameters 
in the model. A Kalman-based method that uses the model-predicted 
link-flow variances and covariances while processing the measure
ments is described. A simple but effective solution to the problem of 
initializing the Kalman filter and imposing the natural constraints to 
the estimates is presented. The resulting method is tested on both 
simulated and observed data and is compared with other methods 
such as least squares and constrained optimization, showing that the 
Kalman-based method leads to the best results. 

Vehicle movement estimates are generally summarized in origin
destination (OD) tables. These tables contain the number of trips 
for each combination of origin and destination. For a freeway 
system origins correspond with on-ramps (entrances), whereas 
destinations relate to off-ramps (exits). Dynamically updated OD 
tables are required for various strategies aimed at optimal usage 
of existing freeway capacity. Examples of such strategies are ramp 
metering, route guidance, and incident management. Often induc
tion loop data are the only continuously updated source of infor
mation, producing the number of observed vehicles per time slice. 
Induction loops generate an abundance of traffic counts. To be 
able to analytically calculate an OD table within a time slice, 
however, additional techniques are necessary. A first example of 
such a technique is the use of a traffic model that defines explicit 
relationships between OD flows. A second example is the use of 
an a priori trip table. The distance to this a priori trip table, ac
cording to some criterion, is minimized by using traffic counts as 
a boundary condition. Examples of these approaches can be found 
in Cascetta and Nguyen (1), Hamerslag and Immers (2), Bell (3), 
Hendrickson and McNeil (4), and van Zuylen and Willumsen (5). 

Although the use of such techniques when applied to aggre
gated data sets can be well defended, it is questionable whether 
the inherent assumptions of the above-mentioned techniques are 
valid when applied to subnetworks like intersections or freeway 
corridors. First, these subnetworks contain neither real origins nor 
real destinations. Second, because of low aggregation levels, sto
chastic influences are likely to be dominant. 

Therefore in this paper a class of OD estimators that works 
with a weaker assumption, the assumption of constant split ratios, 
is studied. According to this assumption for each entrance the 
fractions of traffic destined for a certain exit can be assumed to 
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be changing slowly or even remain constant. This assumption 
changes the underspecific problem into an overspecified problem. 

The split ratio approach was first introduced by Cremer and 
Keller ( 6), who used a recursive formula to estimate the unknown 
split proportions. Since then various techniques have been used 
to esti~ate the split proportions. First, the correlation procedure 
was proposed by Cremer (7). This procedure is equivalent to the 
least-squares method. Later the method was improved by Cremer 
and Keller (8), who used constrained optimization. Simultane
ously Kalman filtering was applied to this problem by both 
Cremer and Keller (8) and Nihan and Davis (9). Finally maximum 
likelihood approaches have been employed by Nihan and Davis 
(10) and Bell et al. (11). A combination of split ratio and modeling 
approaches can be found in Keller and Ploss (12), whereas Bell 
(13) added the problem of platoon dispersion. . 

The problem statement used in this paper will show many sim
ilarities to the problem statements used in the above-mentioned 
work. Th~ee new elements are added, however. First, the mea
surement vector contains not only exit volumes but can also con
tain inner-link volumes. Second, the split parameters are inter
preted as split probabilities rather than fixed fractions of entering 
volumes in a trip generation model. The third addition is the in
corporation of a time shift in the problem. Entrance volumes and 
measurements from all locations are processed simultaneously. 
Therefore each measurement must be processed with a delay for 
all measurements to refer to one set of split parameters. 

The main problem with the processing of inner-link volumes is 
the strong measurement dependency due to redundancy. To ade
quately describe the properties of the system and its measure
ments the trip generation model presented by van der Zijpp and 
Hamerslag (14) is used. This model distinguishes between split 
probabilities and split proportions, an idea already used by Davis 
and Nihan (15) and Davis (16) for static OD estimation. The trip 
generation model describes not only how split probabilities 
change through time but also the choice of destination as a random 
choice process and which noise is involved when monitoring en
tering traffic and inner-link volumes. 

For prediction purposes the split probabilities have more sig
nificance than the split proportions. The OD estimation problem 
is therefore converted into the estimation of the split probabilities 
in the trip generation model. For this purpose least squares, con
strained optimization, maximum likelihood, and Kalman filtering 
have been considered. Each method is described in terms of the 
variables used in the problem statement, and when necessary com
putational aspects are discussed. From these methods only the 
Kalman filter approach and the maximum likelihood approach al
low the specification of dependency between measurements. From 
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these two the Kalman filter has been selected because it is the 
only method for which tractable expressions for the dependent 
measurement case could be derived. 

Several problems, however, hinder the straightforward appli
cation of a Kalman filter to the problem of estimating the split 
probabilities from induction loop data. First, since the Kalman 
filter is a recursive method, a set of initial conditions needs to be 
available. Second, the measurement properties need to be defined, 
since noise occurs because of differences between split probabilities 
and split proportions and inaccuracies in induction loop observa
tions. Finally there are several equality and inequality constraints 
that apply to the split probabilities. For each entrance split proba
bilities must not only add up to 1 but each individual split proba
bility must also be nonnegative and less than 1. Depending on how 
these problems are solved one can expect a Kalman filter to do 
better or worse. The results presented by Cremer and Keller (8), 
for example, suggest that constrained optimization gives better re
sults than Kalman filtering at the cost of high computation times. 

The section Improved Kalman Filtering Approach describes a 
solution to each of these problems, resulting in an improved 
Kalman-based method. The method is tested against constrained 
optimization and least squares by using both simulated and em
pirical data. The test results are included in the last section. 

PROBLEM STATEMENT 

For the problems treated in this paper route choice is supposed to 
play no role, although this is not really a constraint of the methods 
under consideration; see for example Davis (16). All implemented 
methods take nonzero travel times into account. The problem of 
determining the delays is treated at the end of this section. For 
simplicity of notation the travel times are not mentioned in the 
equations. 

Notation 

The definitions of the terms used in the equations are as follows: 

q(t) = vector of length m whose elements q; (t) are the observed 
volumes at entrance i that are processed during interval 
t. 

y(t) = vector of length p whose elements yh(t) are the counted 
volumes at location h that are processed during interval t. 

B(t) = m X n matrix whose elements biJ{t) are the proportion of , 
trips leaving i destined for j. Let b;:(t) ·represent row i of 
B(t), that is, the split parameters associated with entrance i. 
Then b(t) = [bat) bHf) ... b~:(t)]' is defined as a vector of 
length m X n that contains the elements of B(t) row by row. 

F(t) = m X n matrix whose elements fij (t) give the flow from i 
to j. Let f;,(t) define row i of F(t). Then f(t) = [f;,(t) f~,(t) 
... f~,(t)]' is a vector of length m x n that contains the 
elements of F(t) row by row. 

Trip Generation Model 

The problem is to estimate the unknown parameters B(t). Refer
ring to van der Zijpp and Hamerslag (14), we argue that b;j(t) 
should be considered the probability that a vehicle will leave the 
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network at exit j given the fact that it originated from entrance i. 
Such a probability does not really exist, but for our purposes driv
ers selecting randomly their destination upon entrance onto the 
network is an acceptable model of the system. 

Working with split probabilities rather than split proportions has 
two advantages. First, the assumption that b(t) is a slowly moving 
process can be better defended here since the randomly triggered 
difference between the split proportions and split· probabilities is 
eliminated. Second, some useful properties of the measurements 
can be derived, such as variances and covariances given a set of 
split probabilities. Hence from now on we use the following def
inition for the split parameters: 

bij 6- P [exit at jlenter at i] (1) 

By definition the following constraints apply to the split param
eters: 

0 ~ bij(t) ~ 1 i = 1 ... m, j = 1 ... n (2) 

n 

L b;j(t) = 1 i = 1 ... m (3) 
j=l 

Like in Nihan and Davis (9) we refer to these constraints as the 
natural constraints. The split parameters are assumed to vary 
slowly over time, driven by a zero mean drift parameter w(t): 

b(t) = b(t - 1) + w(t) (4) 

Another aspect we would like to consider is that all volumes are 
observed with noise because of inaccuracy of the induction loop 
observations. Introduce q*(t) and y*(t) as the vectors of real input
and inner-link volumes, whereas q(t) and y(t) are the measured 
values. All noise components are considered to be independent 
and zero mean and have variances <T~ or <T~. Therefore, 

q(t) = q*(t) + r(t) 

E[r(t)] = 0, E[r(t)r(t)'] = <T~/ (5) 

and 

y(t) = y*(t) + s(t) 

E[s(t)] = 0, E[s(t)s(t)'] = cr~/ (6) 

Often the on-ramps are not monitored directly and one must cal
culate these entrance volumes by taking the difference of two 
consecutive inner-link volumes. Experiments have shown that ne
glecting noise in the entrance volume vector seriously affects the 
quality of the estimate, especially when the Kalman filter was 
applied. One reason for this is that the Kalman filter uses the 
entrance volume vector as a boundary condition. Therefore errors 
in the entrance volumes are subscribed to measurement noise. This 
causes a strong dependency among the elements of this noise 
vector. 

The above assumptions define the trip generation model that 
was presented earlier by van der Zijpp and Hamerslag (14). This 
model is summarized in Figure l(a), which shows a system in 
which b(t + 1) is obtained from b(t) and drift variable w(t), which 
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FIGURE 1 Modeling assumptions: (a) trip generation model, 
(b) selecting simultaneously processed measurements, and 
(c) matching entrance volumes with measurements. 

will be considered a random input. The variables b(t) are used as 
probabilities in a drawing process. For each entrance qt(t) exper
iments are done. The observed entrance volume vector q(t) is ob
tained by taking the sum of q*(t) and r(t), as described in Equation 
5. The results of the drawing processes are merged into a link 
volume vector y*(t), to which (see Equation 6) a noise vector s(t) 
must be added to obtain the measured values y(t). 

Measurements are available as traffic counts, which are ob
tained from induction loops. By definition these counts are linear 
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combinations of flows. Since the route choice issue is neglected 
here, an OD flow is either totally or not at all contained in a 
measurement. Therefore, 

y*(t) = U'f(t) (7) 

with U denoting an mn X p matrix whose elements can either be 
one or zero, indicating that a flow does or does not contribute to 
the measurement. Note that this matrix does not depend on the 
time period. The transpose was used solely to keep conformity 
with literature. By using Equations 1 and 5 the following approx
imation for the flows can be derived: 

(8) 

Substituting this approximation in Equation 7 and combining this 
with Equation 6 allows us to calculate an mn X p matrix H(t) 
with 

y(t) = H'(t)b(t) + v(t) (9) 

This equation will later be referred to as the measurement equa
tion. The vector v(t) accounts for all measurement errors and the 
effects of the random selection process described in the trip gen
eration model. The properties of this measurement error are dis
cussed in the section Improved Kalman Filtering Approach. 

Calculating Correct Time Delay 

The measurements are processed with a time delay to let all mea
surements refer to the same set of split parameters and entrance 
volumes. However the time axis is divided into intervals, and the 
average travel times between entrances and measurement locations 
generally do not match the length of the intervals. To minimize 
errors a two-step process was followed. 

The first step involves the selection of the measurements that 
will be processed simultaneously. To apply the natural constraint 
(Equation 3) to the estimate of b(t), for each entrance this estimate 
must represent the splits during only one interval. To optimally 
fulfill this condition the relative travel times between the mea
surement locations are calculated and rounded to an integer num
ber of intervals. This is illustrated in Figure l(b ), which shows 
the delay (in periods) as a function of the distance s (in kilom
eters). The locations of origins 01 through 04 and measurement 
locations Ml through M4 are indicated on the x-axis. The gradient 
of the line corresponds to the average speed. In the experiments 
described at the end of this paper this average could be derived 
directly from the input data, because measurements are carried out 
with double induction loops that monitor both intensity and speed. 

The second step involves the selection of the corresponding 
entrance volumes. Since the average travel times do not exactly 
equal an integer number of periods, entrance volumes from at least 
two periods are assumed to contribute to a measurement. There
fore a weighted sum of the entrance volumes should be substituted 
in Equation 8. The weight factors can be determined from Figure 
l(c). They correspond to the length of the vertical intervals in 
Figure l(c). The arrows join the weight factors with the corre
sponding delay. By taking a weighted sum of two entrance vol
umes the optimal approximation of the entering volume during a 
certain period is obtained. However the entering traffic cannot be 
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assumed to be evenly spread over time, and the travel times are 
not exactly known. Therefore it is inevitable that an error is in
troduced in the entering volume observation. For this· reason the 
noise variable r(t) was included in the trip generation model. 

ESTIMATION OF SPLIT PARAMETERS 

When we use the trip generation model described in the previous 
section, the problem of estimating the OD matrix is reduced to 
estimating the split parameters in the trip generation model. In 
this section five existing methods are described. Since these meth
ods have been described in other contributions, this paper provides 
only a brief summary showing how the methods can be applied 
to problems in which the measurements contain inner-link vol
umes instead of exiting volumes only. The methods being consid
ered here are the least-squares method, inequality-constrained 
least-squares method, constrained optimization, maximum like
lihood, and Kalman filtering method. The first three methods can 
be classified as parameter optimization methods, whereas the other 
two are statistics-based methods. 

Least-Squares Method 

The least-squares method is aimed at solving the following 
problem: 

(10) 

By expanding this expression and setting the derivatives to b(t) 
to zero, the least-squares estimate can be calculated by 

b(t) ; [ t H(k)H'(kf [ t H(k)y(k) l (11) 

A unique solution is guaranteed if mn independent columns can 
be found in the matrices H(l) ... H(t). From Equation 11 it can 
be seen that it is possible to employ the least-squares method 
by using a constant amount of storage space by the following 
algorithm: 

b(t) = HH;;,;(t)HY101(t) 

HHro,(t) = HH,0 ,(t - 1) + H(t)H'(t) 

HYro,(t) = HYi01(t - 1) + H(t)y(t) (12) 

By introducing a discounting factor the method can be adapted to 
track a time-varying b(t). This transforms the problem into 

ipin ~ A.'-k l[y(k) - H' (k)b(t)U2 
b(t) Ir-I 

Again putting the derivatives to zero gives a minimum: 

(13) 

(14) 

This gives rise to the following algorithm: 

b(t) = HH;;,1

1(t)HY,01 (t) 

HH10, (t) = AHH,01 (t - 1) + H(i)H' (t) 

HY,oi(t) = AHY,0 ,(t - 1) + H(t)y(t) 

Inequality-Constrained Least-Squares Method 
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(15) 

Equation 15 does not guarantee that the natural inequality con
straint (Equation 2) is met. Imposing this condition would 
therefore improve the solution. On the other hand this would 
convert the problem from an unconstrained minimization into an 
inequality-constrained minimization problem: 

6c~) t l[y(k) - H' (k)b(t)W (16) 

subject to 

l=l ... mn (17) 

This problem consumes much more computation time than the 
unconstrained problem. When solved by an interior steepest
descent method the computation times tend to be high because of 
the ill-conditioned matrix HH,01 • Not only does this hinder the 
testing of the method (an average test run would take 2 hr for the 
cases described in this paper) but also in case of real-time appli
cations the duration of the computation could easily exceed the 
time available. 

Therefore_ a less time-consuming algorithm is needed. For the 
time being the best results are obtained with an iterative algorithm 
that employs conjugate search directions that are projected on the 
feasible region when necessary. Moreover the searches are re
stricted to the feasible region, and the search direction is reset to 
steepest descent after each truncated search or change of active 
constraints. Calculation times are approximately 10 times longer 
than those by the straightforward matrix inversion method that 
could be used for the nonconstrained case. This suffices for prob
lems of the size studied in this paper. 

Constrained Optimization 

If both the inequality and equality constraints (Equations 2 and 
3) are imposed, an even better solution should be obtained. The 
satisfaction of the equality constraint (Equation 3) can be guar
anteed by substituting the following in Equation 10: 

b(t) = b0 + Gb1{t) (18) 

with b0 satisfying the equality constraints in Equation 3 and G 
being a mn X m(n - 1) matrix chosen in such a way that Gb1(t) 
does not disturb the satisfaction of the equality constraints for all 
b1(t). Although many combinations of b0 and G satisfy the nee-
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essary conditions, for practical reasons we use 

0 
I 

0 
-1/n -1/n ··· -1/n 

b
0 = , G = 

0 

0 
-1/n -1/n ··· -1/n 

(19) 

This substitution transforms the problem in Equation 10 into 

~in i l[y(k) - H'(k)(b0 + Gb1(t))ll2 

b (t) k=l 

subject to 

bJ(t) 2: 0 l = 1 ... m(n - 1) 

n-1 

L bli-l)(n-l)+lf) :::; 1 
j=l 

i = 1 ... m 

(20) 

(21) 

Solving this inequality-constrained problem and substituting the 
resulting b1(t) in Equation 18 gives a solution for b(t) that satisfies 
all required conditions. For solving the problem in Equation 20 
the algorithms of the inequality-constrained problem can be used, 
although the projection of the search direction on the feasible 
region requires more computation time because of the nonorthog
onal inequality constraints. 

Maximum Likelihood 

The previous methods can all be considered parameter optimiza
tion methods. They are designed to minimize the distance between 
measured and predicted values. Apart from these methods we dis
tinguish the statistics-based methods. These methods are defined 
in terms of the probability distributions related to the unknown 
parameters b(t). The most common statistics-based method is the 
maximum likelihood (ML) technique. When applied to the prob
lem of determining the split parameters in the trip generation 
model the ML solution would be defined by 

max A 

b(t) P[y(l) ... y(t)lb(t)] (22) 

Calculation of the ML solution normally requires the derivation 
of a probability distribution from the system shown in Figure l(a), 
which is not tractable. Nihan and Davis (10) presented an ML 
approach that did not require this derivation by using the EM 
algorithm proposed by Dempster et al. (17). However this was 
done for the simplified system in which b(t) was constant rather 
than slowly varying and in which no noise on the entrance volume 
observations was present. Moreover the resulting algorithm was 
nonrecursive. 

Another ML approach has been presented by Bell et al. (11). 
This approach is fully disaggregate but is computationally too 
demanding to be useful in practice. So although ML estimators 
have desirable properties no ML estimator that suits our needs is 
available. 
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Kalman Filtering 

Another statistics-based estimation technique is the Kalman filter. 
The Kalman filter is a widely applied method for parameter esti
mation in dynamic systems. Before a Kalman filter can be used 
two equations must be supplied: the state equation and the mea
surement equation. The state equation describes how the unknown 
parameters evolve through time. The measurement equation de
scribes the relation between the unknown parameters and the 
measurement. In both equations it is possible to specify uncer
tainty by way of. noise terms. In our case the state parameters 
represent the split probabilities. These parameters are assumed to 
change only slowly over time. Therefore we use the following 
state equation: 

b(t) = b(t - 1) + w(t) (23) 

The measurement equation describes the way the state parameters 
are observed. In this case we can use Equation 9: 

y(t) = H' (t)b(t) + v(t) (24) 

In these equations w(t) and v(t) must be zero mean noise processes 
with known covariance matrices; 

E[w(t)w(p)'] = Q181P 

E[v(t)v(p)'] = R181P (25) 

with 8,P equal to 1 if t equals p and zero otherwise. On the basis 
of these equations and a knowledge of the covariance matrices a 
widely used estimation technique has been derived: the Kalman 
filter. A description of this technique can be found in many text
books [see for example Anderson and Moore (18) and Catlin 
(19)]. The Kalman filter equations for the problems in Equation 
23, 24, and 25 are: 

b(t) = b(t - 1) + Kr[y(t) - H'(t)b(t - 1)] 

K, = Lr_
1
H(t)[H(t)' Lr- 1H(t) + Rrr 1 

Lr= Lr-1 - Lr-1H(t)[H(t)'Lr-iH(t) + Rrr 1H'(t)Lr-i +Qr (26) 

These equations define a recursion that should be started with an 
initial estimate b(O) and an initial covariance matrix ~0• Given the 
assumptions in Equations 23 through 25, the Kalman filter leads 
to the minimum variance linear estimator; that is, the estimate is 
a linear function of the measurements y (1) ... y (t), and the filter 
implicitly finds the matrix A and vector c that solve the following 
problem: 

nnA·n E[llb(t) -A.[y(l) ... y(t)] - cii2] 
,c 

(27) 

Moreover this estimate can be shown to be unbiased. If besides 
earlier assumptions the noise terms and the initial state have Gaus
sian distributions the Kalman filter can be shown to produce un
biased estimates that have minimum variance over all estimators 
[see Anderson and Moore (18)]. 

The advantages of the Kalman filtering method are the com
putational efficiency of the method and the possibility of process-
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ing interdependent measurements. Other advantages are that the 
calculations can be done recursively and that together with the 
estimate for the split matrix a variance-covariance matrix is cal
culated. This matrix gives an indication of the reliability of the 
estimate. 

IMPROVED KALMAN FILTERING APPROACH 

Despite the nice theoretical properties of the method several prob
lems hinder the straightforward application of a Kalman filter. The 
first problem is that no initial values b(O) and Lo are available. 
Some experimenting shows that the problem of initializing the 
filter cannot be seen apart from a second problem: how to impose 
the natural inequality constraints in Equation 2. It seems natural 
to specify very large diagonal values of L0, since this expresses a 
lack of information about b(O) and results in forgetting the initial 
value b(O) as quickly as possible. On the other hand the initial 
variance is bounded above since the split parameters are bounded 
to the interval (0,1 ]. Also specifying large initial variances results 
in many violations of the inequality constraints during the start
up phase of the filter. The problem of dealing with these inequality 
constraints has already been treated by Nihan and Davis (9), who 
proposed several constraining ~lgorithms. This paper shows that 
a much simpler and effective way of dealing with both initial 
conditions and inequality constraints is possible. 

Another problem is the lack of information about the noise 
covariance matrices Q, and R, in Equation 25. The results pro
duced by the Kalman filter strongly depend on these matrices. 
Therefore a good approximation of these matrices should improve 
the estimate. In this section the measurement noise covariance 
matrix is derived from the trip generation model shown in Figure 
l(a). This derivation produces the matrix R, as a function of the 
split probability b(t). This is an approximation since only an es
timate of b(t) is available. The last problem treated in this section 
is the use of the natural equality constraints (Equation 3). In Nihan 
and Davis (9) a normalization procedure is used to impose these 
constraints. In this paper the natural equality constraint is imposed 
via the perfect measurement concept [see Anderson and Moore 
(18)]. The consequences for the method are discussed. 

Initial Conditions and Inequality Constraints 

The Kalman filter described in the previous section has one coin
monly recognized interpretation, that is, that of a linear minimum 
variance estimator. However the Kalman filter can also be inter
preted as an example of Bayesian estimation [see Catlin (19)]. As 
shown by Maher (20), assuming a Gaussian a priori distribution 
of the state vector and performing a Bayesian update with a mea
surement that has a Gaussian distribution (conditionally to the 
state vector) leads to a Gaussian a posteriori distribution. The 
equations derived for the scalar measurement case in Maher (20) 
can be shown to match the Kalman filter measurement update 
equations. In van der Zijpp and Hamerslag (21) the results are 
generalized to nonconstant state parameters and nonscalar mea
surements. A central role in this derivation is played by Bayes 
rule: 

p[b(t)lY(l) . .. y(t)] = 

p[y(t)lb(t), y(l) ... y(t - 1)] p[b(t)lY(l) ... y(t - 1)] 

p[y(t)lY(l) ... y(t - 1)] 
(28) 
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The validity of Bayes rule follows from the definition of condi
tional probability. According to Bayes rule the a posteriori distri
bution can be derived from the a priori distribution and the like
lihood function of the measurement vector. Figure 2( a) illustrates 
the principle of Bayesian updating for a scalar Gaussian random 
variable and a scalar measurement. The a posteriori distribution 
is obtained by multiplying the a priori density and the likelihood 
function and normalizing the result. 

Inequality Constraints 

Since natural inequality constraints bound the split probabilities 
b(t) to an mn-dimensional hypercube (0,1 ], the a priori probability 
function should be zero outside this hypercube. One way in which 
this can be achieved is by multiplying the a priori probability 
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function with an indicator function I[0,1 ]Q. This function equals 
1 if all elements of b(t) satisfy the inequality constraints and is 
zero elsewhere. This leaves the shape of the distribution of b(t) 
intact on the hypercube [0,1 ], whereas it defines a zero probability 
elsewhere. To ensure that the new function integrates to unity the 
a priori function should be multiplied by a factor FQ. FO can be 
expressed as a function of b(t - 1) and L 1_ 1• In this way we get 
a truncated MVN distribution. 

p[b(t)[y(l) ... y(t- 1)] 

~IL,-1 + QJ(v'21rr 

1 A 

X exp -2 [b(t) - b(t- 1)]' 

X (Lr-I+ Q,)-I [b(t) - b(t - 1)] 

X / 10•11[b(t)] (29) 

If we check how this assumption affects the derivation of an a 
posteriori distribution we conclude that when Equation 29 is used 
Equation 28 must be multiplied by the indicator function IO and 
by a factor FO, and also the value of the normalizing constant 
p[y(t)jy(l) ... y(t - 1)] will be different. 

However this operation does not affect the shape of the a pos
teriori distribution within the hypercube [0,1]. Therefore the a pos
teriori distribution will still be defined by a truncated MVN dis
tribution, characterized by some b(t) and L 1• Moreover the recur
sion that determines b(t) and L1 from b(t - 1) and L1_ 1 has not 
been changed. Therefore- the Kalman filter equations can be used 
without modification, despite the presence of inequality con
straints. Because of the modified circumstances, the Kalman filter 
results need another interpretation. The variables b(t) and L 1 still 
characterize the probability distribution but can no longer be used · 
as mean and variance [see Figure 2(b)]. Therefore the filtered re
sults need some postprocessing before a point estimate can be 
presented. A first option, calculation of the true mean, requires 
the evaluation of an integral for which no analytical solution ex
ists. Numerical integration is no option either because b(t) is a 
high-dimensional vector. The second-best option is finding the 
maximum a posteriori (MAP) estimator for b(t) [see Beck and 
Arnold (22)]. This can be found by maximizing the a posteriori 
density of b(t): 

b(t)], 

0 :::; b;(t) :::; 1, i = 1, 2 . . . mn (30) 

To find the minimum solution the methods for constrained opti
mization can be used. These methods were described in a previous 
section. A potential drawback of this approach is the increase in 
computation time. When computation time is a bottleneck one can 
option for a suboptimal postprocessing method. 

