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New and Improved Unsymmetrical 
Vertical Curve for Highways 

SAID M. EASA 

A new unsymmetrical vertical curve for highways that provides im
portant desirable features is developed. The curve has unequal hori
zontal projections of the tangents, but its component parabolic arcs 
are equal. The new curve minimizes the difference between the rates 
of change of grades of the two arcs and consequently provides a 
smoother ride and is more aesthetically pleasing. The curve also im
proves the sight distance, reduces the length requirements, increases 
rider comfort, and increases the vertical clearance compared with the 
traditional unsymmetrical vertical curve. These desirable features 
should make the new unsymmetrical vertical curve an important el
ement in vertical alignment design. 

The traditional unsymmetrical vertical curve consists of two un
equal parabolic arcs that meet at the tangents' intersection. The 
geometric characteristics of this curve have been presented in 
highway and surveying engineering texts (1-3). AASHTO points 
out that on certain occasions, because of critical clearance or other 
controls, unsymmetrical vertical curves may be required ( 4,5). 
However, because the need for these curves is infrequent, no in
formation on them has been included by AASHTO. 

Approximate relationships between the length of an unsym
metrical crest vertical curve and sight distance have been devel
oped ( 6). These relationships assume that, for minimum sight dis
tance, the line of sight is tangent to the point of common curvature 
and, consequently, may greatly underestimate the curve length re
quirements. Exact length requirements of crest and sag vertical 
curves that satisfy sight distance needs have been developed (7,8). 

The traditional unsymmetrical vertical curve has some limita
tions caused by fixing the point of common curvature at the tan
gents' intersection. First, the difference between the rates of 
change of grades of the two arcs is generally large. As a result, 
the minimum available sight distance, which is controlled by the 
sharper arc, is short and the required curve is long. Second, the 
curve is not smooth and is less aesthetically pleasing. Third, for 
fixed ends of the unsymmetrical vertical curve, the required ver
tical clearance may not be satisfied and the curve is not suitable 
when it must pass through a fixed intermediate point. 

In this paper a new unsymmetrical vertical curve that minimizes 
the difference between the rates of change of grades of the two arcs 
is developed. The improvements in sight distance, curve length re
quirements, rider comfort, and vertical clearance achieved by this 
curve are examined. Before presenting the new unsymmetrical ver
tical curve, the traditional unsymmetrical vertical curve is described. 

TRADIDONAL UNSYMMETRICAL VERTICAL 
CURVE 

A traditional unsymmetrical crest vertical curve (hereafter called 
the traditional curve) is shown in Figure 1. The curve cons_ists of 
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two parabolic arcs that have a common tangent at the point of 
common curvature (PCC). The PCC lies at the intersection of the 
two tangents, known as the point of vertical intersection (PVI). 
The beginning and end points of the vertical curve (BVC and 
EVC) have tangents with grades gi and gz (in percent), respec
tively. The algebraic difference in grade, A, equals lg2 - gil· For 
crest vertical curves (g2 - gi) is negative, and for sag vertical 
curves it is positive. The absolute value of (g2 - gi) is used so 
that A is positive for both crest and sag vertical curves. The rates 
of change of grades of the two arcs are given by Hickerson (J) 

ALz 
r ----

i - 100 LLi 

ALi 
r ----

2 - 100 LL2 

where 

r1 =rate of change of grades of the first arc, 
r2 =rate of change of grades of the second arc, 
A= algebraic difference in grade (in percent), 
Li = length of the first arc, 
L2 = length of the second arc, and 
L = total length of the curve (Li + L2). 

(1) 

(2) 

Note that ri and r2 will be positive for both crest and sag ver
tical curves. When Li = L2 = L/2, Equations 1 and 2 give r1 = 
r2 = A/100 L, which is the rate of change of grades of a sym
metrical vertical curve, r. For an unsymmetrical vertical curve in 
which L 1 < L2, for example, ri > rand r2 < r. This indicates that 
the first arc has a larger curvature (is sharper) than the symmetrical 
vertical curve, whereas the second arc has a smaller curvature (is 
flatter) than the symmetrical vertical curve. 