Initialization of Filter 

In ·the foregoing we used the principle of Bayesian updating to 
derive a version of the Kalman filter that incorporates inequality 

TRANSPOR'IATION RESEARCH RECORD 1443 

constraints. As it will turn out, simultaneously we find a solution 
to the problem of initializing the Kalman filter. A common way 
of initializing a Bayesian filter when no a priori information is 
available is to use a uniform distribution. This expresses that, on 
the basis of the a priori information, every solution is equally 
likely. Working with the indicator function enables us to define 
an initial distribution that is arbitrarily close to the uniform dis
tribution simply by defining Lo as a diagonal matrix with very 
large diagonal elements. Figure 2(c) illustrates how a truncated 
Gaussian distribution approaches a uniform distribution if the 
variance increases. 

Derivation of Measurement Noise Properties 

The estimate obtained from a Kalman filter strongly depends on 
the assumed variance-covariance matrix for the measurement 
noise. Therefore in van der Zijpp and Hamerslag (14) such a ma
trix was derived on the basis of the trip generation model shown 
in Figure l(a), which shows a system that is clearly different from 
the one described by the measurement Equation 24, since the 
measurements are numbers of successful experiments rather than 
linear combinations of the unknown parameters. However in terms 
of the expected value and the variance there is no difference be
tween both systems. Therefore as far as the Kalman filter is con
cerned, we can treat the measurements from Figure l(a) as if they 
were obtained from a linear system, as long as a covariance matrix 
R1 for the noise vector v(t) is supplied. 

A starting point for the derivation of such a matrix is the con
ditional distribution of the flows, given the entrance volume, 
qt(t), which is defined by a multinomial distribution: 

q;*(t)! Iln 
P[.f;i(t) ... . f:nCt)lqt(t)] = n bij(fti<r> (31) 

TI fq(t)! j=l 

j=l 

By combining this with Equation 5 it can be shown that the fol
lowing equations define the covariance matrix for the measure
ment y(t) = U'f(t) as a function of the split vector b(t). 

R1 = cov[y(t), y(t)] = U' cov[f(t), j{t)]U (32) 

with 

cov[f;lt), fhk(t)] = q;(t)bij(t)'Oih'Ojk 

+ [CJ~ - q;(t)]b;lt)bhk(t)'Oih (33) 

Since the exact value of the split vector is unknown, the estimate 
of the split vector is used instead. The covariance matrix is there
fore only an approximation to the true matrix. 

Equality Constraints 

Another way of improving the Kalman filter estimate is by im
posing the natural equality constraints (Equation 3). For the pur
pose of imposing the natural equality constraints Niham and Davis 
(10) proposed a normalization procedure. Since that procedure 
was meant to act separately from the active parameter estimation 
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method, it does not take full advantage of the possibilities of Kal
man filtering. 

Because the natural equality constraints are just another linear 
combination of the unknown split parameters, these constraints 
can be imposed as measurements to the Kalman filter. These kinds 
of measurements are referred to as perfect observations, because 
no noise on these observations is present. In matrix notation, 

[ ~ J , F' = [ l ... \ ... 1 J e = F'b(t), e = 

1 1 ... 1 
(34) 

Anderson and Moore (18) show two ways to deal with these kinds 
of observations. The first way is to reduce the order of the filter 
by an order m (m denotes the number of entrances). This can be 
done by a change of coordinate basis, similar to the one used 
while calculating the solution to the constrained optimization 
problem. The second way is to proceed as with any measurement 
by using a zero matrix for the measurement noise matrix. In this 
case a recursion similar to Equation 26 is valid. For ease of im
plementation the latter method was used in the study described in 
this paper. 

Define b + (t) and L7 as the updated estimate and variance
covariance matrix after performing a measurement update by 
Equation 34. Now b + (t) and L7 are obtained via: 

b+(t) = b(t) + K7[e - F'b(t)] 

(35) 

These update equations lead to a singular variance-covariance ma
trix L7. However b + (t) and L7 still define the density function of 
b(t) on the domain in which b(t) satisfies the natural equality con
straints. Outside this domain the density function is zero. As a 
result Equation 30 transforms into: 

0 :::s; b(i-I)n+lt) :::s; 1, i = 1 ... m, j = 1 ... n 

n 

2: b(i-l}n+lt) = 1, i = 1 ... m 
j=l 

(36) 

where pinv is defined as the pseudo-inverse operator [see also 
Anderson and Moore (18)]. 

EXPERIMENTS 

Experiments were carried out with both simulated and real data. 
The advantage of using simulated data is that the original matrix 
is available to evaluate the different methods. However these ex-
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periments give only limited insight into whether a method would 
work in practice. Therefore a second series of experiments was 
done by using minute-by-minute induction loop data from the 
Amsterdam beltway. 

First Experiment, Simulated Data 

The simulated data have been obtained by programming the trip 
generation model shown in Figure l(a). The on-ramp volumes 
were generated by using a Poisson random generator. The split 
probabilities were obtained by taking a weighted sum of two ex
treme split vectors: 

B(t) = cx(t)B1 + [1 - cx(t)]B2, 

1 
cx(t) = 2 [1 + cos(2'1Tt/1)], T = 144 (37) 

The network used consists of four entrances and four exits [Figure 
3(a)]. 

As an evaluation criterion the square root of the mean squared 
error (RMSE) of the split parameters was used, that is, 

RMSE= (38) 

All methods described in this paper were tested. To make a fair 
comparison all methods were optimized for parameters that reflect 
the rate of change in the dynamic OD. The results from the pre
vious section were used to determine the noise error covariance 
matrix required by the Kalman filter and to the natural constraints. 
For this experiment the Kalman-based method produced the best 
results; this was followed by constrained optimization, inequality
constrained least squares, and ordinary least squares [see Figure 
3(b)]. The results are also presented in scatter diagrams [see Fig
ure 3(c)]. These diagrams show for a number of periods the es
timated split values plotted against the real values. 

Second Experiment, Empirical Data 

The second series of experiments was done by using induction 
loop data from the Amsterdam beltway. For this experiment one 
direction of an 11-km freeway corridor was selected. This corridor 
has five entrances and five exits and is equipped with 19 detector 
stations. All data were aggregated to periods of 5 min. Again 
various methods were compared. This time only the diagonal el
ements of the variance covariance matrix prescribed by Equation 
32 were used while applying the Kalman filter. 

For this experiment observed trip matrices were not available. 
Therefore the evaluation criterion in Equation 38 could not be 
used. Instead the flow-predicting capabilities for a set L of refer
ence locations were used. Set L is a set of nL reference locations. 
It contains induction loops on locations for which the volumes 
are expected to be sensitive to the split parameters, for example, 
between off-ramps and on-ramps. To prevent data from being used 
at the same time to calculate and evaluate b(t), the volumes were 
predicted by multiplying 5-min-old split parameter estimates by 
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FIGURE 3 Simulation results: (a) simulation setup, (b) simulation 
results, and (c) true versus estimated b(t), t > 100. 

With the evaluation criterion in Equation 39 it was not possible 
to prove major differences in performance between Kalman fil
tering, constrained optimization, and inequality-constrained least 
squares. Only the nonconstrained least-squares method clearly 
gave results worse than those obtained by the other methods. After 
the evening rush hour the RMSE for all methods increased, prob
ably because of suddenly changing OD patterns. When data from 
other days were evaluated RMSE plots with similar patterns ap
peared. This indicates that it might be useful to use a historic data 
base in which the permitted rate of change or even the direction 
of the changes in OD patterns are stored. Of all of the evaluated 
methods the Kalman filter seems the most suitable one for use in 
working with such a data base. 

Although RMSE values do not differ significantly, comparing 
the split proportions estimated by different methods shows ·sig
nificant differences in estimated value; see for example Figure 

4(b ), which shows estimated splits for both the Kalman filter and 
the constrained least-squares methods. 

To decide which of the two sets of parameters is more likely 
to correspond to the observed volumes, a second measure of ef
fectiveness is introduced: the value of the likelihood function of 
the observations y(t). Again b(t) is replaced by b(t - 1) to prevent 
the use of observed volumes for estimation and evaluation pur
poses at the same time. The resulting likelihood is defined by 

A 1 1 
p[y(t)lb(t)] = (21Ty12v1/CJ exp - 2 

X [y(t) - H'(t)b(t - 1)]' 

x R;=_\[y(t) - H'(t)b(t - 1)] (40) 
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FIGURE 4 Empirical results: (a) moving average of RMSE, 
(b) estimated splits, entrance 4, and (c) moving average of log 
(likelihood). 

In Figure 4(c) the moving average of the logarithm of this like
lihood is displayed. Figure 4(c) shows that a test of the hypothesis 
by using a likelihood ratio would generally favor the Kalman 
filter-generated solution. 

CONCLUSIONS 

The problem of estimating dynamic OD matrices was converted 
to the problem of estimating split parameters in a trip generation 
model. A Kalman-based method was compared with other meth
ods like least squares and constrained optimization. 

A new way of initializing the Kalman filter and of imposing 
the natural inequality and equality constraints was derived from 
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theory. A measurement noise covariance matrix that was derived 
from the trip generation model was used. 

The resulting method was programmed and tested. Tests with 
simulated data indicate that the Kalman-based filter method per
forms better than the other methods. Tests with real data indicate 
that results can be improved by using a Kalman filter combined 
with a data base in which optimal tuning parameters for the filter 
are stored. 
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Introducing °Feedback" into Four-Step 
Travel Forecasting Procedure Versus 
Equilibrium Solution of Combined Model 

DAVIDE. BOYCE, Yu-FANG ZHANG, AND MARY R. LUPA 

The manner in which the solutions produced by various methods of 
introducing "feedback" into the four-step travel forecasting proce
dure compare with the equilibrium solution of a model combining the 
trip distribution, mode split, and assignment steps was examined. The 
comparisons were performed on a sketch-planning model of the Chi
cago region with about 300 zones and 3,000 highway links. From 
these comparisons one can learn that iterating the four-step procedure 
in an ad hoc manner does not produce the desired result. Instead one 
needs to apply an algorithm designed to converge to a well-defined 
equilibrium of the travel flows and the link times and costs determined 
by these flows. Progress in improving travel forecasts will not result 
from calls for solving the four-step procedure with feedback. Rather 
progress will be made as professional practitioners begin to under
stand the requirements of the desired equilibrium solutions. Then they 
must insist that their software developers correctly implement the al
gorithms required to compute these solutions. Finally they should in
sist that FHWA short courses introduce participants to contemporary 
solution methods that yield the desired equilibrium properties. Like
wise university instructors and textbook authors should update their 
courses to produce a new generation of professionals who understand 
the principles of equilibrium travel models. 

At the 1993 TRB Annual Meeting FHWA staff spoke about ''feed
back'' in the context of the four-step travel forecasting procedure. 
In discussing their concerns with metropolitan planning organi
zation staff we began to understand that this call for feedback was 
essentially an admission that the four-step procedure is inadequate 
to the task of predicting origin-destination, mode, and route 
choices in a congested, multimodal urban transportation network. 
Because they were not sure what to do about this inadequacy and 
because they were mired in the paradigm of the 1960s, they were 
calling for the solution of the 1960s: iterate the four-step proce
dure until the link flows, their associated generalized travel costs 
(impedances), and the corresponding origin-destination-mode 
choices are brought into a consistent relationship with each other. 

The first author of this paper, having entered the urban trans
portation planning field in about 1960, remembers well the efforts 
of early modelers to define what they meant by feedback and 
convergence in the emerging four-step procedure. In the course of 
interviewing the staffs of various metropolitan planning agencies 
in 1968 for his book, Metropolitan Plan Making (1), he recalls 
asking whether they had ever succeeded in iterating their travel 
forecasting procedure, that is, resolving the four-step procedure 
by using the travel times yielded by the trip assignoient step. The 
answer was universally no. Neither they nor he had considered 

D. E. Boyce and Y.-F. Zhang, Urban Transportation Center, University of 
Illinois at Chicago, 1033 West Van Buren Street, Suite 700 South, 
Chicago, III. 60607. M. R. Lupa, Chicago Area Transportation Study, 300 
West Adams Street, Chicago, III. 60606. 

what nonsense would have resulted had they attempted such a 
rough approach. 

Since becoming aware of the formulations of Evans (2) and 
Florian et al. (3) in mid-1976, the first author rarely thought about 
feedback in the above sense until January 1993. Instead he has 
devoted the past 17 years to implementing, evaluating, and cali
brating various models, mainly for the Chicago region, which are 
guaranteed by their formulation and solution method to converge 
to the equilibrium solution that is still characterized by the ob
solete term feedback [see Boyce et al. (4-6), Boyce and Lundqvist 
(7), Boyce (8), and Lee (9)]. Putman (10) has applied the same 
concept to a small test problem as well as to larger-scale problems. 

Since it is apparent from the above remarks that the four-step 
procedure is finally viewed as inadequate, we thought it would be 
best to try to demonstrate what difference a convergent algorithm 
makes to the solution of travel choice models. By comparing those 
results with various approximate solutions used in practice, we 
hope to convince professional practitioners once and for all of the 
merits of the Evans partial linearization algorithm for solving 
combined models of trip distribution, mode choice, and assign
ment or, as we prefer to say, equilibrium models of origin
destination, mode, and route choice. 

What are the characteristics of these equilibrium models that 
we find so appealing? In fact they are the same characteristics that 
we seek for the four-step procedure, but that are rarely seen in 
print, and were certainly not understood by the agency staff who 
originally proposed the four-step procedure in the 1960s [see for 
example Carroll (11)]. The two equilibrium conditions that we 
require may be simply stated as follows: 

1. The generalized travel costs from each origin zone to each 
destination zone by automobile equal the sums of the individual 
link costs over the used routes; no unused route has a lower cost; 
the link costs depend in part on the link flows resulting from the 
trips per hour by automobile between all origin-destination pairs. 

2. The number of trips per hour from each origin zone to each 
destination zone by each mode depends on the generalized travel 
costs determined in part by the automobile link flows resulting 
from those trips. 

Perhaps Beckmann et al. (12) put it best, as well as first: "The 
prevailing demand for transportation, that is the existing pattern 
of origins and terminations, gives rise to traffic conditions that 
will maintain that same demand.'' Unfortunately almost no one 
in this field, including the first author, was aware of their funda
mental contribution to our field when it was so greatly needed in 
the late 1950s. 
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The intended contribution of this paper is not to describe in 
detail the Evans partial linearization algorithm for solving equi
librium models, which produces solutions that are guaranteed to 
converge to the above conditions. That has been done elsewhere 
(5,6,13); however, the method is described below in terms familiar 
to practitioners. Rather the intent is to compare the results of this 
method with various solution techniques used at present and in 
the past that are intended to converge to the desired conditions. 
These techniques are a sampling of possible iterative approaches 
and are intended to be illustrative. The objective of all of the 
approaches is the same: to find the solution that satisfies the equi
librium conditions. Some methods can be proven to converge to 
these conditions; others cannot. The issue is which ones do con
verge and how quickly do they achieve an acceptable level of 
convergence? · 

Following a statement of four solution techniques, as well as 
the Evans algorithm, the results of solving a large-scale model 
with each method are compared. The variables used in this com
parison are highway link flows, automobile and transit trip tables, 
and automobile generalized costs; transit generalized costs are a 
fixed input to all the methods and hence do not vary. The solution 
variables are compared with a highly converged solution of the 
model, which may be regarded as the ''true'' solution. Such a 
highly converged solution would not usually be computed in prac
tice, and hence serves as a standard for comparing the various 
methods. 

The paper concludes with the authors' recommendations con
cerning what steps should be taken to implement the use of equi
librium models in professional practice. 

COMPARISON OF SOLUTION METHODS 

In this section we describe the five solution procedures applied in 
our experiments. First, we describe the variants of procedures 
based on traditional practice. Four procedures were defined. In 
each procedure an estimate of the automobile generalized travel 
cost matrix and the fixed transit generalized cost matrix are inputs 
to the trip distribution model. Following the Chicago Area Trans
portation Study practice of using an automobile travel cost matrix 
for the most similar network available, we used the matrix from 
the fifth iteration of the Evans algorithm described below. This 
choice gives each procedure a highly advantageous starting point. 

Method 1: One Iteration of Trip Distribution, Mode 
Split, and AON Assignment 

We begin with the simplest possible choice, one iteration of the 
four-step procedure with all-or-nothing (AON) assignment as the 
assignment method. Although this procedure is believed to be 
completely inadequate, it does provide one simple result for com
parison with other methods. The procedure is illustrated in Figure 
l(a) with one iteration. 

Method 2: Multiple Iterations of Trip Distribution, 
Mode Split, and AON Assignment 

This procedure is the simplest concept of feedback: simply iterate 
through the four-step procedure several times; the travel costs de-
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lb: Method 3 
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FIGURE 1 Comparison of solution procedures:. (a) Methods 1 
and 2, (b) Method 3, (c) Method 4, and (d) Method S~ 

termined by the assignment step form the basis for the next trip 
distribution and mode choice. This procedue is also believed to 
be unsuitable; again we include it for comparative purposes. 
Method 2 is also illustrated by Figure l(a). 

Method 3: Multiple Iterations of Trip Distribution, 
Mode Split, and AON Assignment with Averaging at 
Each Iteration 

This procedure is the similar to the previous one except that the 
origin-destination-mode matrix and the link flow vector are av
eraged together after each solution of the four-step procedure. The 
weights are chosen as follows: 

1. The first solution results from one iteration of the four-step 
procedure (same as Method 1 above). 

2. The second solution, which is based on the travel costs of 
the first solution, is averaged with the first solution with equal 
weights (50/50). 

3. The third solution, which is based on the average of the first 
two solutions, is weighted one-third and the former solution is 
weighted two-thirds ( 67 /33). 

n. The nth solution, which is based on the result of iteration 
(n - 1), is weighted (1/n) and the former solution is weighted 
(n - 1)/n. 
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Note that in each solution each of the previous solutions is 
weighted equally; moreover at each iteration the combined results 
from the previous solutions provide the inputs to the four-step 
procedure. This method is somewhat like the Bureau of Public 
Roads capacity-restrained assignment; in that procedure, however, 
the link-flow vectors were averaged only as the conclusion of 
several iterations. 

Method 3 is known in the transportation science literature as 
an iterative technique that uses predetermined step sizes or the 
method of successive averages. Under the conditions that are sat
isfied here, the method is known to converge to the desired equi
librium solution [see Sheffi (14,p. 324)]. However convergence 
may be quite slow. Method 3 is shown in Figure l(b ). 

Method 4: Multiple Iterations of Trip Distribution, 
Mode Split, and User-Optimal Assignment with 
Averaging at Each Iteration 

This method is similar to Method 3 except that the AON assign
ment is replaced by a user-optimal assignment with five iterations. 
User-optimal assignment, as performed by the Frank-Wolfe or lin
earization method, consists of the following steps: 

1. Perform an AON assignment of the automobile trip matrix 
to the automobile network; 

2. In the first iteration designate the resulting link-flow vector 
as the current solution and return to step 1; in the second and 
successive iterations determine a weight for averaging the AON 
link-flow vector with the current solution (weighted average of 
previous AON link-flow vectors) such that the resulting vector is 
as close as possible to the user-optimal conditions for a fixed 
automobile trip matrix, as judged by a function of the new current 
solution; and 

3. Check convergence and continue if the algorithm has not 
adequately converged; in this application the procedure was ter
minated after five iterations (AON assignments and averaging 
steps). 

Feedback can be introduced by repeating this four-step proce
dure a second, third or fourth time. To ensure convergence the 
results of these iterations should be averaged together by applying 
the method of successive averages described under Method 3. 
Otherwise the results tend to oscillate. 

Since each sequence of this four-step procedure involves five 
AON assignments, the computations for one iteration of Method 
4 are roughly comparable to five iterations of Methods 2, 3, or 5. 
Method 4 is illustrated in Figure l(c). 

The four methods described above are intended to represent 
methods used in conventional practice. Next we tum to a descrip
tion of an efficient, convergent algorithm for solving the equilib
riwn problem described earlier. At this point it may be helpful for 
the reader to think of the problem to be solved as the underlying 
equilibrium problem and to regard the traditional four-step pro
cedure as a relatively crude solution method, or heuristic. In other 
words the problem we are seeking to solve is not some embel
lished version of the four-step procedure; rather we seek a solution 
that satisfies the two conditions stated earlier. 

Method 5: Evans Algorithm 

The algorithm described below is a partial linearization method, 
in contrast to the full linearization, or Frank-Wolfe, method men-
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tioned above. We also refer to it as the Evans algorithm after its 
originator, Suzanne P. Evans (2). The method may be described 
informally as follows: 

1. Solve the trip distribution and mode split steps of the four
step procedure, given an initial automobile travel cost matrix, as 
well as the fixed transit cost matrix; 

2. Perform. an AON assignment of the automobile trip matrix 
to the automobile network; 

3. In the first iteration, designate the trip matrices and link flow 
vector from Steps 1 and 2 as the current solution and return to 
Step 1; in the second and successive iterations determine a weight 
for averaging the trip matrices and the link-flow vector from Steps 
1 and 2 with the current solution, such that the resulting matrices 
and vector are as close as possible to the equilibrium conditions 
described in the first section, as judged by a function of the new 
current solution (trip matrices and link-flow vector); and 

4. Check convergence by a measure defined on the current so
lution and the results of Steps 1 and 2 and continue if the algo
rithm has not adequately converged. 

The above method is the same as Method 3 except that the 
weights used in the averaging steps are not predetermined but are 
chosen to be the best at each iteration. A well-defined convergence 
measure is available on the basis of the calculation of the greatest 
lower bound on the objective function of the equivalent optimi
zation problem at each iteration. This measure is very useful in 
monitoring the convergence and in comparing the convergence of 
solutions of alternative plans [see Figure l(d)]. 

In the results that follow the solutions of the model computed 
with the Evans algorithm with 5, 10, 15, and 20 iterations are 
compared with those computed by Methods 1 to 4. Each of the 
solutions is compared with a "true" solution of the model com
puted with the Evans algorithm with 50 iterations. In this solution 
the objective function is no more than 0.2 percent from the op
timal value desired for all methods, a very highly converged so
lution. Of course such a solution would not be utilized in practice; 
it is used here only to provide a basis for evaluating all of the 
methods. The "true" solution could also have been computed by 
Method 3 or 4 or any convergent method; we used the Evans 
algorithm because it is more efficient than Method 3 or 4. 

Each of the methods described above was solved for a sketch
planning model of the six-county Chicago region. The model is 
based on a highly aggregated zone system, with 317 zones of 14.5 
and 58 km2 (9 and 36 mi2) each and about 3,000 highway links. 
The trip distribution and mode split model are a single exponential 
(logit) function doubly constrained to satisfy fixed trip ends. All 
trip purposes are combined in the single function. Transit choice 
is based on fixed matrices of transit in-vehicle times, waiting and 
transfer times, plus a transit fare matrix. The submodes of bus, 
rapid transit, and commuter rail are represented in one matrix 
generated from a single transit network. Automobile person trips 
are converted to automobile vehicle trips on the basis of an av
erage occupancy factor and are assigned to the aggregated auto
mobile network; a separate matrix of equivalent truck trips is also 
assigned. The generalized cost and trip deterrence parameters were 
calibrated from matrices based on the 1980 Census and survey 
data. The generalized cost parameters include a transit bias term 
that results in an accurate prediction of regional mode split. The 
predicted mode split for transit trips to the central business district 
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is within 5 percent of the observed value. Additional details and 
sensitivity analyses may be found in Boyce et al. (6). 

ANALYSIS OF RESULTS 

In this section we present the results of the solutions of the five 
methods described previously. The results are presented in the 
form of a table for each of the four variables (link flow, auto and 
transit trips, and auto generalized costs). Each table compares the 
solution for each method (M) with the highly converged or true 
solution (1) by using the following measures: 

[ 

m ]1/2 
Root mean square error (RMSE): ~ (M; - T;)2 Im (1) 

(M - T) m [ 2] 
Chi-square: ~ ' T; ' (2) 

With R2 for a regression with M as the dependent variable and T 
as the independent variable. 

The data elements are the pairs of origin-destination-mode com
binations or the pairs of links; m is the number of data elements 
with positive values. Zero values in the solutions were removed, 
since these values are a property of the model formulation or the 
data rather than the solution method. 

For these measures the desired results are as follows: 

1. The values of RMSE and chi-square should be zero; 
2. The value of R2 should be 1. 

In each table the results for Method 1 and Methods 2 to 5 for five 
iterations are presented first. Then the results for Methods 3, 4, 
and 5 for 10, 15, and 20 iterations are compared. Note that the 
result of Method 1 is also the initial solution for Methods 2 to 5, 
and hence serves as a basis for comparing Methods 2 to 5 after 
five iterations. 

Next the results are illustrated with two sets of four plots each 
for link flows and one set each for the other variables. The first 
set of link-flow plots corresponds to Methods 2 to 5; the second 
set is for Method 5 with 5, 10, 15, and 20 iterations. Link flows 
are examined in more detail because this variable is the slowest 
to converge. 

Results for Automobile Link Flows 

The first five rows of Table 1 show the results for the five methods 
with five iterations except for Method 1. The results for the first 
two methods are clearly unacceptable. Methods 3, 4, and 5 are 
rather similar; recall that Method 3 consists of five iterations of 
~rip distribution, mode split, and AON assignment with predeter
mined weights, Method 4 is one solution of the trip matrices and 
five iterations of user-optimal assignment, and Method 5 consists 
of five solutions of the trip matrices and five AON assignments. 
Although the results of Methods 3 and 5 have better RMSEs, 
Method 4 has a better chi-square value. Hence the results of these 
three methods are quite similar. Both RMSE and chi-square are 
very effective in comparing the solutions with the true solution; 
however, R2 is largely ineffective except for Methods 1 to 2, which 
are clearly very poor. 
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TABLE 1 Results of Five Methods for 
Automobile Link Flows 

Method Iteration RMSE Chi-sq R-sq 
1-5 1 2052 1884910 .56 
2 5 5304 10199398 .44 
3 5 386 464700 .84 
4 lx5 428 230588 .92 
5 5 358 504876 .98 
3 10 194 116300 .98 
4 2x5 333 196623 .98 
5 10 310 87004 .98 
3 15 125 49530 .99 
4 3x5 293 181810 .98 
5 15 145 21952 .99 
3 20 85 26240 .99 
4 4x5 244 146877 .98 
5 20 77 7461 .99 

number of links with positive flow - 2, 767 

Rows 6 to 8 of Table 1 compare two iterations of Method 4 
with 10 iterations of Methods 3 and 5. Since these three methods 
involve 10 AON assignments, the computational effort is roughly 
comparable. Table 1 shows that Method 4 (2 X 5 iterations) con
verges only slightly from the 1 X 5 solution, whereas Methods 3 
and 5 (10 iterations) continue their convergence. The RMSE and 
chi-square values for the Evans algorithm decrease more than for 
Methods 3 and 4 as the number of iterations increases (see rows 
9 to 14 of Table 1). The convergence is more pronounced for chi
square than for RMSE. 

Turning to Figures 2 and 3 one can observe that Method 2 pro
duces unacceptable results by comparing the link flows for each 
method on the y-axis with the "true" values on the x-axis. The 
results for Methods 3, 4, 5 are much closer to the 45-degree line, 
although Method 3 is much more dispersed than Methods 4 and 5. 
These results illustrate why scatter diagrams are essential in addition 
to measures such as RMSE and chi-square. Figure 3 shows the plots 
for higher numbers of iterations of the Evans algorithm (Method 
5). The clustering around the 45-degree line becomes more and 
more pronounced as the number of iterations increases. 

Results for Automobile Trips 

For the automobile and transit trip matrices the results for Meth
ods 1 and 4 (1 X 5) are the same, since both are based on the 
initial matrix of generalized automobile costs. Both sets of mea
sures are rather large in comparison with Methods 3 and 5, which 
involve solving the trip matrices five times. In Table 2 Method 2 
is seen to be unacceptable, but Method 3, the predetermined step 
size method, is relatively good but is always inferior to Method 
5. Examination of Method 4 shows that / the method converges, 
but not as rapidly as Methods 3 and 5. Figure 4 also shows that 
Methods 2 and 4 are inferior to Methods 3 and 5. 

Results for Transit Trips 

Since transit trips are based on fixed generalized costs in our 
model they depend only indirectly on the equilibrium automobile 
costs. Nevertheless Methods 3 and 5 clearly produce superior re-
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FIGURE 2 Results for link ftows (Methods 2 to 5): (a) Method 2, (b) Method 3, (c) Method 4, and (d) Method S. 

suits compared with those produced by Methods 1, 2, and 4 (see 
Table 3). Method 4 does converge, but more slowly than Methods 
3 and 5. Figure 5 shows that Method 5 produces slightly better 
results than Methods 3 and 4; as before Method 2 is clearly un
acceptable. Note that here, as with automobile trips, the plot for 
Method 1 would be identical to the plot for Method 4. 

Results for Automobile Generalized Costs 

Table 4 for automobile generalized costs shows a pattern similar 
to those in Tables 2 and 3. Methods 1 and 2 are clearly inferior. 
Method 4 (1 X 5 iterations) is the next largest; this is followed 
by Methods 3 and 5. Method 4 converges, but not nearly as much 
as Methods 3 and 5 for 10, 15, and 20 iterations. The plots for 
these solutions, shown in Figure 6, are rather similar for Methods 
3, 4, and 5, which show much better convergence than Method 2. 

Results for Selected Regional Attributes 

One important question raised about an earlier version of this 
paper is, "Does the choice of method make a difference in an 
important model output variable like vehicle kilometers of travel 
(VKT)?'' We had to admit that we did not know the answer to 
this important question, but we decided to find out. The results 
are presented in Table 5. 

From several regional attributes computed by our code we 
selected highway vehicle kilometers of travel, mean automobile 
travel time, automobile space-mean-speed, and percentage of 
trips by transit. Central processing unit (CPU) time is also 
included. The results were quite surprising to us, and therefore 
well worth presenting. We know from Tables 1 to 4 that the 
choice of method does lead to important differences in mea
sures comparing differences in the model outputs at the link or 
zone pair level. At the regional level, however, the aggregated 
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FIGURE 3 Results for link flows (Method 5): (a) 5 iterations, (b) 10 iterations, (c) 15 iterations, and (d) 20 iterations. 

TABLE 2 Results of Five Methods for model attributes are essentially the same for Methods 3, 4, 
Automobile Trips and 5. Method 2, which is not a convergent method, yields un-

Method Iteration RMSE Chi-sq R-sq acceptable values however. We also observed, but do not re-
1-5 1 7.38 9352 .99 port here, that Method 4 does diverge if the averaging step is 
2 5 28.25 338734 .86 omitted . 
3 5 4.48 4510 . 99 What these results indicate, then, is that any method that can 
4 lx5 7.38 9352 .99 

be shown to converge to the true solution should yield reasonably 
5 5 3.78 3015 .99 

3 10 4.48 1629 .99 good values of regional attributes. Recall, however, that there is 

4 2x5 3.94 3677 .99 no established concept of convergence as a requirement for the 

5 10 1.80 645 .99 four-step procedure. Hence "Use a convergent method" is the 
3 15 1.85 746 .99 proper response to the question, ''How do I introduce feedback 
4 3x5 3.30 3039 ,99 into the four-step procedure?" 
5 15 1.25 292 .99 Although the differences are small, the reader may notice that 
3 20 1.40 416 .99 Method 5 is slightly superior to Methods 3 and 4 for 10 or more 
4 4x5 3.11 2632 .99 iterations for the regional attributes presented. The additional 
5 20 .84 147 .99 

computing effort needed to obtain this result is a one-third in-
number of positive 0-D :flows - 72,630 crease over Method 4. 
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FIGURE 4 Results for automobile trips (Methods 2 to 5): (a) Method 2, (b) Method 3, (c) Method 4, and (d) Method 5. 

TABLE 3 Results of Five Methods for CONCLUSIONS 
Transit Trips 

Method Iteration RMSE Chi-sq R-sq Although it is recognized that these results are quite aggregated, 
1-5 1 4.28 934 .99 we hope that they provide substantial insights into the perfor-
2 5 25.39 22992 .96 mance of various methods, both ad hoc and convergent, for solv-
3 5 1.23 92 .99 ing the travel forecasting procedure in an iterated manner. Al-
4 lx5 4.28 934 .99 though this is not the place for mathematical justifications of the 
5 5 1.05 52 .99 Evans algorithm, we trust that the computational results produced 
3 10 .79 37 .99 
4 2x5 .81 58 .99 by Method 5 are also convincing because they do converge to the 

5 10 .58 19 .99 desired equilibrium. What is equally important is that the com-

3 15 .52 18 .99 putational effort for Method 5 is similar to those for Methods 2 
4 3x5 .76 45 .99 and 3 and only slightly more onerous than that for Method 4. A 
5 15 .47 10 .99 time-saving variant of Method 5 is to update the trip matrices at 
3 20 .38 11 .99 every third or fifth iteration rather than at every iteration. The total 

-4 4x5 .82 39 .99 number of iterations required for Method 3, 4, or 5 depends on 
5 20 .36 6 .99 the desired convergence. At least five iterations are necessary for 

number of positive 0-D flows - 55,141 congested networks. 
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FIGURES Results for transit trips (Methods 2 to 5): (a) Method 2, (b) Method 3, (c) Method 4, and (ti) Method S. 

TABLE 4 Results of Five Methods for Rapid improvements in desktop computing speed and memory 
Automobile Costs should continue to facilitate the use of more appropriate methods 

Method Iteration RMSE Chi-sq R-sq than in the past. As recently as 1987 the only computer available 
1-5 1 .400 1877 .99 to us to solve our Chicago region model repeatedly was a Cray 
2 5 .664 5444 .97 supercomputer. Now we are solving it routinely on a Sun SPARC-
3 5 .167 312 .99 station 2 with 32 megabytes of memory in 3.1 min per iteration . 
4 lx5 .194 456 . 99 We believe that UNIX workstations of this type will be the com-
5 5 .141 238 .99 
3 10 .031 13 . 99 puting platform of choice for planning agencies in the near future . 

4 2x5 .143 230 .99 We conclude the paper with several observations concerning the 

5 10 .080 80 .99 implementation and adoption of equilibrium travel forecasting 
3 15 .026 8 .99 models. First, one might ask, why has it taken so long for con-
4 3x5 .103 120 .99 vergent algorithms such as Methods 3 and 5 to be adopted in 
5 15 .047 28 .99 professional practice? We believe there are two aspects to this 
3 20 .014 3 .99 question. The first is that planning agencies apply models that are 
4 4x5 .083 76 .99 substantially more detailed than our own combined model. In par-
5 20 .018 4 .99 

ticular they disaggregate origin-destination (0-D) tables by trip 
number of 0-D pairs - 100,489 purpose and mode choice by user classes. Although these impor-
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FIGURE 6 Results for automobile generalized costs (Methods 2 to 5): (a) Method 2, (b) Method 3, (c) Method 4, and (d) Method S. 

tant disaggregations ae not included in our present model, we are 
confident that it can be disaggregated in a similar manner. More
over planning agencies have not faced much pressure to improve 
their methods until recently. In this situation they have continued 
to do what they knew from their own experience, which is the 
traditional four-step procedure. 

The second aspect is that even if they had wished to adopt the 
new convergent methods the software was not available. "Why 
not?" one might reasonably ask, since some of the software de
velopers are also leading researchers in transportation science. We 
asked this question on numerous occasions. The answer has been 
consistent: "software developers provide what the agencies 
demand.'' 

We suggest that it is now time for metropolitan planning agen
cies, as well as FHWA and FfA, to demand -software that yields 
the equilibrium solutions needed to meet the planning require
ments of the 1990s. Let there be no further excuses on the part 
of practitioners and software developers for using obsolete 
methods. 

Our next observation concerns the role of FHWA and FfA in 
training practitioners in their short courses. Is it not clear that the 
four-step procedure taught in these courses should be replaced by 
a modem approach? Again this will happen if the planning agen
cies demand it and not just accept at face value the recent state
ments about the need for ''feedback.'' Surely they deserve better 
than this. 

Finally those of us in the academic community need to assess 
our own shortcomings and responsibilities for this situation. We 
know of no book on travel forecasting methods that is accessible 
to professionals and describes a modem approach. Sheffi (14) has 
made a fine contribution to this subject, but his book is undoubt
edly inaccessible to many practitioners and is now out of print. If 
we are to declare the four-step procedure obsolete there is no 
better place to begin than by writing new textbooks for both un
dergraduate and graduate courses. Such an effort will be substan
tial and would benefit from the financial support of FHWA and 
FTA under the Intermodal Surface Transportation Efficiency Act 
and the Clean Air Act Amendments. 
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TABLE 5 Selected Regional Attributes for Methods 
2 to 5 

Attribute Solution Method 
iterations 2 3 4 5 true 
Highway Vehicle Kilometers of Travel (kilometers x 106 ) 

5 17.19 13.56 13.17 13.43 13.23 
10 14.06 13.39 13.44 13.30 
15 17.31 13.33 13.44 13.28 
20 14.07 13.30 13.41 13.27 

Mean Auto Travel Time (minutes) 
5 2037.9 27.6 26.7 26.9 26.3 

10 4420.l 26.7 27.0 26.8 
15 1794.1 26.6 26.9 26.4 
20 4597.3 26.5 26.8 26.4 

Auto Space-Mean-Speed (kph) 
5 0.64 45.2 46.2 46.2 46.9 

10 0.16 46.5 46.0 45.9 
15 0.64 46.5 46.2 46.7 
20 0.16 46.7 46.4 46.7 

Percent of Trips by Transit 
5 11.93 15.94 16.85 16.05 15.99 

10 15.32 16.00 16.07 16.00 
15 12.02 16.20 16.01 15.97 
20 15.27 16.03 16.03 15.97 

Computational Effort (CPU seconds on Cray Y-MP) 
5 39.4 39.1 30.2 39.0 

10 51.8 70.3 51.5 69.5 
15 71.6 100.8 72.7 102.9 
20 136.2 131.4 94.l 132.4 
1 km= 0.6 mi. 

This paper began with a reference to the last TRB meeting. At 
a workshop prior to that meeting the first author pleaded that we 
not forget what the research community has learned during the 
past 12 years that it spent in the wilderness since the demise of 
software development activities in FHWA and the Urban Mass 
Transit Administration [see also Weiner (15)]. During those years 
we have also experienced another computer revolution, if not two 
or three. It behooves us all-planning agency practitioners, soft
ware developers, federal program managers, and academics-to 
work together to ensure that the next generations of travel fore
casting methods benefit rapidly from research findings, practical 
experience, and advances in computing technology. 

ACKNOWLEDGMENTS 

An earlier version of this paper was presented at the Fourth Na
tional Conference on Transportation Planning Methods Applica
tions in Daytona Beach, Florida. We are grateful for numerous 
comments they received on that paper. The sketch-planning model 
and solution algorithm, on which the results presented in the paper 
are based, were developed in collaboration with Dean B. Englund 
and Ronald W. Eash of the Chicago Area Transportation Study. 
We are grateful for their critical advice and encouragement. Fi
nancial support for this work was provided recently by the Illinois 

TRANSPORTATION RESEARCH RECORD 1443 

Department of Transportation and earlier by the Urban Mass 
Transportation Administration and the National Science Founda
tion. Computational aspects of the research were partly supported 
by a grant of computer time from the National Center for Super
computing Applications at the University of Illinois at Urbana
Champaign. 

REFERENCES 

1. Boyce, D. E., N. D. Day, and C. McDonald. Metropolitan Plan Mak
ing: An Analysis of Experience with the Preparation and Evaluation 
of Alternative Land Use and Transportation Plans. Regional Science 
Research Institute, Philadelphia, 1970. 

2. Evans, S. P. Derivation and Analysis of Some Models for Combining 
Trip Distribution and Assignment. Transportation Research, Vol. 10, 
No. 1, February 1976, pp. 37-57. 

3. Florian, M., S. Nguyen, and J. Ferland. On the Combined Distribution
Assignment of Traffic. Transportation Science, Vol. 9, No. 1, February 
1975, pp. 43-53. 

4. Boyce, D. E., L. J. LeBlanc, K. S. Chon, Y. J. Lee, and K. T. Lin. 
Implementation and Computational Issues for Combined Models of 
Location, Destination, Mode and Route Choice. Environment and 
Planning A, Vol. 15, No. 9, September 1983, pp. 1219-1230. 

5. Boyce, D. E., K. S. Chon, M. E. Ferris, Y. J. Lee, K. T. Lin, and 
R. W. Eash. Implementation and Evaluation of Combined Models of 
Urban Travel and Location on a Sketch Planning Network. University 
of Illinois at Urbana-Champaign and Chicago Area Transportation 
Study, 1985. 

6. Boyce, D. E., M. Tatineni, and Y. Zhang. Scenario Analyses for the 
Chicago Region with a Sketch Planning Model of Origin-Destination, 
Mode and Route Choice. Final Report to the Illinois Department of 
Transportation. Urban Transportation Center, University of Illinois, 
Chicago, 1992. 

7. Boyce, D. E., and L. Lundqvist. Network Equilibrium Models of Ur
ban Location and Travel Choices: Alternative Formulations for the 
Stockholm Region. Papers of the Regional Science Association, Vol. 
61, 1987, pp. 91-104. 

8. Boyce, D. E. Network Equilibrium Models of Urban Location and 
Travel Choices: A New Research Agenda. In New Frontiers in Re
gional Science (M. Chatterji and R. E. Kuenne, eds.). Macmillan, New 
York, 1990, pp. 238-256. 

9. Lee, C. K. Implementation and Evaluation of Network Equilibrium 
Models of Urban Residential Location and Travel Choices. Ph.D. dis
sertation. University of Illinois, Urbana-Champaign, 1987. 

10. Putman, S. H. Integrated Urban Models 2. Pion, London, 1991. 
11. Carroll, J. D., Jr. A Method of Traffic Assignment to an Urban Net

work. In Highway Research Bulletin 224, HRB, Nati.anal Research 
Council, Washington, D.C., 1959, pp. 64-71. 

12. Beckmann, M., C. B. McGuire, and C. B. Winsten. Studies in the 
Economics of Transportation. Yale University Press, New Haven, 
Conn., 1956. 

13. Boyce, D. E., L. J. LeBlanc, and K. S. Chon. Network Equilibrium 
Models of Urban Location and Travel Choices: A Retrospective Sur
vey. Journal of Regional Science, Vol. 28, No. 2, May 1988, pp. 
159-183. 

14. Sheffi, Y. Urban Transportation Networks: Equilibrium Analysis with 
Mathematical Programming Methods. Prentice-Hall, Incorporated, 
Englewood Cliffs, N.J., 1985. 

15. Weiner, E. Upgrading U.S. Travel Demand Forecasting Capabilities. 
Urban Transportation Monitor, Vol. 16. Lawley Publications, Burke, 
Va., 1993, p. 2. 

Publication of this paper sponsored by Committee on Transportation Sup
ply Analysis. 



TRANSPORIATJON RESEARCH RECORD 1443 75 

Faster Path-Based Algorithm for Traffic 
Assignment 

R. ]AYAKRISHNAN, WEIK. TSAI, JOSEPH N. PRASHKER, AND 

SUBODH RAJADHYAKSHA 

A fresh look at the arguments against path-enumeration algorithms for 
the traffic assignment problem is taken, and the results of a gradient 
projection method are provided. The motivation behind the research 
is the orders of magnitude improvement in the· availability of com
puter storage over the last decade. Faster assignment algorithms are 
necessary for real-time traffic assignment under several of the pro
posed advanced traffic management system strategies, and path-based 
solutions are preferred. The results show that gradient projection con
verges in one-tenth of the iterations of the conventional Frank-Wolfe 
algorithm. The computation time improvement is of the same order 
for small networks but is reduced as the network size increases. The 
computer implementation issues are discussed carefully, and schemes 
to achieve a 10-fold speedup for larger networks are also provided. 
The algorithm was used for networks of up to 2,000 nodes on a typical 
computer workstation, and certain data structures that save storage 
and solve the assignment problem for even a 5,000-node network are 
discussed. 

As is well known traffic assignment is the process of finding the 
flow pattern in a given network with a given travel demand be
tween the origin-destination (0-D) pairs. Equilibrium assignment 
finds flow patterns under user equilibrium, when no driver can 
unilaterally change routes to achieve better travel times. Optimal 
assignment determines the flow patterns such that the total travel 
time cost in the network is minimum, usually under external con
trol. Assignment has long been an essential step in the transpor
tation planning process. See Sheffi (1) for detailed discussions on 
traffic assignment. 

Real-time traffic assignment could be a part of potential ad
vanced traveler information systems or advanced traffic manage
ment system (ATMS) strategies [see Kaysi a.nd Ben-Akiva (2) for 
a discussion of such strategies]. The applications of network as
signment in such real-time contexts could be in the on-line esti
mation of 0-D demand matrices or in an on-line dynamic assign
ment framework. The conventional approach, used in planning 
applications, is to solve the assignment problem with the Frank
Wolfe algorithm (F-W), also known as the convex-combinations 
algorithm (1). However real-time applications typically require 
path-based solutions [see Mahmassani and Peeta (3)], which are 
not available with the link-flow-based F-W. Faster convergence is 
also a very desirable feature for a real-time algorithm. 

In this paper we report our investigation of the Goldstein
Levitin-Poljak gradient projection algorithm formulated by Bert
sekas ( 4). This algorithm falls under the set of algorithms called 

R. Jayakrishnan and S. Rajadhyaksha, Department of Civil and Environ
mental Engineering, University of California, Irvine, Irvine, Calif. 92664. 
W. K. Tsai, Department of Electrical and Computer Engineering, 
University of California, Irvine, Irvine, Calif. 92664. J. N. Prashker, 
Technion-Israel Institute of Technology, Haifa, Israel. 

path-enumeration algorithms, which have traditionally been dis
carded by transportation researchers as too memory intensive and 
slow for large networks. In light of the orders of magnitude im
provement in the availability of computer memory in recent years, 
we believe that such algorithms deserve a fresh look. In this paper 
we describe our implementation of the algorithm and the ex
tremely encouraging results. We discuss the assignment formula
tion for the sake of completeness in the next section, and follow 
it by a literature review and further qualitative discussions of the 
algorithms. We then proceed to discuss the computer implemen
tation issues. We conclude with results on the comparative per
formances of the algorithms and pointers for future research. 

STATIC USER EQUILIBRIUM ASSIGNMENT 
PROBLEM 

As is well known the static assignment user equilibrium problem. 
is stated as 

min Z = L [" ta(w) dw 
a 0 

(1) 

subject to the demand and nonnegativity constraints given by 

L f~s = q,s \;/ r, s, k E K,s (2) 
k 

(3) 

where 

Xa = flow on link a (sum of the flows on the paths sharing 
link a), 

ta(w) =cost (travel time) on link a for a flow of w, 
f ~s = flow on path k connecting origin r and destination s, 
q,s = total traffic demand between r and s, and 
Ks= set of paths with positive flow between r and s. 

The above problem or variations of the same problem have ap
peared in some of the recently proposed dynamic assignment al
gorithms with time-varying demands such as the bilevel algorithm 
of Janson (5) and the instantaneous dynamic assignment algorithm 
of Ran et al. (6). Note also that a system optimal assignment 
problem reduces to a user equilibrium problem with transformed 
(marginal) cost functions (1), and hence algorithms developed for 
user equilibrium assignment are applicable to the system optimal 
assignment as well. 
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REVIEW OF RELEVANT LITERATURE 

Extensive work on network optimization approaches has been 
done to address the traffic equilibrium assignment problem. A de
tailed discussion of the conventional approaches to it is presented 
by Sheffi (1). A detailed study by Lupi (7) showed that F-W is 
superior to most other algorithms. Nagurney (8) compared F-W 
with the algorithm of Dafermos and Sparrow (9) and found the 
latter to be in general more efficient. There has been some research 
to improve the efficiency of F-W. Arezki and Van Vliet (JO) pre
sented an analytic implementation of the PARTAN technique as 
applied to F-W and presented results indicating improvements 
over the original algorithm. LeBlanc et al. (11) and Florian et al. 
(12) showed how the PARTAN method could be applied to the 
traffic network equilibrium assignment problem and showed im
proved convergence in real networks. Weintraub et al. (13) inves
tigated a method of improving the convergence of F-W by making 
modifications on the step size. One of the most recent improve
ments· was by Larsson and Patriksson (14) who employed sim
plicial decomposition approaches to the original F-W. 

Algorithms for assignment based on Benders decomposition 
have also been developed by Florian (15) and Barton et al. (16). 
The projection-based algorithms that have been developed in the 
past include those by Pang and Chan (17) and Dafermos (18). 
There has, however, not been much drawn from the advances 
made in the parallel field of optimal flow assignment in computer 
communication networks. The gradient projection algorithm pop
ularized by Bertsekas and Gallager (19) is one such algorithm that 
we investigate in the present study. In computer communication 
the networks are usually smaller than the large urban networks in 
which traffic assignments are carried out for planning purposes, 
and this may have been why transportation researchers have not 
paid enough attention to the research in that field. 

SELECTION OF ALGORITHMS: IDSTORICAL 
PERSPECTIVE 

The choice of an appropriate algorithm for the traffic equilibrium 
assignment problem is guided by several criteria for selection, 
depending on the specific needs of the application, with the over
riding criteria often being the memory requirements of the algo
rithm and its speed of convergence. These concerns become in
creasingly critical as the network size increases. We provide the 
following discussion to reveal the motivations behind the research. 

The conventional choice for the traffic assignment problem so 
far has been F-W. This choice has been guided largely by the 
memory requirements criterion. Since F-W at any one iteration 
deals with only a single path between each 0-D pair, its storage 
requirements are well within the capabilities of most ordinary 
computers. However it has the drawback that typically the con
vergence becomes very slow as it approaches the optimal solution. 
It shows a tendency to flip-flop as it gets close to the optimum. 
The reason is that the algorithm is driven more by the constraint 
corners and less by the actual descent direction of the objective 
function surface once it is close to the solution. This was not 
considered a serious problem in earlier applications of the traffic 
assignment because the problem was being addressed from a 
transportation planning viewpoint. Under this scenario assignment 
is used for forecasting purposes when the 0-D demand data them
selves are derived by using the extrapolation of current values or 
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statistical models. This inherent inexactness in the process renders 
the exact estimation of link volumes unimportant, and so practi
tioners are often content to stop the algorithm after a few iterations 
when it reaches within 5 to 10 percent of the solution. The mem
ory requirement criterion was also of importance. When F-W was 
introduced to the transportation field in the late 1970s computers 
were incapable of handling the larger memory requirements of 
path-enumeration algorithms. Recent advances in computing 
equipment have placed vastly increased computing pow~r in 
smaller and smaller machines. Computer workstations with 16 
megabytes of storage are only about as expensive as a personal · 
computer with 128 kilobytes of storage in the mid-1980s and have 
more storage than the largest mainframe computers of the late 
1970s. Given these possibilities it is important that we rethink our 
choice of traffic assignment algorithms and take advantage of the 
technological edge provided by current and future improvements 
in computer hardware. 

Another aspect of F-W is that it does not automatically find tht'. 
intersection turning movements. This has traditionally been found 
by microcoding the intersections with specific turning links, which 
usually increases the numbers of nodes and links in the networks 
considerably. Path-flow solutions automatically provide such turn-. 
ing counts without any microcoding of the network, thus keeping 
the network sizes small. However if separate flow-cost functions 
are to be used for turning movements, microcoding may be nec
essary with path-based algorithms also. 

The recent advent of the intelligent vehicle-highway system 
(IVHS) brings up the need for real-time traffic assignments with 
requirements different from those for planning applications. Such 
assignments may be part of dynamic assignment frameworks or 
real-time 0-D demand estimation frameworks. Faster convergence 
becomes important, and path-based solutions may be necessary. 
Moreover increasing emphasis is placed on estimating fuel con
sumption and modeling air quality over specific routes. Solutions 
based on path flows provide speed profiles over the network paths 
that are conceivably useful (although still very approximate) for 
such applications. Link-flow solutions from F-W are much poorer 
in this regard. 

GRADIENT PROJECTION ALGORITHM 

The gradient projection algorithm (GP) is extensively used in 
computer communication networks, in which path-flow solutions 
are essential for optimal flow routing. However the networks in 
these applications are typically much smaller than urban traffic 
networks and the path-enumeration issues have not been serious 
concerns. Moreover the network structures are also somewhat dif
ferent in these two applications. We adapted the basic Goldstein
Levitin-Poljak GP formulated by Bertsekas (4) to the traffic as
signment problem and concentrate here on the practical 
convergence and computer implementation issues. 

In contrast to F-W, which finds auxiliary solutions that are at 
the corner points of the linear constraint space, GP makes suc
cessive moves in the direction of the minimum of a Newton ap
proximation of a transformed objective function. The objective 
function includes the demand constraints also, and thus the fea
sible space for gradient projection is defined only by the nonne
gativity constraints, as opposed to both nonnegativity and demand 
constraints in the case of F-W. Should the move to the minimum 
in the negative gradient direction result in an infeasible solution 
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point, a projection is made to the constraint boundaries. As a result 
of the redefinition of the problem, infeasibility occurs only when 
a variable violates the nonnegativity constraint, and thus the pro
jection is easily accomplished by making that variable zero. We 
describe this in detail below. 

The formulation of the algorithm focuses on the traffic demand 
constraints. 

where Krs is the set of paths (with positive flow) between origin 
r and destination s. 