A convenient parameter for describing the unsymmetrical ver
tical curve is R, which is defined as the ratio of the length of the 
shorter tangent (or shorter arc in the case of a traditional curve) 
to the total curve length, 

Expressing Equations 1 and 2 in terms of R gives 

A(l - R) 
ri = 100 LR 

AR 
rz = 100 L(l - R) 

(3) 

(4) 

(5) 
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FIGURE 1 Traditional unsymmetrical crest vertical curve (L1 < L2). 

For R = 0.5, Equations 4 and 5 give ri = rz = A/100 L, and the 
traditional curve reduces to a symmetrical vertical curve. 

NEW UNSYMMETRICAL VERTICAL CURVE 

The new unsymmetrical vertical curve is derived from a general 
unsymmetrical vertical curve in which PCC is located at an ar
bitrary point. A description of the general and new unsymmetrical 
vertical curves follows. 

General Unsymmetrical Vertical Curve 

The geometry of a general unsymmetrical vertical curve is shown 
in Figure 2. PCC is located at a distance di from BVC and a 
distance dz from EVC. Suppose that the horizontal projection of 
the tangent Li is less than Lz. The derivation of the rates of change 
of grades of the two arcs follows. 

From Figure 2, the distances ab, be, and ae are given by 

A 
ab= -(d - L) 100 i i 

(6) 

(7) 

(8) 

Since ab = ae - be, then 

(9) 

Also, from Figure 2, 

(10) 

(11) 

Solving Equations 9 and 11 for ri and rz, and noting that dz = 

L - di. then 

A(L + d1 - 2Li) 
ri = 100 Ld1 

(12) 

(13) 

Equations 12 and 13 are applicable only if Li < Lz. If Lz < Li. 

ri and rz are given by 

A(L - 3di + 2Li) 
ri = 100 Ldi 

(14) 

(15) 

Note that when PCC lies at PVI (d1 = L 1), the preceding equations 
for Li < Lz and Lz < Li reduce to Equations 1 and 2 of the 
traditional curve. 

Derivation of New Curve 

The variation of ri and rz of Equations 12 and 13 with di is shown 
in Figure 3, which corresponds to a general unsymmetrical vertical 
curve with g 1 = +2 percent, gz = -3 percent, Li = 250 m, and 
L = 800 m. When di = 0, ri = oo and rz has a finite value. As di 
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FIGURE 2 General unsymmetrical crest vertical curve (L1 < L2). 

increases, both r1 and r2 decrease but r1 is a convex function of 
di and r2 is a concave function of d1• For d1 = 2Li. Equations 12 
and 13 give r1 = A/200L1 and r2 = 0, respectively. Therefore, 
values of d1 equal to or greater than 2L 1 are infeasible. The ob
jective is to find d1 that corresponds to the minimum difference 
between ri and r2 • Let the difference be denoted by F, 

(16) 

Substituting for r1 and r2 from Equations 12 and 13, Equation 16 
can be expressed in terms of d1 as 

F = A(L - 2Li) 
100 d1 (L - d1) (17) 

;;- o.3...------------------:-----, 
0 ,.. 
.?!. 

,.. ... 
rii 
w 
c 
< a: 
CJ 
u. 
0 
w 

0.2 

CJ 0.1 
z 
< 
J: 
() 

u. 
0 
w 
I
< a: 

r1 

r2 

Parameters: 

g1 = +2"A. 

g2=-3% 

L1 =250m 

L:BOOm 

LENGTH OF FIRST ARC, d1 (m) 

Infeasible 

FIGURE 3 Variation of rates of change of grades with length 
of first arc. 

600 

The minimum value of F occurs when the first derivative of F 
with respect to d1 equals zero. Differentiating both sides of Equa
tion 17 and equating dF/dd1 to zero yields 

(18) 

where d; is the length of the first arc corresponding to the mini
mum value of F. On the basis of Equation 18, then 

• L 
d1 = -

2 (19) 

That is, the minimum value of F occurs when the two arcs of the 
unsymmetrical vertical curve are equal. This curve is referred to 
throughout as the equal-arc unsymmetrical (EAU) curve. The con
dition of Equation 19 corresponds to a minimum difference be
tween r1 and r2 (not a maximum) because the second derivative 
of F can be shown to be always positive. Figure 4 shows the 
variation of F with the length of the first arc, di. and the minimum 
point, which occurs at L/2. 