If we express the shortest-path flows As in terms of other path 
flows 

fkrs = qrs - L Jk 
kEKrs 
kikrs 

(4) 

the standard optimization problem (equations 1 through 3) can be 
restated as 

min Z(f) (5) 

subject to 

(6) 

where i is the new objective function, and J is the set of non
shortest-path flows between all of the 0-D pairs. 

For each 0-D pair while at any feasible (nonoptimal solution) 
a better solution can be found by moving in the negative gradient 
direction. This gradient is calculated with respect to the flows on 
the non-shortest paths (which are the only independent variables 
now), and a move size is found by using the second derivatives 
with respect to these path-flow variables. Once the flows on these 
non-shortest paths are updated the flow on the shortest path is 
appropriately updated so that the demand constraint is satisfied. 

The gradient of the objective function written in terms of the 
non-shortest-path variables can be found using 

(7) 

which results from the definition of t. Thus each component of 
the gradient vector is the difference between the first derivative 
lengths of a path and the corresponding shortest path (14). In the 
case of equilibrium assignment the objective function is in terms 
of integrals and the first derivative lengths are simply the path 
costs at that flow solution. 

A small increase in the flow on a path k results in an equal 
decrease in the flow on the corresponding shortest path. This re
sults. in no change in the flow on the common part of the two 
paths. Thus the second derivative is simply the sum of the second 
derivative lengths of the links on either path k or path km but not 
both. A small increase in the flow on path k causes an equal 
decrease in the flow on the shortest-path krs· The flows on the 
common links on these paths do not change. The increase in flow 
on the other links on path k causes positive second derivatives. The 
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decrease in flow on the other links on krs also causes positive second 
derivatives as it increases the negative first derivatives. Once the 
second derivatives of t with respect to each path flow are calcu
lated, we assume a diagonal Hessian matrix, and the inverse of each 
second derivative gives an approximate quasi-Newton step size 
for updating each path flow. 

For the remainder of the paper when we refer to the first de
rivative lengths we mean the first derivatives of the objective func
tion, which is composed of link costs at specific path flows [i.e., 
ta(xa)]. Similarly, second derivative length refers to the second 
derivative of the objective function and is composed of first de
rivatives of link costs (i.e., <Jtaf <Jx at x = xa)· 

On the basis of the above discussion the gradient projection 
algorithm can· be formalized as follows: 

Step 0-lnitialization: Set ta equal to ta(O), Va and perform all
or-nothing assignments. This yields path flows f~s, 'ti r,s and link 
flows x~, Va. Set iteration counter n equal to 1. Initialize the path 
set Ks with the shortest path for each 0-D pair rs. 

Step 1--Update: Set t: equal to ta(X:), Va. Update the first de
rivative lengths dZ (i.e., path costs at current flow) of all of the 
paths in Km 'ti r,s. 

Step 2-Direction finding: Find the shortest-path k;s from each 
origin r to each destinations on the basis of [t:]. If different from 
all the paths in the existing path set Ks (no need for path com
parison here; just compare dZ), add it to Ks and record dk.~s· If not 
tag the shortest among the paths in Krs in dk.~s· 

Step 3--Move: Set the new path flows. 

n+l n O'. -

[ 
n l f k = max 0, f k - sZ (dk.nrs - dk.;) V r, s, k E K .. k # k;s 

where 

""' at: sZ = LJ - 'tJ k E Krs 
a ax: 

a denotes links that are on either k or kw but not on both, and an 

is a scalar step-size modifier (say, an = 1). 
Also, 

ff,;r~ = qrs - L J~+l 'tJ k E Kn k f: l(;s 
k 

Assign the flows on the trees and find the link flows x:+ 1
• 

Step 4--Convergence test: If the convergence criterion is met, 
stop, or set n equal to n + 1 and go to Step 1. 

It is better to keep an a constant (i.e., an = a, 'tin). It can be 
shown that given any starting set of path flows there exists an Ci' 
such that if a E (0, Ci') the sequence generated by this algorithm 
converges to the optimum (1), provided that the link-cost func
tions are convex. Our experience shows that a equal to 1 achieves 
a very good convergence rate, and all of the results in this paper 
use this value of a. The solutions reached are unique in terms of 
the link flows, but the path-flow solution, although it is optimal, 
is not necessarily unique [see Sheffi (1) for a discussion on why 
the path-flow solutions need not be unique]. 

A qualitative graphical comparison of GP and F-W is shown in 
Figure 1. In this case F-W moves in directions that are almost 
orthogonal to the descent direction, once it is clqse to the opti-
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Frank-Wolfe 
Successive moves to the minimum in the direction 
of the constraint corners, based on the linearized 
objective function at each solution point. 

Gradient Projection 
Successive moves to the minimum in the direction 
of steepest descent (i.e., negative gradient). If 
infeasible, project to the violated constraint. 

FIGURE 1 Comparison of GP and F-W. 

mum, because the moves are toward constraint corners to avoid 
infeasibility. GP still moves in the descent direction when it is 
closer to the optimum. Note that this is just an example and is 
provided only to illustrate the qualitative reason behind the faster 
convergence of GP. The actual nature of the objective functions 
and the constraints in the network assignment context are quite 
different. 

GP distributes :flows from existing paths to the shortest path 
during every iteration, with different fractions of :flow being taken 
out of the alternative paths between an 0-D pair. A careful look 
at F-W shows that it also implicitly redistributes flows from al
ternative paths. However the fractions taken out from the paths 
are all same, and the path-flow solutions are never kept track of. 

COMPUTATIONAL STORAGE CONSIDERATIONS 

GP is a path-enumeration algorithm, and the paths need to be 
carefully stored to prevent memory problems. This is an issue that 

has rarely been addressed in the computer communication appli
cations, but we address this here because we deal with traffic 
networks with large sizes. In GP one shortest-path tree is built 
during each iteration from each origin. The paths between an 
0-D pair are all generated during different iterations, and each 
path is part of one of the shortest-path trees built from the cor
responding origin node. It is important not to store the paths as 
node lists but rather as predecessor trees (note that each iteration 
produces the shortest paths, which are invariably trees). This 
avoids double storage of the common portions of different paths 
found from each origin in each iteration. As we store one prede
cessor node number for each node, each tree in a network of N 
nodes requires N storage locations. This results in N 0 • N storage 
locations in each iteration, where N 0 is the number of origins. Thus 
the main memory requirement of the algorithm is of the order of 
N

0 
• N · N;, where N; is the number of iterations. We do not see 

the kind of combinatorial explosion that is expected to occur with 
path-enumeration algorithms. The fact that the paths in each itera
tion are part of trees is thus a very handy feature of GP. 
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However for F-W the memory requirements are fixed by net
work size and are not affected by the number of iterations until 
convergence. T}'pically its requirements are of the order of N0 • N 
because it stores only one tree (the shortest paths for the all-or
nothing assignment) in every iteration. Thus GP does have a stor
age disadvantage compared with F-W, but it is able to provide a 
richer solution for precisely the same reason because it gives us 
path flows, as opposed to the link flows provided in F-W. 

The memory requirement is hardly a significant concern on the 
basis of our experience. With a simple predecessor array data 
structure we were able to run networks of up to 1,200 nodes with 
22,300 0-D pairs on a SUN workstation. If only about 10 itera
tions of GP are attempted (which itself generally finds better so
lutions than 100 iterations of F-W, as our results shown in this 
paper indicate), we can run networks of more than 2,000 nodes. 
We briefly describe a new data structure that allows us to run 
networks of up to 5,000 nodes and 560,000 0-D pairs to 32 it
erations. The purpose for attempting to run such networks is to 
show that the storage problem that kept researchers away from 
applying path-enumeration algorithms to larger networks is really 
not a problem anymore, at least in the case of GP. 

The following describes an efficient data structure for larger 
network problems. The shortest-path trees built in successive it
erations often have several identical branches. When these are 
stored as separate trees it results in a great amount of duplication 
of storage because we find that several nodes have the same pred
ecessor arcs in successive trees. Rather than storing the predeces
sor arcs for all of the nodes in every iteration we store a shorter 
list of nodes for which the predecessor arcs change in an iteration 
(change being defined from the predecessor in the "anchor" it
eration, say, the first one). The information regarding the iteration 
numbers in which the predecessor of each node changes is stored 
in terms of the bits of a number. A 1 in bit location i of this 
number for a node means that its predecessor changed in iteration 
i, and a 0 would indicate that no change occurred in iteration i. 
In a computer with 32 bit numbers, this lets us store the infor
mation with just N numbers. To find the predecessor for this node 
during, say, iteration j, we need to find the bit location of the last 
1. This can be efficiently done at the hardware or software level 
and yields the appropriate iteration number, i. We go to the short 
list of changed predecessors corresponding to iteration i to find 
the predecessor for the node of concern. This approach will not 
achieve good computation time results unless it is carefully im
plemented, and we leave out the complicated implementation de
tails in this paper. With this data structure we were able to reduce 
the storage requirement for the trees from the N 0 • N · N; above, 
to about N 0 • N · C, where C is about 5 to 10 for up to even 100 
iterations (i.e., N; = 100). This is because the predecessors of each 
node change only fewer than 10 times during 100 iterations of GP 
on the basis of our assignment runs on realistic traffic networks. 

COMPUTATION TIME CONSIDERATIONS 

A careful implementation is absolutely essential for GP to perform 
well. Because we found that the algorithm converges generally 
about 10 times faster than F-W in terms of the number of itera
tions, our intention was to ensure that GP achieves similar speed 
in computation time also. Although F-W requires no other oper
ations of computational intensity comparable to that for the 
shortest-path determination during each iteration, GP has other 
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procedures during its iterations that can be more time intensive 
than the shortest-path determination for larger networks. Our stud
ies (as dicussed in the next section) show that GP converges 10 
times faster than F-W for a 100-node network but only 60 percent 
faster for a 900-node network, although the number of iterations 
needed is still less than one-tenth. Because we found that almost 
all of the time in F-W is spent on the shortest-path routine for 
larger networks, this means that there are routines in GP whose 
computational intensities increase faster than that for the shortest
path routine as the network size increases. We identify three such 
key operations, and these must be carefully implemented: (a) as
signing the flow on each path to the links along its length to find 
the total link flows, (b) finding the first derivative lengths for all 
of the paths between each 0-D pair, and (c) finding the second 
derivative lengths for each pair. We have been successful in de
veloping efficient schemes for the first two but have not been able 
to tackle the third problem without modifying the algorithm itself. 
The results that we provide in this paper are based on a program 
that includes only the techniques for the first derivative lengths. 
However we discuss all three aspects here to show the potential 
of the algorithm to show even better results than we have provided 
if our suggestions are implemented. Our early results with all three 
of the following procedures are indeed very encouraging. 

Implementation of Flow Assignment Procedure 

Implementation of the flow assignment procedure refers to as
signing the path flow to all of the links on each path after the path 
flows are updated during each iteration. There are N0 • No 0-D 
pairs in a network (where N 0 is typically 10 to 20 percent of N), 
and the expected number of active paths between an 0-D pair, NP, 
is typically about 5 to 10 at convergence. Each path in a traffic 
network has roughly O(N112

) links on them. Thus this operation 
could be of O(N0 • N0 • N 112 

• NP) effort in each iteration, if each 
path is considered independently (i.e., the link-level operations are 
repeated for paths that share common portions). In contrast to this 
an efficient implementation (say, using a heap) of a routine to find 
the shortest paths from all origins to all nodes results in O(N0 • 

N logN) or better computational intensity. The flow assignment 
step becomes much more time-consuming for larger networks. We 
developed an efficient tree-traversal procedure to assign the flows 
instead of doing it path by path. The procedure starts from a leaf 
node of the tree and goes up assigning the flow on the links until 
it reaches a node where there is another branch with no flow 
assigned. Once the flows are added on all of the branches at a 
node we find the total flow that should be assigned on the pred
ecessor link of the node and move up. This procedure goes only 
once over each arc in the tree, and hence it is an O(N) operation 
for each tree (a maximum of four additions per arc in a typical 
traffic network). This results in only O(N0 • N) operations for all 
origins, all destinations, and all paths in each iteration. We leave 
out further details of this procedure for brevity. It suffices to say 
that this assigns flows of multiple paths sharing common portions 
without repeated calculations at the links. This is a significant 
improvement because the computations now do not depend on the 
number of paths or the number of nodes on the paths. The com
putational intensity drops to below that for the shortest-path de
termination with this method. 
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Finding First Derivative Path Lengths 

In finding the first derivative path lengths the link costs are added 
up on different paths. Similar to the above, we need to avoid path
based computations of the O(N0 • N 0 • N 112 

• NP) order in this case 
also. Here we again perform a tree traversal procedure. We go up 
from any node in the tree until we reach the root (origin) node 
and add the link costs on the links to find the first derivative length 
to that node. Then we go up from that node once more (second 
pass), subtracting one link cost at a time to find the costs to each 
node along the way. The two passes are needed only because we 
cannot move down the tree when the tree is stored with prede
cessor representation. A threaded-tree storage will let us do a one
pass traversal, but additional overheads may be involved. Another 
option is to keep the tree traversal order right after each tree is 
built, but this requires as many storage locations as the tree itself 
and doubles the storage requirements. Then we move to any node 
not yet considered and repeat the procedure, but this time starting 
the second pass after reaching the origin node or a node with an 
already-computed path length. Because each node is reached 
strictly twice, this results in only O(N0 • N) operations in every 
iteration, which is much faster than the shortest-path determina
tion in larger networks. 

Second Derivative Length Calculations 

Second derivative length calculations require the addition of sec
ond derivative lengths of links not common between each path 
and the corresponding shortest path. If this is done path by path, 
adding the second derivatives on each link with the shortest path, 
this also results in O(N0 • N 0 • N 112 

• NP) computations. We have 
so far not been able to find an O(N0 • N) technique for this without 
changing GP itself to some extent. The difficulty arises because 
the path under consideration is on another tree that is different 
from the tree of which the current shortest path is a part. It is 
possible that we can improve the situation only by changing the 
algorithm substantially. We-suggest the use of a line search rather 
than the second derivatives to find· the step size in the negative 
gradient direction .. An auxiliary path-flow solution can be easily 
found in the negative gradient direction, and then an uncon
strained line search can be used to determine the step size to reach 
the minimum in this direction. This line search can be performed 
fast in the link-flow domain (using the link flows at the current 
and auxiliary path-flow solutions), and on the basis of the optimal 
step size a path-flow update is performed. The flow update would 
be based on path flows. Our early experience with this technique 
has been encouraging. 

ASSIGNMENT RESULTS 

The assignment studies compare the performance of GP with that 
of F-W.· To make conclusions on the comparative performances 
of the algorithms it is necessary that they be tested under suffi
ciently diverse networks. We studied the algorithms on grid net
works of different sizes generated by using a random network 
generator program that we developed as well as on the network 
of major arterials and freeways in Anaheim, California. 

The test networks are grids only in terms of the connectivities 
of the links, with the link lengths being determined randomly. 
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There are two links each way between the nodes. The link lengths 
are randomly picked from a uniform distribution of between 500 
and 5,000 ft. The free-flow speeds on the links are randomly 
picked from a uniform distribution of between 22 and 40 mph. 
The capacities of the links are based on the number of lanes (one, 
two, or three), with each lane having a capacity of 1,800 vehicles 
per hr. Certain nodes from the network are randomly picked as 
0-D centroids. This is done on the basis of a set of rules that 
attempts to create a network representative of real-world traffic 
networks. First approximately 12.5 percent (one-eighth) of the to
tal nodes in the network are picked to be centroid nodes, which 
is about the fraction of zone-centroid nodes in typical assignment 
applications. There are at least three links between any two cen
troid nodes to ensure that they are not too close to each other. 
Once the centroids are set up the 0-D flow matrix is generated. 
Each centroid generates demand at a prespecified rate (9,600 ve
hicles per hr was used in our studies), and the generated traffic is 
distributed to other nodes on the basis of the inverse squared dis
tances to develop the 0-D matrix. 

The Anaheim network has 416 nodes (of which 38 are 0-D 
centroids), 914 arcs, and 1,406 0-D pairs. A static 0-D demand 
matrix was estimated by using the COMEST program on the basis 
of some link counts in the network. The demand data refer to the 
evening peak period in the network, which has moderately high 
levels of congestion. No microcoding of the intersections was at
tempted for this network. 

The assignments were carried out by using a Bureau of Public 
Roads link-cost function, t = t0[1 + 0.15 (x/c)4], where t is the 
link travel time cost, t0 is the free-flow cost, x is the flow, and c 
is the link capacity. Both GP and F-W included identical shortest
path routines, which is based on a binary heap data structure. The 
line search routine for F-W uses an efficient Bolzano search [see 
Sheffi (I)]. The programs were implemented in FORTRAN-77 on 
a Sun SPARC-II workstation with 64 megabytes of storage. The 
flows and costs were floating point variables. 

Table 1 shows the results from assignments on networks of 
various sizes. For all of the network sizes, Table 1 shows the 
number of iterations required by F-W to find the objective func
tion value that GP finds in 2, 4, 6, 8, and 10 iterations as well as 
the corresponding computation times. F-W requires 30 to 160 it
erations to reach the solutions found by GP in just 6 iterations. 
For all of the networks we found that GP converges between 10 
and 15 iterations to solutions that F-W takes between 300 and 
2,000 iterations to reach. There is at least an order of magnitude 
improvement in terms of the number of iterations. 

The computation times are also improved similar to the reduc
tion in iterations for smaller networks. This is expected because 
the main computational step is the shortest-path determination for 
both GP and F-W in small networks. However the computation 
times with GP are about 40 percent of those with F-W for 10 
iterations of GP in a 1,000-node network. This shows that pro
cedures other than the shortest-path determination use up signifi
cant time in GP for larger networks, as explained in the previous 
section. It should be stressed that these assignments were carried 
out with an implementation of GP that does not yet include most 
of the procedures that we explained before. Thus even though a 
60 percent improvement is significant, the computation times for 
GP can be reduced even further than those shown in Table 1, 
especially for larger networks. 

Figures 2 to 5 show the results of the assignments on the net
work of Anaheim for various demand levels. The demands gen-



TABLE 1 Comparative Performances of GP and F-W 
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FIGURE 2 Comparison of GP and F-W on Anaheim, 
California, network (volume level = O.S). 
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FIGURE 3 Comparison of GP and F-W on Anaheim, 
California, network (volume level = 1.0). 
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erated by the 0-D matrix estimated from actual link counts are 
denoted as a demand level of 1.0. For other demand levels the 
cells in the trip table were all multiplied by appropriate fractions. 
These assignments were carried out to examine the effect of the 
demand level on the relative performances of GP and F-W. Again 
we see that for all cases F-W takes more than 10 to 15 iterations 
to reach the solutions found by GP in 1 to 3 it~rations. There does 
not appear to be a significant change in the performance of GP in 
comparison with that of F-W as the demand level increases. Both 
algorithms require more iterations to converge for higher demand 
levels, but GP still shows 5 to 10 times faster convergence. 

We did not compare the PARTAN version of F-W with GP. 
However, published results on PARTAN (10,11) indicate that this 
typically is about twice as fast as ordinary F-W, in the number of 
iterations, in finding solutions. On the basis of the improvements 
that we found with GP we decided that the comparison of the 
PARTAN version of F-W with GP was not warranted at this time. 
Moreover PARTAN is still not commonly used for assignments 
by practitioners. We do intend, however, to carry out these com
parisons in the future. 

CONCLUSIONS 

In this paper we provided a detailed discussion and supportive 
results to show that path-enumeration algorithms such as gradient 
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projection deserve a fresh look for applications in traffic assign-· 
ment. There were two main motivations behind the research: (a) 
the tremendous improvement in recent years of the availability of 
computer memory, and (b) the need for fast assignment algorithms 
for certain possible IVHS strategies for optimal routing and guid
ance on the basis of dynamic assignment frameworks, real-time 
trip table estimation, and so on. We show that path-based algo
rithms can be applied to networks of thousands of nodes. We 
provide data structures that can be used to handle path-based stor
age problems, and we suggest techniques for achieving the fast 
completion of path-based procedures in the algorithm. These tech
niques are also applicable to other path-based algorithms. Our 
implementation of GP converges in an order of magnitude fewer 
iterations than conventional F-W and can be made to show similar 
computation time speedup if implemented carefully. 

There are advantages to the path-based solutions generated by 
GP. Such solutions can be used directly in path-based routing 
frameworks. Another advantage is the direct determination of 
node turning counts without microcoding the intersections and 
increasing the network size. In addition we can find the link-to
link flow variation on each path. This may provide some oppor
tunities for finding approximate estimates of fuel consumption, 
environmental impacts, and so on, for selected paths or 0-D pairs. 

Several aspects of the algorithm require further study. One im
portant aspect is the convergence rates under different link-cost 
functions. Although we have carried out some research in this area 
and have found the results to be reasonably robust, our research 
has by no means been exhaustive. Application to other related 
problems such as dynamic assignment and variable demand as
signment would provide more insights on the algorithm's perfor
mance. Research is also under way at the University of California, 
Irvine, on developing gradient projection with hierarchical decom
position schemes for traffic network assignment. 
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Cost. Versus Time Equilibrium over a 
Network 

FABIEN LEURENT 

Most traffic assignment models assume that the generalized cost ex
perienced by a traveler making a given trip on a network results from 
a combination of time and monetary expenses that is the same for 
everybody. To represent disaggregate trade-offs between time and 
monetary expenses, a model that differentiates travelers by means of 
an attribute, value of time, was designed. It was assumed that this 
attribute is continuously distributed across the population of trip
makers. After giving the economic foundation of the cost-versus-time 
model with continuous values of time, variable demand, and conges
tion effects on travel times, it is mathematically characterized as a 
solution of a convex minimization program. Then existence and 
uniqueness results as well as a convenient algorithm that avoids path 
storage are provided. Finally a small numerical example that dem
onstrates the relevance of considering continuously distributed values 
of time when evaluating toll highway projects is presented. 

Traffic assignment is an important part of the transportation plan
ning process, enabling one to simulate the trips made by people 
faced with a given transportation network. The models used to 
design new network facilities or to test new policies generally 
assume that all people experience the same generalized time on a 
given route, making a uniform trade-off between cost and time 
expenses. 

For the evaluation of toll road projects that have mushroomed 
in France's largest towns, the differentiation of people according 
to their value of time (VOT; an attribute used to convert time into 
money) has proved an important advancement. Explicit modeling 
of the trade-offs between cost and time provides a more realistic 
way of simulating the users' responses to toll charges. 

A first approach is to use a stochastic assignment model by 
having the random part of the utility account for the dispersion 
of trip-makers' VOTs. Both the logit model (J) and the probit 
model (2) can be adapted to that purpose. However if it is rec
ognized that the VOT and its dispersion have a sound behavioral 
basis then a modeler should try to account for them analytically. 

A second line of attack also consists of differentiating several 
classes of motorists, each one with a given VOT. The theoretical 
framework for the multiple user classes model has been worked . 
out by Dafermos (3) in the deterministic case and Daganzo (4) 
in the stochastic case. An implementation is available in the 
SATURN package (5). 

In France most interurban mode choice models are related to 
the second methodology, with the only difference being that the 
VOT is assumed to be continuously distributed across the trip
makers ( 6-9). Such models are known as cost-versus-time models 
(mode/es prix-temps in French). Before adapting those models to 
urban path choice, congestion effects on travel times should be 

Departement Economie et Sociologie des Transports, lnstitut National de 
Recherches sur les Transports et leur Secuite, Avenue du General· 
Malleret-Joinville, 2, 94114 Arcueil, France. 

considered. There have been some attempts (10,11) to develop 
equilibrium assignment models able to compute a cost-versus-time 
equilibrium with travel times that depend on traffic flows. The 
theoretical background as well as the algorithms are heuristic. 

To end the state-of-the-art review, a paper by Dial (12) should 
be mentioned. The paper presents a cost-versus-time model with 
a view to addressing both mode and route choices, but congestion 
is not taken into account. 

The purpose of this paper is to introduce a cost-versus-time 
equilibrium model with variable demand, continuously distributed 
VOT, and flow-dependent travel time functions. This model can 
be used to study the potential traffic on urban toll roads and to 
assess middle- and long-run predictions owing to the variability 
of demand in the medium and long terms. 

The remainder of the paper comprises four parts. First, the ec
onomic background of the cost-versus-time model is set. Second, 
the mathematical framework required to ensure the consistency of 
the model and to derive existence and uniqueness results is given. 
A convex programming characterization of a cost-versus-time 
equilibrium is provided. This section may be skipped by readers 
who are not interested in technical issues. Third, an algorithm to 
compute the cost-versus-time equilibrium is designed. It is con
venient because it avoids path storage and enumeration. Finally a 
short example of an evaluation of a toll highway project is pro
vided; it shows that an aggregate (single VOT) model gives results 
(specifically for the optimal toll and toll revenues) that are sub
stantially different from those of the true, disaggregate cost
versus-time model. 

ECONOMIC ISSUES 

Modeling Disaggregate Cost-Versus-Time Trade-offs 

If i is a trip-maker with VOT V; and k is a path with travel time 
Tk and travel cost (price) Pk> the generalized travel time G~i) ex
perienced by the ith traveler on path k results from a combination 
of time and money expenses: 

(1) 

A utility-maximizing trip-maker will travel on the path that ex
hibits the minimum generalized travel time to his or her own point 
of view. 

If there are only two alternative paths, the first one cheaper but 
slower and the second one faster but more expensive, people with 
high VOTs would choose the second path, whereas people with 
low VOTs would be satisfied with the first one. Taking a French 
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FIGURE 1 Market shares of two alternative paths. 

interurban mode choice example, the first path may be thought of 
as a train and the second path as an airplane. 

The frontier VOT v* between the two paths is such that it equal
izes their generalized times: 

(2) 

hence 

(3) 

Travelers with VOTs of V; ::;; v* choose the slow, inexpensive Path 
1, whereas travelers with VOT of v; > v* choose the fast, costly 
Path 2. 

Given the statistical distribution of VOT across the trip-makers' 
population from its cumulative probability density function (CDF) 

F(v) = f h(xYJx (4) 

where h(x) is the probability density function of VOT, and the 
proportion of people with VOT between x and x + dx is h(x)dx, 
then (Figure 1) 

• The market share of the first slow but inexpensive path is 
S1 = F(v*) = f~· h(x)dx, and 

• The market share of the second fast but costly path is S2 = 
1 - S1 = f~"" h(x)dx. · 

A way to infer the VOT statistical distribution is to derive it 
from the income distribution, which is in general well fitted by a 
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FIGURE 2 Log-normal distribution of VOT. 

log-norinal probability density function (PDF) (6,7). Figure 2 de
picts such a distribution. Another suggestion (12) is to consider a 
gamma distribution, which leads to a similar shape. 