Substituting for d1 = L/2 into Equations 12 and 13, r1 and r2 of 
the EAU curve are obtained as 

A(3L - 4L1) 
r -

I - 100 L2 (20) 

A(-L + 4Li) 
r -2 

- 100 L2 (21) 

Expressing Equations 20 and 21 in terms of R of Equation 3 gives 

A(3 - 4R) 
r1 = 

lOOL 
Li< Lz (22) 

A(-l + 4R) 
Li< Lz (23) rz = 

lOOL 
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For L2 < LI> Equations 22 and ·23 are applicable, where R = LJ 
L. Note that for R = 0.5, Equations 22 and 23 give r1 = r2 =Al 
100 L and the EAU curve becomes a symmetrical vertical curve. 
The traditional and EAU curves are drawn in Figure 5 for L 1 = 
250 m, L = 800 m, g1 = +2 percent, and g2 = -3 percent. A 
symmetrical vertical curve with the same length as the unsym
metrical vertical curve is also shown. 

Clearly, the EAU curve is smoother because the difference be
tween r1 and r2 is minimal. The ·EAU curve is also more aesthet
ically pleasing because it not only reduces the difference between 
r1 and r2 but also makes the transitions at BVC and EVC less 

·abrupt. This is true because the larger rates of vertical curvature 

(105) 
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of the two parabolic arcs of the EAU curve are more harmonious 
with the tangents whose rates of vertical curvature are infinity. 
The effect of the EAU curve on aesthetic appearance somewhat 
resembles the effect of a transition (spiral) curve on horizontal 
alignment. 

PRACTICAL CONSIDERATIONS 

Besides being smoother and more aesthetically pleasing, the EAU 
curve improves sight distance, requires a shorter length to satisfy 
a specific sight distance, increases rider comfort, and increases 
vertical clearance above that of a traditional crest vertical curve 
or below that of a traditional sag vertical curve. These benefits 
are quantified next. 

Improving Sight Distance 

The EAU curve improves the minimum sight distance compared 
with that of the traditional curve because both r1 and r2 of the 
EAU curve are smaller. Although exact models for computing the 
sight distance on the EAU curve are not available, the magnitude 
of the improvement can be approximately quantified. By using an 
idea by Guell (9), the minimum available sight distance and length 
requirements can be found on the basis of the sharper arc of the 
unsymmetrical vertical curve. 

For the traditional curve, the minimum required length is 

L = KA_('--1 _-_R-'-) 
R 

(traditional curve) 

550 

400 

(24) 

FIGURE 5 Comparison of traditional and EAU crest vertical curves (units in meters). 
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where K is the required rate of vertical curvature, which is the 
horizontal distance in meters (or feet) required to effect a 1 percent 
change in the grade, as given in AASHTO tables (5). For a crest 
curve, K is given by 

s2 
K- m 

- 100 (\!21l; + V2h;.)2 (25) 

where Sm = required minimum sight distance and h1 and· h~ = the 
driver's eye and object heights, respectively. From Equations 24 
and 25 

lOOLR 
[ ]

1/2 

Sm = (\!2Jl; + V2ilz) A(l - R) (traditional curve) 

(26). 

For the EAU curve, the sight distance is controlled by the first 
(sharper) arc, which is true only when L 1 < L 2• Since r 1 = l/lOOK, 
where r 1 is given by Equation (22), then 

L K=----
A(3 - 4R) 

(27) 

from which L and Sm are 

L = KA(3 - 4R) (EAU curve) (28) 

lOOL 
[ ]

1/2 

Sm = (\!2Jl; + V2ilz) A(3 - 4R) (EAU curve) (29) 

The percentage increase in Sm achieved by the EAU curve, on "the 
basis of Equations 26 and 29, can be obtained as 

R(3 - 4R) 
{ [ ]

1/2} 
Percent increase in Sm = 100 1 - (l _ R) (30) 

Table 1 shows the percentage increase in Sm for various values 
of R. The increase in Sm is greater for smaller R and reaches 26 
percent for R = 0.2. For R = 0.5 both the traditional and EAU 
curves become a symmetrical vertical curve, and therefore no in
crease exists. 