Efficient Paths 

Call efficient a path such that there exists some positive VOT for 
which the path ensures a minimum generalized travel time. In the 
previous example there are only two paths, both of which are 
efficient. In most cases, however, there are numerous paths, 
among which only a few are efficient. If all paths are represented 
in a cost-versus-time diagram (where a path k is given coordinates 
T* and P*), the efficient paths are those with no alternative that 
would be both quicker and cheaper (Figure 3). In the cost-versus
time model only efficient paths may be assigned positive flows. 
If M efficient paths are ranked with respect to increasing prices, 
then the mth efficient path is traveled on by trip-makers with a 
VOT of v; belonging to [v::;_ 1 ; v::;], where v! is the frontier VOT 
between efficient paths m and m + 1, defined as in Equatiqn 3 as 

(5) 

Assuming a total trip rate of q, the mth efficient path is assigned 
a flow equal to 

q L~. h(v)dv = q[F(v!) - F(v!_,)] (6) 

Note that for consistency with respect to the first and last efficient 
alternatives, in the latter case the upper bound must be +oo, and 
in the former case the lower bound must be 0. See Figure 4 for 
an illustration. 

cost [] 
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~ 
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FIGURE 3 Efficient paths in a cost-versus-time diagram. 
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Contributions 

The previous subsections have introduced the rule of sharing the 
traffic between the paths that underlies previous cost-versus-time 
models (6-8,12). To apply the rule those models have assumed 
that the prices and the travel times of the paths are fixed in 
advance. 

However especially in urban road networks congestion effects 
may change the travel times of the paths and the definition of the 
set of efficient paths as well. Heuristic adaptations of the cost
versus-time sharing rule (10,11) have lacked a consistent theoret
ical framework. 

The first contribution is also aimed at providing tools to take 
congestion into account within the cost-versus-time framework. 
The second contribution allows the volume of demand (the origin
destination traffic flow) to depend on the level of service. 

Congestion Effects 

The more vehicles there are on a road the more delay each of 
them experiences. When modeling urban road networks it is nec
essary to allow for increasing travel time with respect to flow (13). 
Thus it is assumed that for each network arc a there is a travel 
time function ta = ta(xa) that relates travel time ta to vehicular flow 
Xa. Defining the travel time of a path k as the sum of the travel 
times of the arcs a that make up path k, it thus depends on traffic 
flows. 

Allowing for Elastic Demand 

Elastic demand is the economic tool used to model the fact that 
a change in supply entails either more people making a trip if the 
change is an improvement or some people relinquishing a trip in 
the case of a decrease in quality (to relinquish may be to choose 
another mode or another time of day). 

It is also assumed that the actual trip rate q is a decreasing 
function D with respect to the mean generalized travel time G: 

q = D(G) (8) 

In the case of the cost-versus-time model we assume an aggregate 
measure of the mean generalized travel time; denoting by G(v) 
the minimum generalized travel time experienced by a trip-maker 
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with VOT v, then 

G = f • G(v)h(v)dv (9) 

Recall that h(v)dv is the proportion of trip-makers with VOT be
tween v and v + dv. 

The elasticity of demand could also be modeled in a disaggre
gate way (14), but it would involve a mathematical framework 
with Hilbertian spaces of infinite dimension. Even more sophisti
cated is the Matisse model (9), which alllows for cross-elasticities 
between segments of demand. 

MATHEMATICAL DEVELOPMENTS 

This section is rather technical. First, some notation is introduced. 
Second, monetary expense classes of paths that aggregate paths 
with the same price and that are the rigorous tool of dealing with 
the efficient paths are defined. Third, conditions that characterize 
a cost-versus-time equilibrium are set up. Fourth, a mathematical 
convex minimization program is presented; in that program the 
Kuhn-Tucker conditions are equivalent to the definition of a cost
versus-time equilibrium. Lastly existence and uniqueness are as
serted without proof. For detailed proofs of the mathematical 
results, the reader is referred to previous reports (15,16). 

Basic Notation 

Demand Side 

The demand is a set of couples [D,s(t), h,s(v)]m where r-s is an 
origin-destination (0-D) pair, D,s(t) is the demand function for 
trips between r and s (it is assumed to be a continuous and mon
otically decreasing function with respect to the travel time t), v is 
a VOT, a number that belongs to a subset n of R+, and h,s(v) is 
the probability density function of the random variable VOT 
among the travelers on 0-D pair r-s; it is assumed to be a con
tinuous and bounded function that remains nonnegative on the 
interior of its support. The cumulative density function associated 
with h,s is as follows: 

F~(v) = f h..,(9) dO 

It is a continuous function that increases with respect to v. Its 
inverse function is 

F;/(t) = MAX[v; F,s(v) < t], 

and is increasing and continuous on the right with respect to t. 
A primitive form of l!F;/ is 
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The inverse demand function 

D;/(q) = MAX[t; Drs(t) > q] 

is decreasing and continuous on the right with respect to q. 
qrs is the trip rate from origin r to destination s. 

Supply Side 

a is an arc. Xa is the flow on arc a. ta(xa) is the travel time function 
on arc a; it is assumed to be a positive, continuous, and increasing 
function with respect to Xa. 

Evaluation of Alternatives 

k is a path from origin r to destination s, and it is assumed that 
it does not comprise any given arc more than once·, f ;s is the flow 
on path k connecting 0-D pair r-s, s~; is the indicator variable 
(8~; = 1 if arc a is on route k between r and s and 0 otherwise), 
T;s is the travel time proper on path k from r to s [T;s = La s~; 
ta(xa)], P;s is the monetary expense of path k from r to s (assumed 
to be nonnegative), and o;s(v) is the generalized travel time on 
path k from r to s as experienced by a trip-maker with VOT v of 

G k ( ) k p;s rs V = Trs + -
v 

Feasible Flow Pattern and Monetary Expense Classes of 
Paths 

Definition 1: Feasible Flow Pattern 

(10) 

A feasible flow pattern is defined as a path flow vector J = (f ;s) 
such that 

- V r, S, k f;s 2:: 0 

- v r, s qrs = 2: f ;s ::; qrso 
k 

where qrso is some positive constant (any 0-D flow is physically 
bounded). 

The basic principle is to aggregate paths that share the same 
monetary cost. To that end the so-called monetary expense classes 
of paths is used. It will help to characterize efficient paths. 

Definition 2: Monetary Expense Classes of Paths 

For every 0-D pair r-s the paths between the equivalency classes 
of the equivalency relationship Rrs [(k Rrs l) if P;s = P~s] are shared. 
Those classes are called monetary expense (ME) classes of routes. 
They are indexed with respect to increasing prices, with indexes 
from 1 to Krs· 

Irs(k) is defined as the class index of the path (r-s-)k and ~;; as 
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an indicator variable: ~~- is equal to 1 if i is equal to Irs(k) and 
~;!. is equal to 0 otherwise. 

Additional Notation Related to ME Classes of Paths 

t:Cs is equal to Lk ~":: f ;s is the traffic flow on the paths of the mth 
ME class from r to s, and Q;'; is equal to L;sm q~s the traffic flow 
from r to s on the paths whose prices are less than or equal to 
the price on the paths of the mth class. It also holds that qrs is 
equal to Lm q;';, which is equal to ~;s. Q~s is defined as 0 for ease 
of writing. P;'; denotes the monetary cost on the paths of the mth 
class for 0-D pair r-s, and 'I';'.:. is the minimum travel time proper 
across the paths of this class. 

The minimum generalized travel time experienced by a traveler 
with VOT v on the paths of. the mth monetary expense class is 

T;'; + P';;/v (11) 

Cost-Versus-Time Equilibrium Conditions 

Definition 3: Cost-Versus-Time Equilibrium Conditions 

The feasible flow pattern! is a cost-versus-time equilibrium if and 
only if the following conditions (Cl to C3) are satisfied: 

Cl: V r, s, k f:.s > 0 ==> T;s = T,r;<k> (12) 

For every 0-D pair r-s, for two monetary expenses classes m and 
n that are utilized (q';,. > 0 and q~s > 0), it holds that 

K -1 K -1 rs pj _ pj+l rs pi _ pi+l 

C2· T"' + "' rs rs = T + "' rs rs 
• rs f:, F;/(Q~sfqrs) rs ~ F;/(Q~sfqrs) (13) 

In the variable-demand case for every 0-D pair r-s such that qrs 
is greater than 0, it holds that 

C3:D;/(qrs)= ~ [q;';T;'; + P;';(Ers(Q;';)-Ers(Q;';-l) )] 
m=l qrs qrs qrs 

(14) 

Economic Interpretation 

The equilibrium conditions may be compared with the definitional 
conditions of a Wardropian user equilibrium (Wl and W2): 

Wl: V r, s, k 

that is, a path that is traveled on must present a minimum travel 
time, and in the variable-demand case, for every 0-D pair r-s such 
that qrs is greater than 0, it holds that 

W2: D;/(qrs) = MINk T;s 

Cl corresponds to Wl restricted to the paths that belong to the 
same ME class; in the cost-versus-time model, the equilibration 
of flows owing to congestion effects prevails only inside each of 
the ME classes of paths. 
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C3 is analogous to W2 since it relates the volume of demand 
to a mean minimum generalized travel time. To see that the term 
on the right side of C3 stands for the definition of the generalized 
travel time presented in Equation 8, one must change the variables 
under the integration symbol: 

P' [E (Q~s) E (Q~~
1

)] rs rs rs 
qrs q,s 

with equality being the case when Cl and C2 are satisfied. 
C2 is specific to the cost-versus-time model. It determines the 

market share of each ME class of paths. If the ME classes i and 
(n = i + p) are utilized when the classes i + j for j in [1; p - 1] 
are not (that is, Q~;j = Q~s), then C2 reduces to 

(15) 

F;/(Q~sfq,s) is the frontier VOT between the alternatives i and i 
+ p; when C2 holds the paths of the ith class are used by the 
travelers whose VOT belongs to [v~,;- 1 ; v~,J because these paths 
enable them to minimize T + P/v (compare Equation 15 with 
Equation 5). 

Extreme Characterization of a Cost-Versus-Time 
Equilibrium 

Theorem 1 is the convex program for the cost-versus-time equi
librium. The feasible flow pattern f is a cost-versus-time equilib
rium if and only if it solves the extremal convex problem MIN 
J(j) on the set of all feasible flow patterns, where function J is 
defined £!S 

J(f) = 2:. [ t.(x)dx 

rrs ) - Jo D;/(q)dq (16) 

subject to the definitional constraints 

(16a) 

i """' ki k qrs = .L.Jk /l,s J rs (16b) 
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Qi - """' j rs - .LJ q rs (16c) 
jSi 

(16d) 

and the nonnegativity constraints 

(16e) 

The first sum in the definition of J refers to the travel times proper 
that people try to minimize. The second one is related to the MEs 
that people also try to minimize. The third one is close to the 
opposite of a consumers' surplus. 

Existence and Uniqueness of Equilibrium 

Theorem 2: Existence 

There exists at least one cost-versus-time equilibrium. 

Theorem 3: About Uniqueness 

If the travel time functions ta(x0 ) are strictly increasing then at 
equilibrium the arc flows are unique, as are the frontier VOTs. In 
the fixed-demand case the flow on each ME class of the paths is 
unique. In the variable-demand case if the demand functions D,s 
are strictly decreasing, then the trip rates as well as the flows on 
each ME expense class of paths are unique. 

MSA ALGORITHM 

Because practitioners are mainly interested in convenient, robust 
methods, an algorithm that avoids path storage and enumeration 
is presented. It is a Monte-Carlo method based on random simu
lation, as will be discussed further. 

TWo assumptions help to simplify the procedure: 

• The price of path k depends only on the prices m0 of the arcs 
a~that are traveled on: 

•All 0-D pairs with the same origin have the same PDF for 
VOT to avoid computing the shortest paths for each 0-D pair. 

Procedure 

Step 0: Initialization 

• Set iteration counter n = 0. 
•Choose a sequence ak of real numbers such that (0 :::; ak :::; 1), 

(~ak = oo) and (~ai < oo). 
• Find an initial feasible flow pattern [x~0); q~~) for the variable

demand case only]. 
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In the fixed-demand case the initial feasible flow pattern may be 
obtained through an all-or-nothing assignment on the basis of 
times [ta(O)]. 

In the variable-demand case the free-flow pattern may be used 
as an initial flow pattern; set 0-D generalized travel time variables 
G~~l to the most realistic available value (from past assignments 
or some point of the demand curve that corresponds to a realistic 
mean generalized time). 

Step 1: Arc Travel Time Update 

•Set n = n + 1. 
•Set t~n) = [ta(x~n))]. 

Step 2: Direction Finding 

• For each origin r select by random sampling a VOT v~nl. Com
pute the shortest paths to all destinations s on the basis of the arc 
generalized travel times [t~n) + maMn)], yielding auxiliary 0-D 
generalized travel times Gl~;l. For each destination s assign an 
auxiliary 0-D flow ql~;l on the shortest path thus determined, in 
which ql~;l is equal either to q,s in the fixed-demand case or to 
D,s[G;;l] in the variable-demand case. 

Assignment of traffic of all 0-D pairs yields an auxiliary arc 
flow pattern xl~n). 

Step 3: Arc Flow (and 0-D Time) Update 

•Set x~n+l) = x~n) + a-n(xl~n) - x~nl]. 

•In the variable-demand case set G;;+i) = G;;l + an[G1;;l -
G;;l]. 

Step 4: Convergence Criterion 

•Apply a convergence test, either a maximum number of it
erations or a test on the maximum value (among the arcs a of the 
network) of the change in L~1 ak · x~kl/L~=1 ak from the previous 
iteration n - 1 to the current one, n. If the test is satisfied, then 
terminate or go to Step 1. 

Comments 

The suggested algorithm is a twice-streamlined implementation of 
the method of successive averages (17,18) (with regard to stream
lined algorithms). 

• Step 2 begins with a random sampling of the VOT; if it was 
iterated many times the cumulative mean of the auxiliary flow 
pattern thus obtained would yield a descent direction for J at the 
current point of Step 1. The streamlined algorithm with one single 
internal sampling in Step 2 provides the best efficiency (18) . . 

• In the variable-demand case the second part of Step 3 is a 
further streamlining that allows one to compute the minimum gen
eralized travel time without storing paths. 
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SHORT EXAMPLE 

The following example is aimed at demonstrating that modeling 
of a continuous-distribution of VOT across travelers may change 
the results of traffic assignment equilibrium models in the evalu
ation of a toll highway project. 

The Case 

Consider an urban context where q vehicles per hour are to make 
a trip from a single origin r to a single destination s. There are 
only two available routes, the first one (the basic road) being a 
free route on the regular urban network and the second one being 
a toll-charged route designed to allow for quick traveling without 
congestion. The latter route is named the laser road, from the 
original idea of GTM (19) to build underground, passenger car
only toll motorways in Paris. 

Supply Side 

Assume that the generalized time on road a for a traveler with 
VOT is 

where 

Pa= toll fare on road a; 
Na = measure of practical capacity (i.e., the traffic 

flow at which point the service level on the arc 
decreases sharply); and 

aa, 13a, 'Ya= parameters to model the effects of congestion 
such that (Figure 5): 

The values of the parameters are as follows. For the laser arc 
Ta equals 0.1811(. Na equals 1,000 vehicles/hr, aa equals 4.0, and 
'Ya equals 0.5. For the basic arc Ta equals 0.30 hr, Na equals 5,000 
vehicles/hr, aa equals 2.5, and 'Ya equals 1.5. 

Demand Side 

Assume that the VOT is distributed according to a log-normal 
PDF as depicted in Figure 2. The log-normal PDF is characterized 
by· its median value of $10/hr, and the standard deviation of its 
natural logarithm is set equal to 0.6 (20). The total trip rate q is 
fixed to 3,000 vehicles/hr. 
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FIGURE 5 Travel time functions for two routes. 

Numerical Evidence and Discussion 

Calculate the traffic on the toll road and the toll revenues as fonc
tions of the toll asked for on the laser road by two different mod
els: a cost-versus-time model and a standard model in which all 
travelers have the same aggregate VOT (the mean of the VOT 
distribution in the cost-versus-time model). 

As soon as the toll is high enough to significantly differentiate 
the two routes the drawbacks of the standard, single-VOT model 
appear; it is unable to calculate either the optimal level of fare or -
the maximum revenues that are yielded by the more realistic cost
versus-time model. 

Furthermore the standard model does not yield robust results; the 
fare that gives the maximum revenue is very close to another fare 
at which nobody travels on the toll route (Figures 6 and 7). 

CONCLUSION 

Cost-versus-time equilibrium assignment, as any assignment over 
a network, deals with a demand and a supply that are at odds with 
each other. It has been defined as a double equilibrium: 

•An equilibrium between supply and demand, and 
•A Pareto equilibrium between suppliers (the paths). 

The mathematic and algorithmic tools that enable computation of 
this equilibrium are especially useful for the evaluation of toll 
highway projects in urban contexts. 
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FIGURE 6 Traffic on toll road (laser route). 

The cost-versus-time model does not invalidate the advantages 
of the multiple user classes model, which faithfully represents the 
interaction on the supply side, notably different types of vehicles 
(e.g., with respect to size or passenger car unit equivalents). 

The model described here is primarily demand related. The con
tinuous distribution of the VOT gives robustness to the assignment 
and also enables one to test sensitivity to parameters like the mean 
value or the standard deviation of the VOT distribution function. 
An obvious extension is to introduce several classes of vehicles, 
each one with a continuously distributed VOT. 

A truly disaggregate model requires that nonuniform multicri
teria measures of the generalized cost (or of the satisfaction) in 
the demand be taken into account. The cost-versus-time model is 
a significant step in that direction for traffic assignment. Although 
close to the stochastic equilibrium models with respect to the al
gorithm introduced here, the economic background is quite dif
ferent, focusing on explaining the deterministic part of the utility 
function rather than calibrating its random component like current 
stochastic assignment models do. 

From a mathematical point of view researchers are provided 
with a computationally tractable model that extends the model of 
Beckmann et al. (13). Apart from the method presented here, de
terministic algorithms are also available (21). 
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Traffic Assignment Under 
Environmental and Equity Objectives 

LAURENCE R. RlLETT AND CHRISTINE M. BENEDEK 

Two recent changes in the transportation field may have a profound 
effect on traffic assignment techniques. The first is the increasing im
portance of environmental objectives, such as reducing air pollution, 
within the policies of traffic system authorities. The second change is 
the advent of the intelligent vehicle-highway system (IVHS), which, 
among other attributes, has the potential to be used to implement new 
methods of controlling vehicular emissions. The fact that historic traf
fic assignment techniques may be inadequate for modeling the traffic 
systems that will operate under IVHS with environmental objec
tives-primarily when traffic follows routes that are based on equi
table rather than equilibrium or optimal considerations-is illustrated. 
Then it is shown that when IVHS policies that attempt to reduce 
system travel time are implemented, other objectives such as reducing 
environmental pollution may actually increase. A network from Ot
tawa, Ontario, Canada, is used as a test bed. 

A number of objectives are generally associated with the proposed 
intelligent vehicle-highway system (IVHS). One of the most com
monly cited goals is to reduce urban traffic congestion with a 
corresponding reduction in average trip travel time. This has been 
an ongoing objective of transportation authorities since the first 
urban traffic networks were constructed. Previously the most com
mon method of achieving this goal was to increase capacity 
through building infrastructure. Another objective that is often 
cited is to reduce negative transportation by-products such as 
noise and air pollution. This has become an increasingly important 
goal over the last 30 years mainly because of increased public 
awareness of the dangers of pollution and a public willingness to 
reduce this pollution. Historically the primary means of reducing 
air pollution have been through legislated emission standards on 
vehicles. 

This paper examines the implications on traffic networks of 
using the recently proposed IVHS such as the advanced traffic 
management system (ATMS) and the advanced traveler informa
tion system (ATIS) to achieve the goals stated above. These pro
posed systems may be used to achieve the objectives in either an 
active or a passive manner. The former would entail such things 
as a centralized route guidance system (RGS) in which vehicles 
are explicitly given the routes that they must follow, whereas an 
example of the latter would be an electronic toll collection system 
in which drivers are free to choose their own routes but are 
charged for their use of the road or the amount of pollution that 
they produce. Note that in both the passive and the active systems 
different goals or combination of goals may be used. 

The second section illustrates the need for new traffic. assign
ment techniques that better represent the shift toward environ
mental objectives that has recently taken place. In the third section 
assignment techniques based on environmental and equitable ob-

Department of Civil Engineering, University of Alberta, Edmonton, 
Alberta T6G 2G7, Canada. 

jectives are examined on a two-node network to illustrate the con
cepts. This is followed by a sensitivity analysis of traffic assign
ment based on environmental objectives on a network from 
Ottawa, Ontario, Canada, to identify any trends on realistic net
works and any potential problems in using traditional assignment 
procedures. 

RECENT DEVELOPMENTS IN TRAFFIC ENGINEERING 

1\vo major developments in recent years are forcing traffic engi
neers to reexamine the techniques and objectives of traffic assign
ment. The first shift is the rapid advancement in IVHS technolo
gies, particularly in-vehicle RGSs, in which it is at least 
theoretically possible that drivers may be explicitly routed through 
the network on the basis of the routes that are calculated external 
to the driver or the vehicle. At a minimum IVHS technologies 
will influence driver route selection by providing timely infor
mation on the state of the network. For example the use of au
tomatic toll collection on the road network or the use of change
able message signs could change the route selection process of 
drivers by changing the perceived attributes of competing routes. 

It is often assumed that because traffic assignment is based on 
the concept of generalized cost the traditional assignment tech
niques will be applicable for analyzing IVHS. The major changes 
required in the traditional procedures include modeling multiple 
user classes (RGS and non-RGS) and modeling dynamic traffic 
assignment (1,2). Although very complex, these topics will not be 
examined here because the main purpose of this paper is to illus
trate potential problems in traffic networks when different objec
tives are used and to illustrate the need for assignment techniques 
that can model equitable as opposed to equilibrium or optimal 
assignments. It will be assumed in all of the analyses in this paper 
that all drivers have the same attributes and the same access to 
information. Therefore user equilibrium (UE) techniques will be 
used for modeling IVHS in which the drivers select their routes 
on the basis of their own objectives, and system optimal 
(SO) techniques will be used· for modeling IVHS in which the 
routes are explicitly sent to drives and are based on system 
considerations. 

The second change that will affect traffic assignment techniques 
is related to the prominent role that environmental issues have 
recently played in transportation project decisions, in particular 
the significant interest that has recently been expressed concerning 
the consequences of vehicular emissions. Reducing vehicular 
emissions has been an ongoing goal of many authorities over the 
past 20 years, with a number of U.S. states and Canadian prov
inces instituting relatively stringent pollution control programs. 
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These programs may be defined as passive in nature, in that most 
regulate the emission levels from the vehicles. However the total 
amount of pollutant emitted by a vehicle is not regulated, and 
consequently there is little incentive for individual users to reduce 
pollution. With the advent of IVHS it is now recognized by many 
traffic authorities that more active measures may be used to reduce 
pollution. As an example it may be decided to use a centralized 
RGS to directly route vehicles so as to minimize air pollutant 
emissions during particular periods of the day or in particular 
locations. A more passive and realistic example would involve 
charging drivers on .the basis of the amount of pollution that they 
produce (and where that pollution is produced) in the hope of 
reducing emissions. 

Because traffic assignment techniques are based on the concept 
of generalized cost it may be assumed that traditional assignment 
techniques will also be applicable for analyzing route selection on 
the basis of environmental impacts. The only changes required to 
implement the assignments discussed above would be the devel
opment of appropriate generalized cost functions. However iden
tification of the generalized cost function that would be used is 
problematic. There has been little research into which of the rele
vant factors (i.e., noise pollution, fuel consumption, etc.) should 
be included in the generalized cost function or what the relative 
weights for each of the relative factors should be. Regardless of 
which components are used in the generalized cost function it is 
important to note that in the context of environmental concerns 
the process and objectives of traffic assignment shift from factors 
that solely concern the individual drivers or the system operators 
to factors that also consider the effects on individual segments of 
society. That is it may not be enough to say that the individual 
drivers or the transportation network operators will benefit as a 
result of the implementation of IVHS technologies but rather that 
no segment of society will be unduly affected in a negative man
ner. For example a. political decision may be made that the re
duction of negative transportation by-products should be a major 
policy objective regardless of the impact on individual drivers. 
The traffic assignment techniques will have to reflect this new 
reality if meaningful analyses of environmental objectives and 
IVHS implementation are to be studied. Consequently it is not 
clear tht the objectives of the SO or UE traffic assignment, even 
with an appropriate generalized cost function, will be adequate for 
analyzing the assignment of traffic under these new conditions. 

It is useful at this point to examine (a) how the concept of 
equity and environmental concerns may influence the actual route 
selection process of the drivers and (b) how these changes may 
be modeled by using traffic assignment procedures. 

Consider a negative product X, where X may be the noise pol
lution, air pollutants, and so on that are caused by vehicular traffic. 
It may be decided that the amount of X produced should be con
trolled through the use of an IVHS. The following is a discussion 
of the different objectives that may be chosen and the strategies 
that may be employed to meet the objective of reducing X. Also 
included are potential means of modeling these strategies in traffic 
assignment procedures. 

It may be decided that the objective of the IVHS is to minimize 
the total amount of X produced. The objective could be achieved 
by giving explicit routes to the individual vehicles through a cen
tralized RGS. The traffic assignment could be modeled by using 
the SO concepts discussed previously in which the generalized 
cost is a function only of X rather than of travel time. 
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Alternatively it may be decided that although decrease in the 
production of X is the primary objective, it would be better (i.e., 
politically better) to charge users on the basis of their production 
of X and let the drivers decide their own routes. In the real net
work an electronic toll system in which the drivers are charged 
on the amount of X that they are responsible for producing would 
be set up. This is directly analogous to "occasioned cost" pricing, 
whereby consumers (drivers) pay only for what they directly con
sume. This type of system could be modeled by using a standard 
UE traffic assignment, with X being the sole parameter in the 
generalized cost function. 

Both of the scenarios presented above assume that the assign
ment of vehicles will be based on the needs of the individual 
drivers or those of the system as a whole. However it is not un
reasonable to assume that society will also wish to minimize the 
amount of X produced on particular segments of the population. 
The following two sections will illustrate two equity concepts that 
could be used in traffic assignment. 