Reducing Curve Length Requirements 

The required length of the EAU curve that satisfies a given sight 
distance (or K) is less than that of the traditional curve. The re-

TABLE 1 Increase in Sm Achieved by 
EAU Curve 

R 

0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

Increase in 
Sm(%) 

26 
18 
12 
7 
3 
1 
0 
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duction in curve length, on the basis of Equations 24 and 28, can 
be obtained as 

100(1 - 2R)2 

Percent reduction in curve length =. ) 
(1 - R 

(31) 

Table 2 shows the percentage reduction in L for various values 
of R. The reduction in curve length achieved by the EAU curve 
is significant and reaches 45 percent for R = 0.2. 

For example, find the required length of an EAU crest vertical 
curve with R = 0.3 to satisfy stopping sight distance on a highway 
with g 1 = +2 percent, g2 = -4 percent, and an 80-km/hr (50-mph) 
design speed. For this crest vertical curve, A = l-4-21 = 6 per
cent. From AASHTO (5), K = 36.70 m (120.39 ft) and the min
imum required length, on the basis of Equation 28, is 397 m. For 
comparison, the minimum required length of the traditional un
symmetrical vertical curve is 514 m (the EAU curve length is 23 
percent less). 

Increasing Rider Comfort 

The comfort effect caused by a change in vertical direction is 
greater on sag than on crest vertical curves because the centrifugal 
vertical force and the gravitational force are combining rather than 
opposing forces (5). The EAU curve reduces the centrifugal ver
tical acceleration on both sag and crest vertical curves and there
fore increases comfort, especially on sag vertical curves. The cen
trifugal vertical acceleration equals the square of the design speed 
divided by the rate of vertical curvature, 

vz 
C=--

1,300 K 

where 

C = centrifugal vertical acceleration (rn/sec2), 
V =design speed (km/hr), and 

(32) 

K = rate of vertical curvature (rn/percent change of the grade). 

By substituting for K of the traditional and EAU curves from 
Equations 24 and 27, respectively, into Equation 32, the corre
sponding centrifugal vertical accelerations on the first (sharper) 
arcs are 

C = V
2
A(l - R) 

1,300 LR 

C = V
2
A(3 - 4R) 
1,300 L 

(traditional curve) 

(EAU curve) 

TABLE 2 Reduction in Curve Length 
Achieved by EAU Curve 

R 

0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

Reduction in 
L(%) 

45 
33 
23 
14 
7 
2 
0 

(33) 

(34) 
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FIGURE 6 Comparison of centrifugal vertical accelerations of 
traditional and EAU sag vertical curves. 

The centrifugal vertical acceleration of the EAU curve is smaller 
than that of the traditional curve. The percent reduction in C 
achieved by the EAU curve is given by the right side of Equation 
31. Figure 6 shows the variations of C with L for the traditional 
and EAU curves, for V = 80 km/hr (50 mph), A = 6 percent, and 
R = 0.3. For this value of R, the centrifugal vertical acceleration 
on the EAU curve is 23 percent less than that on the traditional 
curve for any given L. 

AASHTO points out that riding is comfortable on sag vertical 
curves when the centrifugal vertical acceleration does not exceed 
0.3 m/sec2 (1 ft/sec2

). The length of sag vertical curve that satisfies 
this comfort factor is much less than the headlight sight distance 
requirement. Therefore, the headlight criterion is used by 
AASHTO for the design of sag vertical curves (5). In Canada, the 

x 
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Roads and Transportation Association of Canada (RTAC) rec
ommends the use of the comfort criterion for computing the length 
of sag vertical curve when good street lighting normally associ
ated with urban conditions prevails (10). Under these conditions, 
sharper curves can be introduced and comfort is the criterion that 
limits values. Suostituting for C = 0.3 m/sec2 in Equations 33 and 
34, the minimum required lengths of the traditional and EAU sag 
vertical curves on the basis of the comfort criterion are 

L = V
2
A(l - R) 
390R 

L = V 2
A(3 - 4R) 

390 

(traditional sag curve) 

(EAU sag curve) 

(35) 

(36) 

For R = 0.5, Equations 35 and 36 reduce to L = V 2A/390, which 
is the minimum required length of symmetrical sag vertical curves 
on the basis of the comfort criterion (10). The percent reduction 
in sag vertical curve length achieved by the EAU curve is given 
by the right side of Equation 31. 

Increasing Vertical Clearance 

The EAU curve provides a larger vertical clearance, as shown in 
Figure 5. The maximum difference in vertical clearance occurs 
between the first arc of the EAU curve and the second arc of the 
traditional curve. The derivation of the maximum difference and 
its location for a crest vertical curve follows. 

The elevations of the first arc of the EAU curve and the sec
ond arc of the traditional curve at a distance x from BVC are 
(Figure 7) 

2 

Elevation (EAU) = Ysvc + gix - riX (37) 
100 2 

g2(L - x) rz(L - x)2 
Elevation (traditional) = YEvc - - (38) 

100 2 

L-x 
x 

•I 

FIGURE 7 Geometry of increased vertical clearance of EAU crest curve. 
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Substituting for ri and r2 from Equations 22 and 5, respectively, 
the difference between the elevations of the EAU and traditional 
curves, D, is 

D + g,L 
Ysvc - YEvc l OO 

Ax 

100 

A(3 - 4R)x2 + AR(L - x)2 

200 L 200 L(l - R) 
(39) 

Differentiating both sides of Equation 39 with respect to x, equat
ing dD/dx to zero, and solving for x gives 

L 
(40) x* = (3 - 2R) 

where x* is the horizontal distance corresponding to the maximum 
difference D*. Substituting for x* into Equation 39 gives D* as 

+ 
g,L 

D* = Ysvc - YEvc lOO 

+ AL(l + 2R) 
200 (3 - 2R) 

(crest curve) (41) 

where Ysvc and YEvc = elevations of BVC and EVC, respectively. 
For sag vertical curves, Equation 40 is applicable and Equation 
41 becomes 

D* 

AL(l + 2R) 
200 (3 - 2R) 

(sag curve) (42) 

where D* will be negative, indicating that the EAU curve lies 
below the traditional curve. 

For example, find the maximum difference in vertical clearance 
between the EAU and traditional crest vertical curves of Figure 
5, where gi = +2 percent, g2 = -3 percent, Li= 250 m, L = 800 
m,.Ysvc = 105 m, andyEvc = 93.5 m. For A= j-3-21=5 percent 
and R = Li!L = 0.3125, the maximum difference in vertical clear
ance occurs at x* = 336.8 m and its value is D* = 1.18 m on the 
basis of Equations 40 and 41, respectively. 

CONCLUDING REMARKS 

In this paper a new unsymmetrical vertical curve in which the 
point of common curvature lies at the midpoint of the curve has 
been described. This EAU vertical curve has two important fea
tures: the rates of change of grades of the two arcs are less than 
those of the traditional unsymmetrical vertical curve and the dif
ference between them is minimal. On the basis of the present 
study, the following concluding remarks are offered: 

1. The EAU curve provides the foll9wing practical benefits: (a) 
improved sight distance, (b) reduced curve length requirements, 
(c) increased rider comfort, (d) increased vertical clearance, and 
( e) a more aesthetically pleasing curve. 

2. The results show that the required length of the EAU curve 
that satisfies a specified sight distance is significantly shorter than 
that of the traditional curve. As a result, when a traditional crest 
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curve lies totally in cut, the shorter EAU crest curve would reduce 
the cost of excavation. Likewise, when a traditional sag curve lies 
totally on fill, the shorter EAU sag curve would reduce the cost 
of fill and compaction. In other situations, the reduction in con
struction costs would depend on whether the EAU curve fits the 
terrain better than the traditional curve. 

3. The EAU crest curve provides additional clearance over the 
traditional crest curve. Similarly, the EAU sag curve provides ad
ditional clearance below that of the traditional sag curve. This 
additional clearance would be useful when the vertical clearance 
restriction is below that of a traditional crest curve or above that 
of a traditional sag curve. If the vertical clearance restriction is in 
the opposite direction of the cases noted above, a symmetrical 
vertical curve should be considered. 

4. The general unsymmetrical vertical curve, from which the 
EAU curve was derived, may also be useful on certain occasions. 
Because the location of PCC is a variable in this general curve, 
the curve offers flexibility in satisfying additional design con
straints, such as the need for the curve to pass through a fixed 
point. A specific curve may also be selected to reduce earthwork 
or other construction costs. In this analysis, it is desirable to con
sider the curves that provide improvements over the traditional 
curve (di > L 1) and not those curves that increase the difference 
between ri and r2 (di < Li). 

5. The sight distance and length requirements presented in this 
paper are approximate for Sm > Li (generally when A is small and 
when A is large and S"' is small). Exact sight distance models for 
the EAU crest and sag curves are currently being developed by 
the author. 
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