As an example the people living near major roadways may wish 
the vehicles to be routed through the network such that the total 
amount of X released on their streets does not exceed some maxi
mum safety standard (i.e., for health reasons). This would corre
spond to traditional assignment techniques that have an explicit 
link capacity constraint (3) in which the link capacity is not a 
function of the amount of vehicles on the link but rather the cu
mulative amount of pollutant X that the vehicles produce on the 
link. Depending on the method chosen by the authorities for 
achieving the objective a UE or SO traffic assignment heuristic 
procedure could be used to model the process. However note that 
secondary objectives, such as minimizing the number of homes 
exposed to relatively high levels of X, may also be employed, and 
consequently new assignment techniques could be required. 

Last the vehicles may be assigned to a street network in such 
a way as to ensure that the amount of X released on all streets (or 
a subset of streets) is the same. Under this system equitable (SE) 
scenario vehicles are routed through the network (on the basis of 
the routes directly broadcast to the vehicles) such that no one 
group of people living near the traffic network is affected more 
than any other group of people. This may at first seem to be an 
extreme example, but there are curently a number of situations in 
which traffic control devices are operatd such that the negative 
externalities of traffic (i.e., noise) are "distributed" as evenly as 
possible among competing routes. 

It should be pointed out that although there is a wide range of 
equity definitions (4) in this paper, only the SE concept defined 
above will be used. It is also important to stress the fact that in 
the preceding two types of assignments it is the objectives of the 
people living near the roadway and not those of the individual 
drivers or system operators that are of paramount importance. 

TRAFFIC ASSIGNMENT BASED ON ENVIRONMENTAL 
AND EQUITY OBJECTIVES 

Until recently the above differentiation and the following exam
ples would be of more academic rather than practical interest. The 
advent of the in-vehicle RGS, however, has created the potential 
to change people's route selection behaviors, either directly (ex
plicit directions) or indirectly (variable user charges). Given the 
demand by the public to reduce pollution it is very reasonable to 
assume that environmental objectives may be increasingly impor-
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tant in the traffic assignment process. The following sections will 
examine the potential effects that different objectives could have, 
with a sample test network and a network representing Ottawa, 
Ontario, Canada, serving as examples. 

Carbon Monoxide (CO) Emissions 

There are a number of fuel consumption-pollutant emission mod
els of various complexities. For the analyses performed in this 
paper a macroscopic relationship used in the TRANSYT 7-F 
model was adopted (5). The general function of the model is 

AeBv 
ROP=

Cv 

where 

(1) 

ROP =rate of production [fuel (gal-vehicle/ft) or pol
lutant (g-vehicle/ft)], 

v =average vehicular velocity on link (ft/sec), and 
A, B, and C = constants. 

It is assumed that the velocities of the vehicles are constant 
along each link and the grades on all roads are 0 percent. The 
velocity on the link is derived by dividing the distance of the link 
by the travel time. The total amount of pollutant produced per 
vehicle on any given link is then calculated by multiplying the 
production rate by the distance of the link. 

Equation 1 is applicable for estimating fuel consumption. CO 
emissions, hydrocarbon emissions, and nitrogen oxide emissions. 
It was decided that traffic assignment would be examined only on 
the basis of CO emission rates. There are two reasons for this. 
The first is that because of the similarity in the form of the pro
duction functions the assignment results obtained on the basis of 
all the pollutants would be similar. The second is that CO is gen
erally considered one of the most critical pollutants where levels 
need to be reduced ( 6). The form of the CO production function 
used in the analysis is given in Equation 2: 

e0.014561v 

ROP = 3.3963 l,OOOv (2) 

where ROP is the rate of production of CO (g-vehicle/ft), and v 
is the average vehicular velocity on link (ft/sec). 

Traffic Assignment with Environmental Objectives: Sample 
Network 

To examine the concepts discussed above it is first useful to ex
amine the changes in link flows when assigning the vehicles on 
the basis of travel time and CO emissions for an example network. 
The sample network consists of two links and two nodes, as il
lustrated in Figure 1. The origin-destination (0-D) demand con
sists of 8,000 vehicles/hr that travel from node 1 to node 2. There 
are two potential routes for these vehicles. The first, Route 1, is 
a two-lane freeway route that is 2000 m long, has a free-flow 
speed of 100 km/hr, and a capacity of 2,000 vehicles/hr/lane. The 
second, Route 2, is a shorter two-lane arterial route that is 1,000 
m long, but with a lower free-flow travel speed of 60 km/hr and 
the same lane capacity as that of Route 1. 
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Route 1 (Freeway) 

Node 1 

Route 2 (Arterial) 

0-D Flow : Node 1 to Node 2 = 8000 veh/hr 

FIGURE 1 Sample network. 

Node 2 

In the paper the acronym UE-TT refers to a user equilibrium 
traffic assignment based on travel time, whereas the acronym SO
TT refers to a system optimal traffic assignment based on travel 
time. Similarly UE-CO refers to a user equilibrium traffic assign
ment based on CO emissions, and SO-CO refers to a system op
timal assignment based on CO emissions. 

For the sample network a UE-TT assignment results in a flow 
on Route 1 of 5,090 vehicles/hr and a flow on Route 2 of 2,910 
vehicles/hr. The travel time on both routes is 100.3 sec, and the 
total travel time on the network is 229.9 vehicle hr. If a traffic 
operations engineer was able to assign the vehicles to the networks 
to minimize total system travel time (SO-TT). The flow on Route 
1 would increase to 5,218.2 vehicles/hr and the flow on Route 2 
would decrease to 2, 781.8 vehicles/hr. This would reduce the total 
system travel time to 222.1 hr. 

Figure 2 illustrates the relationship between CO emissions on 
both routes of the sample problem as a function of flow on Route 
1. It can be seen from Figure 2 that if the objective is to minimize 
the total CO emissions (SO-CO assignment) then 5,161 vehicles 
would take Route 1, which would result in 6.09 kg of CO being 
emitted into the atmosphere per hr. This is shown as point a on 
Figure 2. The rate of CO emitted by each of the vehicles on Route 
1 is 0.88 g/vehicle, and on Route 2 it is 0.54 g/vehicle, which is 
a difference of approximately 40 percent. In total Route 1 receives 
1.54 kg of CO, whereas Route 2 receives 4.55 kg, or approxi
mately three times as much. 

The difference between the flows from the SO-TT and UE-TT 
solutions and the SO-CO solution is on the order of 1 percent. 
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FIGURE 2 CO emissions versus volume on Route 1. 
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This is also confirmed by the fact that the travel time on Route 1 
is 101.9 sec and on Route 2 it is 96.5 sec. Therefore for this simple 
example the UE-TT solution is ro~ghly equivalent to an SO-CO 
assignment. 

If the objective of the assignment is to ensure that both routes 
have equal CO emission levels (SE assignment) then 3,982 ve
hicles would be assigned to Route 1 and 4,018 vehicles would be 
assigned to Route 2. This assignment is shown as point b on 
Figure 2. The difference in route flows between the SE and the 
SO-CO solutions is on the order of 25 percent. The change in 
route flows would increase the total CO emitted by 14 percent, to 
7.10 kg/hr, in which each route experiences an emission rate of 
3.55 kg/hr. The travel time on Route 1 is 82.6 sec, and the travel 
time on Route 2 is 206.5 sec. Therefore unless the drivers are 
explicitly assigned to the network in the proportions given above 
this would be an unstable solution. 

Figure 3 illustrates the amount of CO produced per vehicle as 
a function of the flow on Route 1. If the vehicles were allowed 
to choose their own route but were charged for CO emissions (and 
considered only the cost of this in their route selection process) 
then 3,966 vehicles would take Route 1 and 4,034 vehicles would 
take Route 2. The UE-CO solution is illustrated by point a in 
Figure 3, in which it may be seen that the vehicles on both routes 
emit 0.89 g/vehicle. The travel time on Route 1 is 82.43 sec, and 
the travel time on Route 2 is 209 seconds. 

It may be seen from the above analysis that the SE and UE 
solutions on the basis of CO emissions have similar results in 
terms of route volumes. The primary difference (aside from the 
objectives) between the two is that in the SE assignment it is 
assumed that the drivers have routes chosen for them whereas in 
the UE assignment the drivers select their own routes on the basis 
of the amount of CO they produce. This indicates that charging 
vehicles for pollutant emissions could achieve the same equitable 
environmental goals as routing them by using a centralized RGS. 
The negative side to this strategy is that charging for use of the 
road on the basis of environmental concerns could actually in
crease the total amount of CO produced. 

It may also be seen that unlike the SO-TT and UE-TT solutions. 
the SO-CO and UE-CO solutions are significantly different. 
Therefore when IVHS strategies are implemented the objectives 
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adopted could have a significant impact on the link flows and the 
amount of pollution produced. The following sections will examine 
whether these findings hold true for more realistic networks. 

Traffic Assignment with Environmental Objectives: Ottawa 
Network 

A network from Ottawa, Ontario, Canada was chosen as a test 
bed to examine if the trends that were found for the simple ex
ample also exist in larger networks. The Ottawa network consists 
of 1,402 links, 646 nodes, and 67 zones. It is linear in shape, with 
the Queensway, the major highway in Ottawa, running in an east
west direction through the center of the city. The assumptions and 
relationships that. were used in the sample analysis are also used 
in the Ottawa analysis. 

Six 0-D demand rates were used in the traffic assignment 
analysis to identify any demand-related trends. The percentage of 
trips for each 0-D pair was kept constant, and only the total num
ber of trips was varied. Table 1 lists the scale factors and the 
corresponding weighted average volume-to-capacity (vie) ratio on 
the network for a UE traffic assignment based on travel time. The 
weighted average vie ratio is the average volume-to-capacity ratio 
on all links weighted by the number of vehicles on the link. The 
first demand rate, with a scale factor of 1, represents a lightly 
loaded network, as illustrated by an average weighted vie ratio of 
0.19. When the scale factor is increased to 6, the average vie ratio 
increases to 0.91. 

Traffic Assignment Based on Environmental Objectives on 
Large Networks 

Common assignment techniques such as the Frank-Wolfe algo
rithm and the method of successive averages algorithm lend them
selves well to traffic assignment based on environmental objec
tives. As discussed above all that is required is a link cost function 
based on CO production instead of one based on travel time. 

Traffic assignments based on UE (travel time), SO (travel time), 
UE (CO production), and SO (CO production) were performed by 
using the ASSIGN traffic assignment model (7) on the Ottawa 
network. Both the Frank-Wolfe algorithm and the method of suc
cessive averages algorithm were used, and both gave approxi
mately equivalent results. The solutions presented in this paper 
were derived by using the former algorithm. In every case the 
traffic assignment results based on environmental objectives and 
obtained by using Equation 2 as the link cost function met the 
underlying objective to minimize CO production. In the case of 

TABLE 1 Key to Demand Rates 

Demand Rate Average Link V/C ratio 
1 0 .19 

2 0.33 

3 0.49 

4 0.62 

5 0.78 

6 0.91 
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UE-CO the levels of CO production on all of the used routes for 
a given 0-D were equal, and there were no routes that had lower 

·levels of CO production. For the SO-CO examples the marginal 
CO production rates on all used routes were equal, and no unused 
route had lower marginal CO production rates. In addition the 
total amount of CO produced decreased with each iteration of the 
algorithm and converged toward one value. 

However some theoretical problems associated with using 
Equation 2 should be pointed out. It may be seen in Figure 3 that 
on Route 1 (the highway) the CO emissions per vehicle decrease 
as volume increases, reach a minimum, and then increase after 
that. This pattern is typical of pollution models in general because 
pollution levels tend to be highly correlated with fuel consump
tion. Fuel consumption is typically modeled as a function of 
speed, with some minimum rate occurring at an optimal speed 
that is typically in the range of 45 to 55 mph. For speeds on either 
side of the optimal speed fuel consumption increases at an in
creasing rate. As the volume on the link increases the speed de
creases. This results in lower fuel consumption and hence lower 
CO emissions. Eventually the average speed decreases past the 
"optimal" velocity and the CO emissions begin to rise. This is 
illustrated by the convex shape of the CO production function for 
Route 1 in Figure 3. Note that the arterial link does not follow 
this pattern but rather increases with all volumes. This is because 
for this link the vehicles always travel below the "optimal" ve
locity because of speed limit constraints. 

It is a well-known fact that the generalized cost functions used 
in UE and SO traffic assignments must be positive and must in
crease with volume (8). When they do not there is no guarantee 
that the resulting UE or SO program will have a unique minimum 
point. There are two important points relating to this last state
ment. The first is that the solution found by using the Frank-Wolfe 
algorithm may not be a global minimum but rather only a local 
minimum. The second point is that there is no guarantee that the 
link flows that are identified are unique. From a SO-CO perspec
tive this is not overly critical in that in this paper the authors are 
only interested in system CO production and total travel time. 
Therefore at worst the SO-CO solutions are a conservative esti
mate, and theoretically there could be a ''better'' solution. How
ever from a UE-CO perspective the results could be more subtle. 
Theoretically there could be an alternative set of link flows that 
results in the same or a smaller value of the objective function 
but that has lower (or higher) aggregate CO values than those 
reported in this paper. 

It should be pointed out that when the conditions for a unique 
minimum (link cost function increasing and positive) are violated 
it does not automatically indicate that the resulting solution will 
not be a global minimum or unique. This is especially true for 
the examples used in this paper, in which the cost function de
creases only marginally with travel time before increasing once 
the "optimal" velocity is reached. The fact that all of the envi
ronmental assignment solutions met the underlying objectives, as 
discussed earlier, was taken as an internal consistency check that 
the results presented in the following section are acceptable. 

Ottawa Network Results 

Figure 4 shows the system travel time results for each of the four 
traffic assignment scenarios as a function of the 0-D demand ratio 
used. A number of trends are present that would be expected given 
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past research in the area and general knowledge of macroscopic 
traffic assignment models. 

These include the following: 

1. As the demand increases the total system travel time also 
increases and at a slightly increasing rate for all four assignment 
scenarios. 

2. The total system travel time is lowest for the SO assignment 
based on travel time. 

3. The UE solution based on travel time is very similar to that 
for the SO assignment based on travel time. 

As in the sample problem the UE-CO solution produced similar 
(although slightly higher) total system travel time results com
pared with those prod,uced by the UE-TT and SO-TT solutions. 
In addition the SO-CO assignment produced the worst results with 
respect to total travel time on the system. 

Figure 5 was created to better illustrate the differences between 
the various scenarios. Figure 5 illustrates the percent increase in 
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system travel time for each traffic assignment scenario compared 
with the system travel time for the SO assignment based on travel 
time (i.e., the assignment with the lowest system travel time for 
a given demand level). The latter traffic assignment, SO-TI, is 
therefore represented in Figure 5 by a straight-line function that 
is equal to zero. It should also be noted that although the travel 
time differences are not huge (i.e., <10 percent) the maximum 
amount of system travel time savings that may be achieved 
through IVHSs is usually considered to be in the range of 5 to 10 
percent (9). 

It may be seen in Figure 5 that the difference in the SO-TI and 
UE-TI solutions are minimal. However the relationship is con
cave, with the biggest difference, on the order of 1 percent, oc
curring at the middle demand levels. This may be explained by 
the fact that at low and high demand levels there is not as much 
route choice for the vehicles because the link travel times are not 
affected by their individual decisions. For example at low 0-D 
demand levels every vehicle is basically assigned to the minimum 
path route that, because of the low volumes, does not experience 
an appreciable rise in travel time. At high demand levels the re
sults are more subtle. The link flows on the highways based on 
the UE-TT assignment are on average about 5 percent higher than 
those based on the SO-TI assignment. However because of the 
nature of the travel time function this difference in link flows 
results in only a marginal difference in aggregate travel time. 

When the traffic is assigned to the network with the objective 
of an SO-CO assignment the total system travel time is on the 
order of 1.5 to 4 percent higher than that observed for an SO-TI 
assignment. In general as the demand rate increases this difference 
decreases. The link flows for the SO-CO assignment tended to be 
more similar to those for the UE-TI assignment, in which more 
vehicles are assigned to the highways than by the SO-TT assign
ment. This makes intuitive sense in that the link pollution-volume 
curve is relatively flat for highways, and therefore adding volume 
to highways does not appreciably raise pollution levels as much 
as adding vehicles to arterial roadways. On the basis of the results 
from Figure 5 it may be seen that for congested networks if pol
icies were implemented to reduce overall CO emissions the actual 
amount of travel time in the system would increase on the order 
of 2 percent. . 

If the drivers were allowed to choose their routes individually 
and their decisions were based solely on the amount of CO pro
duced (EU-CO), then the total system travel time would increase 
by approximately 4 to 10 percent above that if the drivers con
sidered only the effect of travel time. The trend generally increases 
with demand, although there appears to be a relative leveling off 
at a 10 percent increase once the 0-D demand ratio reaches 3. 
Similar to the SO-TI assignment the UE-CO assignment also fa
vors on average the use of arterial roadways. However the link 
flows are very dissimilar between the two assignments, and this 
results from the different generalized cost curves used and the 
underlying objectives in each assignment. It is this difference in 
link flows that is illustrated by the 10 percent difference in ag
gregate travel times for the UE-CO and SO-CO conditions. 

Figure 6 illustrates the relationship between the total amount of 
CO released into the network for each of the four scenarios tested 
as a function of the 0-D demand. It may be seen that the amount 
of CO released increases in a linear manner as the 0-D rate in
creases. Figure 7 shows the percent increase in total CO produced 
for each scenario compared with that produced from the SO traffic 
assignment based on CO considerations (the lowest for a given 
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7 

demand level). The latter traffic assignment is therefore repre
sented by a straight-line function that is equal to zero. 

It may be seen that for high demand levels the UE-TI assign
ment results in CO output very similar to that from the SO as
signment, which seeks to minimize this value (SO-CO). However 
at lower demand levels the difference in CO output can be on the 
order of 2.5 percent. This implies that in congested networks the 
UE-TT objective (i.e., what currently occurs) results in CO pro
duction levels that are approximately equivalent to what could be 
achieved if vehicles were directly routed through the network on 
the basis of minimizing CO production. As stated previously this 
is due to the similarities in link flows, in which in both cases the 
highways generally experienced higher volumes. 

The opposite trend occurs for the UE-CO assignment when the 
drivers are taxed on the amount of CO that their vehicles produce 
and the drivers choose their routes solely to minimize this cost. 
At low demand levels the difference in CO emissions is minimal. 
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The difference increases in an approximately linear manner as the 
0-D demand increases, with the highest value being on the order 
of 1.5 percent. This result is counterintuitive in that it implies that 
at high congestion levels charging for CO production might ac
tually increase the overall CO levels compared with those result
ing from leaving the system as it is (all other things being equal). 
The difference is caused by tpe fact that for the UE-CO solution 
vehicles tended to utilize the arterial roadways more than they did 
for the SO-CO solution. At higher demand levels vehicles on ar
terial roadways tend to have higher pollutant emissions (all else 
being equal). A similar result was found in the two-node example 
analysis. The divergence between the total CO production levels 
for the UE-CO and SO-CO assignments may be contrasted with 
Figure 7, in which the. aggregate travel time results for UE-TI 
and SO-TT assignments tended to converge at high congestion 
levels. 

In terms of total CO production the SO-TT assignment has the 
largest difference compared with the SO-CO assignment. The re
lationship is convex, with the difference first decreasing as de
mand increases until the demand ratio is 3 and increasing after 
that. The minimum difference is 1.5 percent, and the largest is 
approximately 4 percent, which occurs at the demand ratio of 6. 
Again this pattern is a result of the fact that in the SO-TI assign
ment the arterial roadways tend to have higher link volumes than 
the SO-CO assignment at high congestion levels. The results 
shown in Figure 7 imply that if an RGS was instituted with the 
sole purpose of minimizing travel time, other important objec
tives, such as reducing CO levels, might actually become worse. 

CONCLUDING REMARKS 

It can often be dangerous to generalize the results of macroscopic 
traffic assignment models to actual traffic systems. This would be 
especially true in this analysis, in which many simplifying as
sumptions are made (i.e., 100 percent homogeneous driver and 
vehicle populations) and very simple production functions are 
used (i.e., Bureau of Public Roads travel time function and 
TRANSYT CO emission function). Perhaps more importantly ve
hicle emissions were assumed to occur uniformly along the length 
of the link rather than to have higher concentrations at the inter
sections, where traffic often stops. The intent of this paper, how
ever, was not to derive a definitive answer but rather to illustrate 
some of the issues that will need to be addressed in traffic as
signment modeling given the recent importance of environmental 
objectives and increasing interest in the proposed IVHS 
technologies. 

One of the primary aims of the paper was to illustrate the im
portance that different objectives can have on the operation of a 
traffic system. It was shown that what would intuitively seem like 
complementary objectives-the reduction in system travel time 
and the reduction in environmental pollution-may actually con
flict. As an example it was demonstrated on the Ottawa network 
that if total CO production was to be minimized during periods 
of congestion the system travel time would increase by approxi
mately 2 percent (all things being equal). 

Therefore it is very important that traffic assignment programs 
produce comprehensive output statistics of important variables 
such as travel time, pollutant emissions, and noise levels to enable 
transportation professionals to study any trade-offs that may be 
required. Related to this task is the fact that appropriate production 
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functions need to be identified for these negative externalities that 
relate the important link attributes (travel time, stop time) to the 
amounts of pollutants produced. Traffic engineers need to adopt 
a more sophisticated generalized cost function that has a wide 
range of important parameters as opposed to one that is based 
solely on travel time. This may not be as straightforward as it 
appears because not only will the pollutants have different weights 
but these weights may be a function of the amounts of pollutants 
produced. For example a doubling of CO levels on a link may 
result in a quadrupling of importance of the CO level in the gen
eralized cost function because of a nonlinear relationship between 
CO level and general health. In addition the generalized cost func
tion may not strictly increase as a function of flow when pollution 
costs are involved. This could result in the need to develop as
signment techniques different from those that have historically 
been used. 

The second point that is raised in this paper is that there is a 
definite need to expand traffic assignment techniques to account 
for changes in system objectives and changing technologies. To a 
certain extent this has been done (1-3,10) with respect to evalu
ating IVHS operations. However to date there does not appear to 
be any assignment models that assign traffic on the basis of an 
equity-as opposed to an equilibrium-objective function. As 
was demonstrated in the two-node network problem, there is a 
definite need to examine the effects that equitable objectives could 
have on traffic networks and whether there might be other meth
ods of achieving the same results. For example it was demon
strated on the sample network that different techniques may be 
used to achieve the same goal. The CO emissions analysis showed 
that charging drivers for their individual production of CO and 
letting them make their own decisions (UE assignment) gave re
sults equivalent to those of explicitly routing the drivers on the 
basis of considerations (SE assignment). Of course whether any 
of these patterns will hold for larger, more complex networks and 
for more realistic traffic assignment models needs to be studied. 
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Application of Dynamic Assignment in 
Washington, D.C., Metropolitan Area 

E. DE ROMPH, H.J. M. VAN GROL, AND R. HAMERSLAG 

A study in which the dynamic assignment model 3DAS was used as 
a planning tool is described. The Virginia part of the Washington, 
D.C., metropolitan area was chosen for the study. This area offers a 
heavily congested urban network with several rerouting possibilities. 
On the basis of available data it was decided to calculate a morning 
peak hour from 5:00 until 11:00 a.m. in 24 periods of 15 min each. 
The results show that the use of dynamic assignment for planning 
purposes can be very helpful. Dynamic assignment gives more de
tailed information than static assignment methods about the occur
rences of traffic jams, and a more precise location and cause of con
gestion can be identified. Advanced traffic management system 
measures, introduced to alleviate the congestion, can be simulated, 
and all kinds of evaluations are possible, such as influences on travel 
time and jam length and effects of ramp metering and rerouting. Dy
namic assignment, however, requires more accurate data and more 
computing time. Also very important is the ability to visualize the 
results. A dynamic assignment model gives flows in time. The best 
way to analyze the results is to present them in a movielike fashion. 
This requires a computer with a powerful graphics capability. For 
advanced traffic management systems to be successful more data and 
better (three-dimensional) origin-destination matrices are needed. New 
methods for origin-destination estimation and data from more induc
tion loops and probe vehicles will improve the reliability of the 
results. 

This paper describes a study in which the dynamic assignment 
model 3DAS is used as a planning tool. The study has two ob
jectives. The primary objective is to find answers to the following 
three questions: 

1. Can dynamic assignment be used for planning purposes? 
2. Does dynamic assignment have an advantage above static 

assignment? 
3. Is dynamic assignment a useful tool for investigating the 

effects of advanced traffic management systems (ATMSs)? 

The secondary objective is to gain insight into the possibilities 
and problems associated with the application of 3DAS on large 
networks. 

The model is applied to the southwestern part of the Washing
ton, D.C., metropolitan area in the United States. This area was 
chosen because it offers a heavily congested urban network with 
several rerouting possibilities. Several ramp metering installations 
are in operation, and parts of the freeways are monitored. The 
data used for this research were obtained from the Virginia De-

E. de Romph and R. Hamerslag, Department of Infrastructure, Faculty of 
Civil Engineering, Delft University of Technology P.O. Box 5048, 2600 
GA Delft, The Netherlands. H. J. M. van Grol, Department of Computa
tional Physics, Faculty of Applied Physics, Delft University of Technol
ogy, Lorentszweg 1, 2628 CJ Delft, The Netherlands. 

partment of Transportation (VDOT) and the Metropolitan Wash
ington Council of Governments (COG). A small portion of the 
study area is monitored by induction loops. One-minute data from 
these induction loops were used to derive the departure time func
tions and to validate the calculation results. 

The research was conducted during a 4-month visit to the Cen
ter for Transportation Research at Virginia Polytechnic Institute 
and State University (Virginia Tech). In accordance with the ob
jectives the study is meant only as an example of the use of dy
namic assignment as a planning tool. Because of the lack of data 
and the short study time the calculated resuHs are not suitable for 
use in making serious planning decisions. The results, however, 
do permit one to determine the usefulness of dynamic assignment 
for planning purposes. 

Briefly discussed are the 3DAS model, the research approach, 
and how the data were derived. Apart from a static assignment, 
three different scenarios are calculated: a morning peak hour sce
nario, a scenario with several ramp metering installations, and a 
scenario with an incident. The results of the model for these· sce
narios are reported. 

3DAS MODEL 

The 3DAS model is based on the work carried out by Hamerslag 
and Opstal (1) and Hamerslag (2,3). The basic feature of a dy
namic assignment model is the partitioning of time into small 
slices, usually referred to as periods. Over the last 2 years the 
model has been improved, in particular its dynamic aspects. The 
3DAS model has been described by de Romph et al. (4,5) and by 
van Grol (6). 

The model determines the flow distribution in the network with 
an iterative process. In each iteration the shortest paths in the 
network are calculated for all origin-destination (OD) pairs and 
for every departure period. The link parameters are defined sep
arately for each period. The properties of the network and the 
travel demand are presumed to be given. 

The basic iteration scheme in Figure 1 is essentially the same 
as that for static assignment models. The difference lies in the all
or-nothing-in-time module. In this module an extra iteration over 
the departure period is needed, and the shortest path must be 
found and the assignment must be performed in time. 

The paths are defined by using the travel time on a link in the 
period in which the traffic· actually traverses the link; that is, the 
trajectory that the traffic follows in time is calculated. The network 
is loaded on the basis of these trajectories. During the assignment 
the contribution of a traveler to the traffic load on a link in a 
certain period is determined by calculating the duration of the 
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traveler's presence on that link in that period. If one focuses on 
one traveler, two situations can occur: 

1. Several links are covered in one period. In this case the 
traveler is present on the link for only a part of the period, and 
therefore should be assigned to the link for only this part of the 
period. 

2. One link is covered in several periods. The traveler is present 
on the link during multiple periods and should be assigned to the 
entire link for each individual period. 

At the start of each iteration the travel times on the links are 
derived from the load of the previous iteration. For each link the 
travel time is calculated with a speed-density function. A relation 
between speed and density instead of the traditional relation be
tween travel time and flow is used. This allows modeling of a 
decreasing flow in the case of congestion. The conservation of 
traffic and the continuity of flow are maintained. In case of over
flow the overflow is assigned to the preceding link on the path in 
the same period. The stop criterion is reached when there is no 
difference in the resulting flows between two successive iterations. 

The 3DAS model has been tested on several small networks 
( 4). Several parameters of the model were calibrated by using 
these networks. The initial settings of these parameters followed 
from these tests and were not changed for the study described 
here. A speed-density function of the following form is used: 

t 

density---::' 

travel times 

Stop criterion 
reached 

FIGURE 1 Iteration scheme. 

(1) 

where 

v max = free-flow speed, 
pcrit = critical density, and 

pmax = maximum density. 

The maximum density represents a no-motion traffic jam. 

RESEARCH APPROACH 
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In accordance with the objectives of the study, the following re
search approach was set up. The first objective consists of the 
following three questions: 

1. Can dynamic assignment be used for planning? Dynamic 
assignment can be used for planning if, given a network and a 
traffic demand, it can predict a correct distribution of traffic flow. 
Since for long-term purposes the traffic demand will represent the 
average demand, the expected traffic distribution will also be aver
age. This is in contrast to real-time applications, when the results 
should be based on the actual situation at that moment. To validate 
the model the average traffic demand and a measured traffic dis
tribution averaged over a longer period are required. 

2. Does dynamic assignment have an advantage above static 
assignment? There are several (well-known) problems with static 
assignment models. A static assignment model 

• Can give wrong results when congestion occurs. Because 
traffic is assigned along the complete route, a car can contribute 
to more than one congestion at the same time. 

• Cannot correctly show the effects of a variable traffic 
demand. 

• Cannot correctly show the effects of temporal disturbances 
such as roadworks or accidents. 

• Cannot predict queue lengths and cannot show how a grow
ing queue can limit the capacity of upstream junctions. 

The authors determined whether dynamic assignment can solve 
these inconsistencies and how it will improve the decision making 
for planning. 
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3. Is dynamic assignment a useful tool for investigating the 
effects of ATMSs? The model has been extended to model several 
ATMS instruments, such as ramp metering, rerouting, and tidal 
flow. To answer the question two tests were executed. The first 
scenario considered several ramp metering installations, and the 
second scenario considered an accident at one of the freeways. 
For the second scenario the effects of diversion measures are 
reported. 

Since the network used for the study is fairly large the second
ary objective of this research, to gain insight into the possibilities 
of and the problems associated with dynamic assignment applied 
on larger networks, is also satisfied by the research approach de
scribed above. 

DATA 

The study area covered the eastern part (Virginia part) of the Cap
ital Beltway around Washington, D.C. The major Interstates are 

:·~~J 

857 nodes and 2086 links in zoom 

FIGURE 2 Study network. 
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I-95, I-395, I-66, and I-495; a large part of the arterial network 
was also included. 

Network 

Figure 2 represents the network used for the study. The network 
consists of 857 nodes and 2,086 links. There are 180 zones. Most 
freeway intersections are represented in a fairly detailed way. Ex
amples of two of these intersections and their detailed represen
tatives are given in Figure 2. Each line in Figure 2 shows a sep
arate one-directional road consisting of from one to four lanes. 

The 2,086 links are divided into 13 types, each representing a 
certain road type. All of the links in one type have the same 
attributes. The attribute for the capacity is not given but is derived 
from the maximum density, the maximum speed, and the speed
density function. 

OD Matrix 

The network is not accompanied by a matching dynamic OD ma
trix. This OD matrix must be constructed from other data sources. 

••• ..__ ____ _:_ __________ __J 
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The best OD matrix available was a (static) 24-hr matrix that 
covers a much larger area. This OD matrix resulted from a study 
by COG. The OD matrix for the study area had to be extracted 
from this OD matrix. To make the OD matrix dynamic, departure 
time functions were used. A departure time function describes for 
each OD pair the portions of the amount of traffic departing in 
each period. These departure time functions can be estimated and 
calibrated with link volume data. 

The COG study (7) was done with 1990 as the base year and 
comprised 293 districts (1,478 zones), which covers the entire area 
of Washington, D.C., and several surrounding jurisdictions in Vir
ginia and Maryland. The network covered 5,983 nodes and 18,104 
links. 

The modef used by COG for the trip generation, distribution, 
and mode choice was a gravity model and was calculated at the 
distict level. The districts were then split into zones via land use 
factors. For production these land use factors were based on 
household and groups-quarter population. For attraction they were 
based on office, retail, industrial, and other employment. The re
sulting OD matrix had 1,478 zones. 

The network used for the study (Figure 2) is only a part of the 
COG network, so the OD matrix for the smaller network (180 
zones) had to be derived from the large OD matrix (1,478 zones). 
All trips made within the study network are easily derived. All 
trips entering, leaving, or passing through the study network were 
derived by a selected link analysis. To perform the selected link 
analysis the OD matrix is assigned to the network with a static 
all-or-nothing assignment. The shortest path is found by using the 
actual speeds in the network. These actual speeds were derived 
from the static assignment done by COG. For all OD pairs 
crossing the selected links the origin and the destination are 
stored. The entering and exiting links become new origins and 
destinations, and the trips are summed. By using this method all 
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entering and exiting traffic is aggregated to the links in which it 
exits or enters the subnetwork. 

Derivation of an OD matrix for the subnetwork by this method 
has one major drawback. Because an all-or-nothing assignment is 
used no alternative routes are chosen for OD pairs. To minimize 
the effects of this problem some links are added to the subnetwork 
to allow a diversion for some origins to different links to enter 
the network. 

Induction Loop Data 

The Northern Virginia Traffic Control Center controls a part of 
the freeway system in northern Virginia. The freeways covered 
are 1-66 and 1-395. These freeways are equipped with several hun
dred induction loops. One minute of data for fixed portion of these 
induction loops can be downloaded on a data tape. Unfortunately, 
the Traffic Control Center is not yet fully equipped, and the down
loading of data from induction loops is therefore not easy. Only 
one tape (1-day) was available for the present research. Although 
the traffic patterns of this 1 day were not sufficient to derive any 
statistical information, they were the best data available. The tape 
used for the study contained data measured on Monday, December 
7, 1992, from 4:00 p.m. until 11:00 a.m. the next day. The number 
of vehicles that passed was registered and downloaded every 
minute. 

Figure 3 gives an impression of the traffic patterns at several 
locations on 1-66. The x-axis shows the time in hours. The reg
istration started at 4:00 p.m. and lasted until 11:00 a.m. the next 
day. The y-axis shows the flow in vehicles per hour. For each 
direction two graphs are shown. The first graph is located at the 
beginning of the freeway, and the second graph is located near 
the end of the freeway. The locations of the induction loops are 
displayed in Figure 4. 
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FIGURE 3 Traffic flow from 4:00 p.m. to 11:00 a.m. (next day) for locations 8 and 27 on I-66 eastbound and 
locations 29 and 51 on I-66 westbound. 
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Figure 3 shows that the peak hour starts at ±5.00 a.m. At lo
cation 8 the flow increases in approximately 1 hr to 4,500 vehi
cles/hr. At ±6:00 a.m. some kind of congestion occurs and the 
flow drops rapidly (possibly an incident). After ±9:00 a.m. the 
flow increases again. The end of the peak hour is at approximately 
11:00 a.m. At location 27, which is farther downstream I-66, the 
flow increases to ± 2,500 vehicles/hr. The two graphs for locations 
29 and 51 show that the flow on I-66 westbound is lower and that 
no congestion occurs in this direction. At location 29 the flow 
increases to ±2,000 vehicles/hr. At location 51 the flow increases 
to ±3,500 vehicles/hr 

On the basis of the induction loop data it was decided to cal
culate a morning peak hour from 5:00 to 11 a.m. This time period 
captures the total morning peak hour, and the graphs show that 
before 5:00 a.m. the network is still reasonably empty. This has 
the advantage that the calculations can be started with an empty 
network. 

Departure Time Functions 

To use a static OD matrix as a substitute for a dynamic OD matrix 
departure time functions are required. A departure time function 
is a discrete function that determines for each.period the percent
age of the OD value that departs during that period. To derive 
these departure time functions induction loop data can be used. 

One departure time function for all OD pairs will not give a 
realistic representation of the dynamic OD matrix for the peak 
hour. The departure time functions of individual OD pairs can be 
quite different. Figure 3 shows that the volume of traffic on I-66 
traveling westward is lower in the morning peak hour and higher 
in the evening peak hour and that traffic departs according to a 
different departure time function. The same observation ws made 
for I-395. This requires at least different departure time functions 
for traffic entering Washington and traffic leaving Washington. For 
this reason the OD matrix is split into four major trip types. For 
each type a different departure time function is used. 

Use of only four different departure time functions will give a 
rather rough reproduction of the traffic patterns. This choice was 
made because of the lack of data that could be used to derive 
more departure time functions and the lack of data that could be 
used to evaluate the results. For estimation of departure time pat
terns more data and maybe some new approaches are desirable. 

MODELING AND CALIBRATION 

On the basis of the available data it was decided to calculate a 
morning peak hour from 5:00 until 11:00 a.m. in 24 periods of 
15 min each. The total time span of 6 hr captures the total morning 
peak hour. The period length of 15 min was chosen for practical 
reasons, that is, to keep the calculation time in bounds. A period 
length shorter than 5 min is not recommended because it suggests 
a level of detail that cannot be reached with the available data. A 
period length longer than 20 min dissipates the dynamics in the 
traffic assignment too much. 

The following four scenarios were considered: 

1. The first scenario is meant to achieve a reasonable repro
duction of the morning peak hour. The departure time functions 
are calibrated with induction loop data, and the resulting flows 
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are compared with the induction loop data. By adapting the de
parture time functions it is possible to reproduce the induction 
loop data at the beginning of a route. When the flow pattern far
ther downstream on that route still matches the induction loop 
data, this is considered a good result. The flow pattern can be 
tested at several locations on the following time-varying form, the 
average height of the flow, and the moments of sudden changes 
in the flow. Since only day of induction loop data was available 
and no information about weather or incidents was available, these 
data do not represent an average flow pattern. Only a rough re
production of volume patterns can be expected. 

2. The second scenario is a static equilibrium assignment com
paring the results with those of a dynamic assignment. The ad
vantages and disadvantages of time variation are studied. 

3. The third scenario introduces ramp metering at all ramps on 
I-66 eastbound and at all ramps on I-395 northbound. The influ
ences on queue length, travel time, and diversion behavior are 
investigated. 

4. The fourth scenario introduces an accident at one of the free
ways (I-66). For this scenario two different situations are calcu
lated. In the first situation the drivers are unaware of the accident. 
This is simulated by using initial travel times for the section with 
the accident. In the second situation the drivers are assumed to be 
fully informed. Here an equilibrium assignment is used. 

The third and the fourth scenarios investigate the possibilities 
of dynamic assignment for ATMSs. The input data used for these 
scenarios are the same as those used for the morning peak hour 
scenario (scenario 1). The departure time functions and the OD 
matrix remain unchanged. 

HARDWARE AND SOFTWARE 

The model is implemented as an X-window program for the UNIX 
operating system. Several different computers were used to run 
the program. We used a Silicon Graphics 320VGX or INDIGO, 
an International Business Machines RS6000, or SUN Sparc2, 
whichever computer was available at the Laboratory for Scientific 
Visualization at Virginia Tech. 

On the Silicon Graphics 320VGX computer one iteration took 
approximately 5 min. In one iteration all of the OD pairs are 
assigned to their time-dependent shortest paths. For this study 
with 180 zones and 24 departure periods, this resulted in 692,040 
OD relations per iteration. 

Large arrays of numbers on paper are difficult to interpret, so 
the visualization of the results is very important. The 3DAS soft
ware displays several results in graphic form. For each link the 
pattern in time can be investigated, and to get an overall impres
sion of the traffic flows, the build-up of traffic jams, and so on, 
the results are displayed in a movielike fashion. Errors in the input 
or other anomalities are easily detected by using a good visuali
zation system. 

RESULTS 

Morning Peak Hour Scenario 

On the basis of the OD matrix, the departure time functions, and 
the network attributes a dynamic assignment was done. Heavy 
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congestion was found on I-66 and I-395 going into Washington, 
D.C.; low levels of congestion were found at several locations on 
the beltway and on certain arterials. The movielike representation 
showed quite clearly where congestion started and how it evolved. 
To give an impression of the results, the flow patterns at two 
locations along I-66 (Figure 4) are shown. 

Figure 4 shows the flow (intensity) at four different locations 
on 1-66. The x-axis represents the time, and the y-axis shows the 
flow. Each bar represents a time period of 15 min. The heights of 
the bars measure the flow, whereas the colors of the bars show 
the density. Light grey represents a low density, and dark grey 
represents a high density. By using this representation the differ
ence between a low flow caused by a high density (dark grey) and 
a low flow caused by a low density (light grey) can be 
discriminated. 

1-66 Westbound 

1-66 Eastbound 
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Figure 4 represents the same locations on 1-66 as the induction 
loop graphs in Figure 3. 

Comparing the graphs in Figure 4 with the induction loop 
graphs in Figure 3, a reasonable reproduction of the traffic distri
bution was found to be possible. On 1-66 eastbound, however, the 
induction loop data show heavy congestion with a low flow (al
most zero). On the basis of the low flow downstream, one may 
assume that there was probably some kind of incident during that 
day. In the simulation a higher flow downstream was found. If 
there really was an incident the differences between the model 
and the induction loop data are explainable. To validate the result 
the flow pattern on the freeways were compared with the induction 
loop data at several places along 1-66 and 1-395. In general a fairly 
good match at 1-66 and 1-395 was achieved. 
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FIGURE 4 Flow calculated by 3DAS for peak hour from 5:00 to 11:00 a.m. at four 
locations (51, 8, 29, 27) on 1-66. 
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FIGURE 5 Velocity (km/hr) calculated by 3DAS at two locations on 1-395. In bars, the 
ramp metering scenario is displayed. The solid line displays the velocity during 
normal peak hour. 

Since no induction loop data for the arterial system were avail
able, no validation for these sections is possible. 

Static Assignment Scenario 

The 3DAS model was compared with a static user equilibrium 
assignment. For the static assignment the results show heavy over
load on the entire 1-66 and 1-395. The results do not point out 
where the congestion starts, that is, where the bottleneck is lo
cated. In particular the downstream occurrences of overflow do 
not exist because of upstream congestion. For example, on 1-66 
the dynamic assignment shows congestion on half of this freeway; 
downstream a free-flow situation exists. The static assignment 
shows an (incorrect) congestion situation downstream as well. 
This might result in incorrect planning decision making. 

The static assignment did not give any insight into the devel
opment of the peak hour as it evolved, and it did not give any 
information on the lengths of traffic jams or how they evolved. 

On the other hand the results of a static assignment were much 
easier to interpret. Many fewer data were produced by the static 
assignment, and it took a shorter period of time to evaluate the 
results of the static assignment. 

Advanced Traffic Management Scenario 

To test whether ATMS strategies can be investigated with 3DAS, 
a scenario with ramp metering was created. Ramp metering is 
introduced on all on-ramps on 1-66 eastbound and all on-ramps 
on 1-395 northbound. Ramp metering is implemented as a simple 
maximum flow limit for all on-ramps. Since the shape of the 
speed-density functions dictates the maximum flow (i.e., capac
ity), the maximum flow limit is achieved by using different speed
density functions. 

Figure 5 compares the ramp metering scenario with the normal 
scenario. The graphs show speed as the heights of the bars and 
density as the colors of the bars for the ramp metering scenario. 
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FIGURE 6 Rerouting behavior. Density in 9th period (7:00 to 7:15): (a) ramp metering scenario; 
(b) normal peak hour scenario. 
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The speed results for the normal peak hour scenario are displayed 
as a solid line in the same graph. The x-axis represents time. 

Figure 5 shows a location halfway on I-395 and one down
stream on I-395. The two graphs de~onstrate that there was a 
noticeable impact. Both locations show slight improvements in 
speed. In Figure 5(a) the temporal decrease in speed at 8:00 a.m. 
in the normal peak hour (solid line) is no longer there. At the 
other location [Figure 5(b)] there is an improvement in speed al
most over the total duration. 

Figure 6 shows the impact that ramp metering has on the ar
terial network. Figure 6 displays a location at the end of I-395. 

Figure 6 was chosen to illustrate that because of ramp-metering 
alternative routes parallel to the freeway could be chosen. Figure 
6(a) shows a slightly darker grey (higher density) than Figure 6(b) 
on the alternative route. On the freeway a slightly lower flow is 
detected. The values show that traffic is avoiding Ramp 1 and that 
a higher density is found on the alternative route. 

Accident Scenario 

To test whether the effects of incidents can be investigated with 
3DAS, an accident was simulated on I-66. The accident was in
troduced by decreasing the capacity for a link by 60 percent. The 
OD matrix and the departure time functions were unchanged. 

1\vo different route choice strategies were used. One strategy 
used the same routes that were chosen during a normal morning 
peak hour; the other route choice strategy was according to an 
equilibrium assignment. The first scenario represents a situation 
in which the accident is unknown to the travelers, whereas the 
second scenario is one in which each traveler is optimally 
diverted. 

In the first scenario (no diversion) there is a traffic jam at I-66 
that grows farther upsteam than in the normal morning peak hour. 
The average speed of the congested links is very low. Figure 7 
shows the situation on I-66. The graphs show the middle section 
of I-66. The density for each link is represented in grey. The 
darker the grey, the higher the density and the lower the speed. 
Figure 7(a) shows the situation in the 5th period, and Figure 7(b) 
shows the situation in the 10th period. 

In the first scenario the drivers did not divert to a different route 
because they were not aware of the accident. In the second sce
nario an equilibrium assignment was used. This means that all 
travelers were informed about the accident and chose their routes 
accordingly. 

The equilibrium assignment gave some remarkable results. The 
total length of the traffic jam that started because of the incident 
did not grow farther upstream than in the normal morning peak 
hour. Comparison with the normal peak hour shows that the length 
of the queue is in fact shorter but the average speed is much lower. 
Arterials around the location of the accident all have heavier 
loads. Figure 7(c) shows I-66 at the 10th period for this scenario. 

When the travel times to traverse the entire length of I-66 are 
compared there is a significant difference between the two acci
dent scenarios. In Figure 8 the normal peak hour travel time is 
compared with the travel. times in the accident scenario and the 
accident with diversion scenario. 

The free-flow travel time on I-66 is 11.5 min. For the normal 
morning peak hour it takes approximately 18 min to traverse 
I-66 for traffic that departs at 7:30 a.m. In the case of the accident, 
when the traffic is rerouted, the travel time increases significantly, 
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although the total length of time of the traffic jam is the same. 
When the traffic is not rerouted the travel time to traverse I-66 
increases to almost an hour for traffic that departs at 7:45 a.m. 

Figure 8 shows that the travel time is shortest during a normal 
peak hour. The scenario with the accident gives a travel time ap
proximately three times as long. When diversion is allowed the 
travel times are approximately 1.5 times as long. This case shows 
an improvement of travel time by approximately 50 percent. Of 
course, this is an extreme case. The worse case is compared with 
the optimal one, and there seems to be enough capacity on the 
arterial network, which could not be validated. 

CONCLUSION 

The present study shows that a dynamic assignment model can 
be very useful for planning applications. A number of clear ad
vantages from using 3DAS instead of static assignment are given. 
The results give more detailed information about the occurrences 
of traffic jams, and the location or the cause of congestion can be 
identified more precisely. To alleviate congestion ATMS measures 
can be simulated, and all kinds of evaluations are possible, such 
as the influence on travel time and jam length and the effects of 
ramp metering and rerouting. 

Dynamic assignment also has the advantage that all kinds of 
temporary disturbances, such as accidents or roadwork, can be 
simulated and the duration of delays can be derived. The study 
also showed that 3DAS can be used with larger networks. 

It must be stressed, however, that data requirements are much 
more stringent. Since by using 3DAS the level of detail is higher, 
the data must also support this level of detail. The accuracy of 
the time variance is directly dependent on the accuracy of the time 
variance of the OD matrix. For the amount of data that 3DAS 
requires and produces it is essential that a good system of organ
izing and maintaining this large amount of data be found. In the 
beginning this may require a great effort, but with increasing ex
perience with 3DAS this disadvantage will probably disappear. 

The calculation time required for 3DAS is longer than that re
quired for static assignment. For planning purposes, however, cal
culation time is not the main concern. Much more important is 
the visualization of the results. Dynamic assignment gives flows 
in time. The best way to analyze the results is in a movielike 
fashion. To do that, a workstation with powerful graphics capa
bility can be used. This is one of the main reasons workstations 
were used for the research described here. When the model is used 
for traffic control and real-time management, a faster computation 
time is needed. This can be achieved by reducing the problem size 
(smaller network). When this is not possible, a faster computer 
could be used. The research described by van Grol (6) toward the 
development of special-purpose hardware for assignment calcu
lations provides a cost-effective solution. 

In the present specific study the amount and the quality of the 
data were very poor, and there wre limited possibilities for veri
fying the data. Since the authors had no insight into the local 
traffic patterns they could not judge the quality of the OD matrix. 
The time spent on this research was too short to make any serious 
planning decisions. The study is therefore primarily meant to in
vestigate the usefulness of dynamic assignment for planning pur
poses. For real planning decisions a more elaborate study is 
required. 
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FIGURE 7 Accident at 1-66: (a) 5th period, 6:15 a.m., no diversion; (b) 10th period, 
7:30 a.m., no diversion; (c) 10th period, 7:30 a.m., with diversion. 
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FIGURE 8 Travel times to traverse 1-66 for four scenarios: free flow situation, 
normal peak hour, accident scenario, and accident with diversion scenario. 
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For ATMSs to be successful there is a large demand for more 
data and better (three-dimensional) matrices. New methods for OD 
estimation and data from more induction loops and probe vehicles 
will provide better results in the future. 

With more time, more knowledge of the local study area, and 
more induction loop data the model has the potential to provide 
reliable information for real planning strategies and driver infor
mation systems. 
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Multiperiod Network Improvement Model 

CHIEN-HUNG WEI AND PAUL SCHONFELD 

As tra~c demand increases over time, improvements to existing trans
por~ation networks must be considered for enhancing efficiency, ca
pacity, or both. Because of limited resources even justifiable projects 
~ay have to be ~pl~mented gradually. The selection and timing of 
IIDprovement projects are very important to ensure the most cost
e:ffective investment plan. Conducting this task for transportation net
works is particularly challenging since the project effects tend to be 
inh~ren~ly interd~pende~t. By inadequately estimating project impacts 
?unng m~erm~drnte penods most existing methods tend to generate 
mappropnat~ IIDprovement plans. The study developed a multiperiod 
network design problem model for the dynamic investment problem. 
A branch-and-bound algorithm was designed to determine the best 
project combinations and schedules. An artificial neural network 
model was used for estimating multiperiod user costs. The proposed 
model can efficiently handle the interdependencies among projects 
and demand changes in each period. This method can be used for 
programming various transportation network improvements or 
transformations. 

Investing in transportation systems to accommodate the increasing 
demand over time is one of the major issues for public agencies. 
Because of resource and other physical limitations, selecting the 
optimal project combination and implementation timing is very 
important for such programs. This problem is particularly chal
lenging since most network projects are highly interdependent. 

Evaluating the interrelations among projects of interest is often 
a critical issue for investment decisions. Several researchers have 
sought to derive appropriate expressions for various interrelations 
among projects. However their efforts have not yielded significant 
breakthroughs. Neither of these results is satisfactory in transpor
tation networks where projects tend to affect each other. The net
work effects that cause such interrelations cannot be examined by 
simple analytical models. Therefore the interdependent terms will 
not be estimated for any project combinations in this paper. In
stead the differences between various aggregate effects will be 
computed and used for comparing the effectiveness of various 
project combinations. 

Existing methods tend to ignore the intermediate period con
ditions and hence may lead to inappropriate solutions. Since traffic 
demand may not increase smoothly over time and throughout the 

' entire network, we should consider the effects of demand changes 
on networkwide operations. Even when the demand increases 
smoothly the resulting network equilibrium could be significantly 
different in each period because of motorist route choice behavior 
and the changing set of projects already implemented. Hence ex
plicit consideration of intermediate-period conditions is essential 
in economic evaluations. 

It may be realized through the above discussions that the most 
suitable timing of various improvements is really dependent on 

C.-H. ~ei, Depart?1ent of Transportation arid Communication Manage
ment Science, National Cheng Kung University, Tainan 70101, Taiwan. 
P. Schonfeld, Department of Civil Engineering, University of Maryland, 
College Park, Md. 20742. 

many factors. Therefore a model for the multiperiod network de
sign problem (MPNDP) is developed for programming transpor
tation network improvements. This model includes the desirable 
features of simultaneously determining the best combination of 
projects and schedules. 

LITERATURE REVIEW 

Although a number of project selection studies have been made 
it seems that relatively little effort has been devoted to assessing 
interactions among projects (1). Researchers typically deal with 
simple interrelations [e.g., see the papers by Fox et al. (2) and 
Gomes (3)] or assume that such information is exogenously pro
vided [e.g., see the paper by Carraway and Schmidt (4)]. 

Hall and Nauda (1) provided a taxonomy that characterizes 
various approaches to research and development project selection. 
A common situation is that such methods generate a preferred 
subset of projects without considering implementation timing. 

The problem of sequencing capacity expansion projects 
(SCEPs) is one of the most widely studied in the project sequenc
ing literature (5,6). It is quantitatively based, requires specific in
formation on demand, and yields decisions on the preferred proj
ects and the corresponding sequence and timing. However SCEP 
and most other sequencing models cannot efficiently handle 
highly interdependent network effects. 

The network design problem (NDP) approach has been applied 
to many network-related problems [e.g., see the papers by Le
Blanc (7), Magnanti and Wong (8), and Janson et al. (9)]. The 
NDP model can consider the systemwide interactions among de
sign decisions and analyze how design decisions affect the oper
ations of a transportation network. However most existing NDP 
models are useful only for one-period decision making (i.e., proj
ect selection). The time dimension must be added to make NDP 
models suitable for project scheduling. 

Akileswaran et al. (10) and Johnson et al. (11) have shown that 
SCEP and NDP models are fairly complex. Hence many researchers 
have used various heuristic solution methods [e.g., Poorzahedy and 
Turnquist (12)]. The most common difficulty encountered in any 
model is evaluation of network performance with respect to various 
changes. For a transportation network the traffic assignment model 
is frequently used to estimate the resulting total travel time. The 
computation time is quite large even for a network of moderate· 
size. 

The artificial neural network (ANN) has been studied as an 
alternative method for evaluating static network effects (13). 
When a time dimension is incorporated the ANN is shown to be 
an efficient prediction model for generating the multiperiod total 
travel times for any network changes (14). However it seems that 
applications of ANNs to transportation problems are just begin
ning (15). To date ANN research or practical applications in trans-
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portation engineering are still rare, although they are increasingly 
popular. 

MPNDPMODEL 

Given a transportation network and a set of improvement projects 
we try to find the optimal combination and schedule of projects 
that minimize the total discounted cost subject to relevant con
straints. This is an MPNDP. We consider a planning horizon con
sisting of several equal discrete time periods (e.g., 1 year) and 
currently focus on capacity expansion of links (i.e., adding or 
improving a link). 

The MPNDP model has the following features: 

1. Both user and incremental supplier costs are considered in 
the objective function, 

2. Periodic budgets are the only resource for construction, and 
the unspent portion may be rolled over into succeeding periods, 

3. Project continuity is preserved, and 
4. The resulting capacity changes in each period are specifically 

considered. 

It is assumed that uncertainties about traffic demands and proj
ect costs may be disregarded (8). Only incremental supplier costs 
with respect to the null (i.e., existing) network will be counted. 
In this paper the projects are treated as immediately available to 
motorists in the first periods they are implemented. Another model 
considering project construction and possible traffic disruption has 
been proposed elsewhere (16). The solution framework discussed 
in the next section may be employed with a slightly different 
interpretation. However the computational burden would increase. 

The following notation is used to present a mathematical for
mulation of the MPNDP model: 

A = set of links; 
Bh = budget for projects in period h; 

Cah = project cost of link a in period h, a E P; 
CRF rr = capital recovery factor for discount rate r and T 

periods; 
H = planning horizon; 
K,, = initial capacity of link a, a E A; 

K,,h = capacity of link a in period h, a E A; 
MANah = maintenance cost of link a in period h, a E P; 

N = set of nodes; 
P (P') = set of links with (without) projects, P' = A - P; 
PVF,h = present value factor for discount rate r in period h; 

Sh= unspent budget in period h; S0 = O; 
X = flow patterns on each link, = (Xah) for a E A and 

h EH; 
r = discount rate; 

xah ,;,, flow assigned on link a in period h; a E A and 
hEH; 

a 0 , 130 = parameters of the travel time function on link a, 
a EA; 

~ = proposed additional capacity on link a, a E P; 
'11 = unit cost of user travel time; 
µ.0 = travel time at zero flow on link a, a E A; and 
'1T0 = capital cost of link a, a E P. 

Assume m projects and T periods are considered. Let V equal 
vah be the m X T decision matrix for a = 1, ... , m, and h = 1, 
••. , T. Each element in Vis defined as follows: 
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v = { 1 if project on link a is in service in period h 
ah 0 otherwise 

Each matrix V represents a particular investment plan that 
specifies the preferred projects and implementation times. To pre
serve project continuity we require 

Va E P, h EH (1) 

For example if link a is to be improved in period 3, then the 
corresponding solution for link a would be v01 = v02 = 0 and 
v03 = v04 = ... = v0 T = 1. By thus defining decision variables 
capacity changes in each time period can be properly incorporated. 
Hence the corresponding average travel times can be accurately 
computed for the improved links. This new idea is presented here 
to reflect the effects of each improvement project. 

The average travel time on link a in period h depends on project 
implementation and equilibrium flow. It is computed by 

(2) 

where 

Va E P, h EH (3) 

Va E P', h EH (4) 

By setting suitable initial link capacities both the link-adding 
and link-improving options can be handled simply by Equation 3. 
The initial capacity K,, may be assumed to be arbitrarily small for 
any possible new link, so that one unit flow will result in an 
extremely long travel time on this link. Therefore no traffic will 
be assigned to a yet nonexistent link. For existing links K,, is equal 
to its current physical capacity. Once this link is added or im
proved the second term on the right-hand side will ensure the 
addition of new capacity to the network. Then appropriate traffic 
volumes may be assigned accordingly. 

The periodic project cost on link a is computed by converting 
the capital cost to a periodic expenditure plus a maintenance cost 
in each period. Hence, 

where 

CRF rr = _r (,,_l_+__;r)'-T -
(1 + r)T - 1 

PvF,h = 1/(1 + rt 

Va E P, h EH (5) 

(6) 

(7) 

In principle the periodic maintenance cost may depend on the 
age or utilization rate of the facility as discussed by Markow 
(17) and Fwa et al. (18). However practically reliable results are 
still underdeveloped (19). Hence MANah is assumed to be a fixed 
fraction of the project capital cost in the present study. 

The system cost is defined for each period as the sum of user 
travel time costs and project costs: 

System cost in period h = L ['l'xahtah(xah' vah) + VahCah] (8) 
a EA 
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It is clear that the system cost depends not only on the project 
implementation decisions but also on the traffic flows on each 
link. Furthermore the flow patterns will be updated according to 
the projects selected up to the current period. There seems to exist 
a hierarchy for this problem. A higher-level position for the de
cisions on projects seems appropriate. Given the decision vari
ables Vah the equilibrium flow assignment may be processed at the 
lower level. Consequently MPNDP is expressed by two subprob
lems at different levels. 

We. now define the solution set n for MPNDP as 

fi = {V; = (vah)lvah = 0 or 1, i = 1, 2, ... , (T + lt} (9) 

A total number of ( T + 1 t possible solutions is included in n 
for the corresponding MPNDP. 

The MPNDP consists of two parts, namely the network priority 
program problem (NPPP) in the upper level and the periodic net
work equilibrium problem (PNEP) in the lower level. The NPPP 
is formulated below as a nonlinear mixed-integer program subject 
to constraints representing periodic funds available and project 
continuity. The NPPP formulation is: 

(10) 

subject to 

2: (vah - Va,h-1)7r)PVF,,h-l + sh - sh_if PVF,,1 = Bh 
aEP 

\:/hEH (11) 

(12) 

Va,h-1 :::;; Vah v a E P, h E H (13) 

Vah = 0 Or 1 Va E P, h EH (14) 

In Equation 10 x:h is the optimal solution of the following network 
equilibrium problem in period h for any given feasible decision 
matrix V. 

The PNEP formulation is: 

J.
Xah 

Minimize Z' = L tah(u, Vah)du 
X a EA O 

(15) 

subject to 

V r, s E Rh (16) 

X 
_ ~ ~ J's~rs 

ah - LJ LJ f<hUakh Va EA (17) 
r ,sERh kEKrsh 

(18) 

where 

Krsh =set of paths connecting origin-destination (0-D) pair r-s 
in period h, for r,s E Rh; 

Rh = set of origins and destinations in period h, Rh ~ N; 
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f~ =flow on path k connecting 0-D pair r-s in period h; 
q,sh =trip rate between 0-D pair r-s in period h; and 
B:~ = 1 if link a is on path k between 0-D pair r-s in period h 

and 0 otherwise. 

The bilevel structure of the MPNDP model is similar to those 
presented by LeBlanc and Boyce (20) and Bard (21). However 
the proposed model is more realistic since the improvements are 
considered for the different demands and corresponding user be
haviors in each period throughout the planning horizon. On the 
other hand this model is considerably more difficult to solve be
cause of the extensive and complex interactions between users and 
planners. 

SOLUTION METHOD 

Considering the project continuity constraint there are only T + 1 
possible decisions for each row (i.e., for each individual project) 
in the decision matrix. These cases may be represented by sum
ming up the values of decision variables in the same row. Hence 
only a row sum variable Va is needed for any possible implemen
tation of project a. Consequently the row sum vector may be ap
propriately constructed with the following definition to replace the 
decision matrix V: 

Va= T + 1 - 2: Vah 
h=l 

\:/aEP 

In Equation 19 T stands for the transpose of a vector. 

(19) 

(20) 

The row sum variable is a convenient representation since each 
value corresponds to a decision on project selection and sched
uling. Then we may modify Equation 9 as 

fi = {RS;li = 1, 2, ... , (T + lt} (21) 

Note that with Equations 19 through 21 all elements in the set 
n already implicitly fulfill the project continuity constraint. Hence 
only the budget constraint remains to be satisfied in the solution 
procedure. 

It has been shown that an efficient project sequence is quite 
helpful in the solution process [e.g., Erlenkotter (22), Janson and 
Husaini (23), and Martinelli (24)]. It is usually obtained by rank
ing the relative effects of projects on the system. A good initial 
project sequence can speed up the proposed solution method. The 
initialization criterion used here is the saving/cost ratio of each 
individual project. 

To solve the MPNDP a branch-and-bound. (BB) procedure 
along with an ANN model is developed. The proposed procedure 
can cost-effectively evaluate the resulting system cost for each 
solution considered and screen inferior solutions to quickly obtain 
the optimal solution. 

ANN Model 

The motivation and justification of using the ANN approach is its 
small predictive error as well as its reasonable computational bur-
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den. In particular when only the total travel time in a transporta
tion network is needed a relatively simple ANN model may serve 
as a proxy for the conventional traffic assignment model (14). 
However several specific choices must be made for the training 
parameters. 

The ANN model is constructed to compute the system equilib
rium (SE) user travel times, taking into consideration the effects 
of project selection, scheduling, and different demands over time. 
The desirable feature of the ANN approach is that, after the ANN 
is trained, it may be repeatedly used for any analysis on the 
MPNDP, in which each replication requires very little computation 
time. The ANN approach is especially suitable for relatively large 
transportation networks in which long computation times are usu
ally required for traffic assignments. Some relevant discussion and 
validation are provided by Wei (16). 

BB Procedure 

Considering various factors in the transportation network im
provement problem, a preliminary conclusion is that lower total 
system costs tend to be associated with the earlier implementation 
of projects. Hence the objective function of NPPP is roughly a 
U-shaped curve skewing to smaller values of row sum variables. 
This property is particularly important on capacitated networks 
where congestion effects increase user travel time exponentially. 
The proposed BB method is mainly based on this observation, 
and detailed discussions may be found in Wei (16). 

With the initial project sequence a synthesized branch rule is 
developed and the ANN model is activated whenever a lower 
bound (LB) is needed in the solution process. The conventional 
traffic assignment is used to estimate the user equilibrium (UE) 
user travel times for each complete solution. On the basis of the 
branch rule the proposed BB method would generate a tree with 
as many levels as the number of row sum variables (i.e., number 
of projects). Hence the level index L is also used as the project 
index. 

To monitor the progress of the BB method a list containing the 
branch indexes in descending order is needed. Information about 
the new branch is added to the top of the branch index list. Each 
branch index is associated with a partial solution or a complete 
solution when the level index is equal to m. In any case the branch 
with the largest index is at the top of the list and will be processed 
first. As a general rule the indexes of branches from the same 
predecessor should be labeled in the reverse order of the assigned 
values for the variables under current consideration. The branch 
index and associated information will be removed from the list 
after further partitioning or fathoming is accomplished. 

The core of the proposed BB method is to choose the best 
possible solution (BPS) for each branch, given the decision on 
already specified projects. Since each branch represents a number 
of possible solutions, the intelligently derived BPS would suffi
ciently reflect the goodness of the associated solutions. Such a 
task is accomplished by estimating and updating the earliest im
plementation times (EITs) of all unspecified projects. 

The EIT of project a, ha, is the smallest time index in which 
project a may be implemented without violating.the relevant con
straints as well as the schedule of already specified projects. For 
each partial solution updating of EITs is equivalent to choosing 
the smallest values for free row sum variables according to the 
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fixed values of other variables. The proposed procedure is de
scribed below. 

At level 0 (i.e., root of the BB tree) the EITs of all projects are 
verified by 

VaEP (22) 

For partial solutions at level L > 0 the first L projects have been 
specified to have fixed values. The remaining m-L variables are 
free, and their updated EITs corresponding to those fixed variables 
must be decided. The largest value among the already specified 
variables is identified by 

v' = {max{v;li :::; L} 
L 0 otherwise 

if some v; :::; ,. 
(23) 

vf indicates the last period for accumulating available budget. 
When. vf is zero the projects specified so far are not to be imple
mented and the budget is not used at all. Thus the EITs of the 
free variables are set equal to h~, obtained in Equation 22. For 
nonzero vf the remaining budget is then obtained by subtracting 
the construction costs of the already implemented projects. 

The appropriate EITs for free variables are determined by one 
of the following conditions: 

1. If the remaining budget is larger than any construction cost 
of the free projects, the prevailing unspecified projects may be 
also implemented before period vf without exceeding the budget 
limit. Thus when Equation 24 holds for any free project the cor
responding EIT is set equal to the EIT obtained in its predecessor 
node. 

vi_ L 

L B,,PVFr,h-l - L 'lTa ;;::::= 'lT; (24) 
h=l a=l 

2. Otherwise the EIT of free project i is obtained by 

Note that the EIT of each unspecified project obtained is thus 
based on the budget relaxation proposed by Wei (16). This is to 
ensure the feasibility of already chosen projects and the achieve
ment of lower costs from all unselected projects. Thus the greatest 
contribution that each project may yield to the system is obtained 
on the basis of the currently established network. Such budget 
relaxation is also desirable to reduce the problem complexity since 
the not yet considered projects will compete for the remaining 
budget. As a result the complete solutions in the BB tree are 
always budget feasible. 

With the above treatments new branches can be created rapidly 
and more partial solutions can be examined for their system ef
fectiveness. Since the ANN model is fairly efficient the lower 
bound is quite tight and the overall solution process is very fast. 
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Algorithmic Procedures 

The complete solution algorithm for the MPNDP is condensed as 
follows: 

Step 0: Preprocess. Presort projects according to their relative 
system effectiveness and assign the project index in that order. 

Step 1: ANN Training. Train the ANN by using the methods 
discussed by Wei (16). 

Step 2: Initialization. 
a. Set L equal to 0. 
b. Compute initial upper bound (UB) equal to ZuE under 

the current network configuration. 
c. Compute the EITs at level L for all projects by using 

Equation 22. 
Step 3: Branching. 

a. Set L equal to L + 1. 
b. First, for L < m partition vL according to the updated 

BIT, assign branch indexes, generate partial solutions, 
and put this information on the branch index list. Sec
ond, for L equal to m partition vm according to the 
updated BIT, assign branch indexes, generate complete 
solutions, and put this information on the branch index 
list. 

Step 4: Bound Computation. 
a. Pick the first branch and the associated partial solution 

from the list revised in Step 3. 
b. If L is equal to m go to Task A. Otherwise obtain the 

updated EITs for free variables by using Equation 24 
or 25, estimate the SE total travel time for the corre
sponding BPS with the trained ANN, and compute the 
LB. 

Step 5: Comparison. 
a. For LB greater than or equal to UB fathom this solu

tion and go to Task B. 
b. For LB less than UB go to Step 3 if L is less than m; 

otherwise store this incumbent solution, set UB equal 
to LB, and go to Task B. 

Task A: Computing ZuE for Complete Solutions. For the com
plete solution perform UE traffic assignment and compute ZuE 

under the current project schedule. Set LB equal to ZuE and go to 
Step 5. 

Task B: Checking the Branch Index List 
a. For L equal to 1: 

• If there is no branch at the same level, stop the 
BB process; the latest incumbent solution is the 
optimal solution. 

• Otherwise go to Step 4. 
b. For L greater than 1: 

• If there is no branch at level L go to level L - 1. 
If there is no branch at level L - 1, set L equal 
to L - 1 and go to Task B; otherwise set L equal 
to L - 1 and go to Step 4. 

• Otherwise go to Step 4. 

For a three-project, 5-year case discussed by Wei (16) the BB 
solution process is shown in Figure 1. Note that because of the 
relatively small problem size the total costs of possible solutions 
are quite close. Hence quite a few complete solutions are evaluated 
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at the lowest level. As shown in the next section the proposed 
solution method is ·very efficient and only a few complete solutions 
need to be evaluated when a practical problem size is considered. 

NUMERICAL EXAMPLE 

A realistic problem is used in this section for demonstrating the 
solution method proposed for the MPNDP model. The relevant 
information was provided by the Maryland State Highway Ad
ministration for a related study (25). The characteristics of this 
illustrative problem are practical enough that it can be used to 
validate the usefulness of the proposed methodology for real
world problems. 

To alleviate future congestion in Calvert County, Md., five proj
ects are considered, as shown in Figure 2. Projects X, Y, and z 
add one more traffic lane to the associated links in each direction. 
Alternatively projects P and Q provide bypass routes for most of 
the congested areas. The bypass routes are assumed to be two
lane, two-way highways. 

These five projects, if all are completed, would greatly relieve 
future traffic congestion. However this is hardly possible because 
of limited funds. In addition since two parallel routes exist for 
most of the congested areas the project effects tend to overlap. 
Hence installing two parallel projects simultaneously is unlikely 
to be efficient. 

Projects are considered for a 12-year planning horizon, from 
the years 1999 to 2010. All cost and saving computations will be 
based on the present value in the year 1999. The primary factors 
used for these computations are listed in Table 1. According to 
Equation 21 there are 135 (371,293) possible combinations of proj
ects and schedules to be evaluated, which is not a trivial task. 

To set up an MPNDP for this case a number of preliminary 
analyses are conducted. Without improvements it is found that the 
overall average speed is reduced from 38.25 mph in the year 1999 
to 20.86 mph in the year 2010. Hence significant improvements 
on this. highway system are desirable to preserve a reasonable 
level of service. The effects and capital costs of each individual 
project are listed in Table 2. The last column in Table 2 shows 
the cost-effectiveness rank of each individual project and consti
tutes the solution of many scheduling methods. 

Table 2 also provides some information about project combi
nations. In particular the total user travel time is almost halved 
and the average travel speed is almost preserved at the year 1999 
level if all projects are implemented. Nevertheless the correspond
ing travel time savings are notably less than the sum of individual 
ones. This explicitly indicates the interdependencies among vari
ous projects. 

According to the factors listed in Table 1 the total cost of the 
null system is $2,371 million. Assuming that the available budget 
is $15 million/year, this test problem is solved with a trained ANN 
and the proposed BB method. The solution process takes only a 
few seconds of central processing unit time on a 486-based per
sonal computer. The optimal scheduling solution for (P X Y. z 
Q) is (3, 11, 5, 5, 13), with a total cost $1,743 million. The,co~tl; 
project Q is not considered for implementation, although its time 
savings is among the highest. The system cost savings that would 
result from this implementation plan are $628 million (or 26 per
cent of the null alternative) for the 12-year planning horizon. 
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FIGURE 1 Illustration of proposed BB method. 

It is helpful to justify the usefulness of the proposed method
ology by comparing its results with those of the scheduling de
cision obtained on the basis of independent project effects. The 
approach is to use the independent sequence shown in Table 2 
and to determine the project implementation times that lead to the 
minimum total cost. Given the same conditions discussed above 
the optimal scheduling solution is (3, 4, 7, 11, 13) and has a total 
cost $1,841 million. It is clear that a better solution, with $98 
million of additional savings, is found by considering project 
interdependencies. 

The effects of various budget levels are analyzed. The approach 
is to restrict the annual budget so that the present value of total 
budgets is a certain fraction of the total project costs. Six budget 
levels, from 50 to 100 percent of total project costs, are consid
ered, and the results are shown in Table 3. It is interesting to note 
that optimal solutions for different budget levels yield similar im
provement effects over the null system, as shown in the last col
umn of Table 3. However the optimal scheduling solutions and 
the corresponding total system costs are quite different. 

It is found that for lower budget levels (e.g., 50 and 60 percent) 
improvements .on existing links are preferred since the associated 
costs are usually lower. The new bypass routes are either deferred 
or not considered for installation. If, however, the budget is in-

UW36.I LB-435.7 

sufficient (e.g., 70 percent or higher) new links may be added in 
the early stages. 

Table 3 also provides information on the processes of the pro
posed BB method, that is, the numbers of nodes created and the 
numbers of feasible solutions evaluated. Since the nodes represent 
both partial and complete solutions generated throughout the so
lution procedure, this information indicates that the proposed BB 
method is fairly effective. The infeasible or inferior solutions are 
screened out efficiently because of the specially designed branch
ing and bounding rules. Only a small fraction of possible solutions 
must be evaluated. This demonstrates the highly desirable prop
erty addressed in the previous section. Additionally the informa
tion about BB nodes seems to indicate that the proposed method 
is best suited for budget levels of between 80 and 100 percent of 
total project costs. 

POTENTIAL APPLICATIONS 

The MPNDP model and solution method proposed in this paper 
is especially designed for prioritizing interrelated projects in trans-
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FIGURE 2 Proposed projects for Calvert County, Md., by year 2010. 

portation networks. Below several potential applications of the 
proposed MPNDP model are discussed. 

Application in Highway Maintenance Pfanning 

Conventional highway maintenance planning tends to neglect the 
impacts on roadway users (19). Hence the resulting maintenance 
plan is rarely the best conceivable. The combined costs of high-

way maintenance and traffic operations must be considered for 
proper maintenance planning. In particular when major rehabili

. tation is undertaken the influence on existing traffic patterns is 
fairly significant. 

Various maintenance alternatives may be treated as possible 
projects that recover the network performance to different levels. 
Then the traffic assignment model may be used to estimate the 
aggregate utilization of the roadway system. Consequently the 
mutual influences between the user and the facility can be properly 
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TABLE 1 Parameters Used for Methodology Demonstration 

Item 

Unit Value of Time ($/Yeh-hour) 
Peak Hour to Day Ratio 
Day to Year Ratio 
Planning Horizon (Years) 
Interest Rate ( % ) 
New Construction Cost (Million $/Lane mile) 
Roadway Widening Cost (Million $/Lane mile) 
Ratio of Overhead and Other Costs to Construction Cost ( % ) 
Annual Maintenance to Construction Cost Ratio(%) 

TABLE 2 Project Effects and Ranking in Year 2010 

Length Project Total Speed3 UTT 
Project miles Cost1(A) UTI2 MPH Saving(B) 

Null 15500 20.86 
p 5.40 29.2 12242 26.32 3258 

x 5.98 21.5 13621 23.69 1879 
y 10.27 37.0 12359 26.07 3141 

z 8.38 30.2 13937 23.26 1563 

Q 12.88 69.6 12351 26.02 3149 

Combination 

XYZ 24.63 88.7 9000 35.73 6500 

PQ 18.28 98.8 10956 28.99 4544 

ALL 42.91 187.5 8521 36.82 6979 

1Million dollars 
2User equilibrium travel time, veh-hours/peak-hour 
3Average peak hour speed at network level, miles/hour 

Value 

10.0 
0.15 

11300 
12 
6 
4.5 
3.0 

20 
1.55 

BIA 
Ratio 

112 

87 

85 

52 

45 

73 

46 

37 

taken into account. For example the actual deterioration would 
depend on route selection by drivers, which in tum affects main
tenance needs. 

HOV Lanes and IVHS Applications 

The proposed MPNDP can be applied to evaluate various traffic 
improvement plans. For example it can be used for determining 
the suitable stages for introducing high-occupancy-vehicle (HOV) 
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lanes in different locations. With small additional efforts the pro
posed methodology may also be used to plan advanced transpor
tation systems, for example, intelligent vehicle-highway systems 
(IVHSs). 

A critical issue in these applications is assessment of the traffic 
pattern changes uwing to HOV lanes or various IVHS technolo
gies. In particular only a fraction of conventional users and facil
ities will be affected. Special traffic assignment models are thus 
needed to deal with vehicles with various occupancies or 
equipment. 

With such information proper samples for ANN training can be 
generated according to the plans under consideration. Then the 
MPNDP for implementing HOV lanes or IVHS technologies 
within a certain horizon can be formulated and solved by the 
proposed BB method. 

CONCLUSIONS 

Selecting the optimal project combination and implementation 
timing is very important for transportation systems. This problem 
tends to be fairly difficult since complex project interrelations of
ten exist. The main drawbacks of most existing methods are long 
computation times and neglect of conditions in the intermediate 
period. The latter may lead to inappropriate solutions. A model 
for multiperiod transportation network priority programming was 
developed in the study described here. This model has the desir
able features of simultaneously determining the best combination 
of projects and schedules. The proposed model. is more realistic 
than others since the improvements are considered for the different 
demands and corresponding user behaviors in each time period 
throughout the planning horizon. 

To solve the MPNDP a BB procedure is specifically designed. 
The ANN approach is adapted to compute the resulting user travel 
times, taking into consideration the effects of project selection, 
scheduling, and different demands over time. The overall solution 
method can evaluate possible solutions very cost-effectively and 
can screen out many inferior solutions to save computational ef
forts. The numerical examples show that only a small fraction of 
possible solutions must be evaluated and the proposed BB method 
seems to be especially fast for budget levels of between 80 and 
100 percent of total project costs. 

The MPNDP model may be considered for many other network
related problems in which interrelated projects must be scheduled. 

TABLE 3 Results for Various Budget Levels 

Budget Annual BB #Feasible Optimal Total Improvement 
Level1 Budget Nodes2 Solutions Solution Cost Over Null3 

50% 10.5 463 9 (11,3,4,13,13) 1722 27% 

60% 12.5 565 7 (10,2,4, 13, 13) 1687 29% 

70% 15.0 120 4 (3, 11,5,5, 13) 1743 26% 

80% 17.0 75 3 (8,2,3,9, 13) 1726 27% 

90% 19.0 49 2 (2,3,8,5'13) 1729 27% 

100% 21.l 42 2 (2,3,5,7, 13) \ 1747 26% 

1Total project cost = 187.5 
2Nodes created in the branch-and-bound solution process 
3Total cost of null alternative = 2371 
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Several conceivable extensions of the proposed methodology are 
worth pursuing, for example, highway maintenance planning, suit
able stages for HOV lanes in different locations, and the transition 
timing of various IVHS technologies. 
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