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Comparative Evaluation of Adaptive and 
Neural-Network Exit Demand Prediction 
for Freeway Control 

EIL KWON AND YORGOS J. STEPHANEDES 

Reliable on-line predictors that can accurately predict freeway demand 
in real time are of critical importance in developing optimal control 
systems for freeway corridors. New freeway exit demand predictors 
have been developed using two prediction approaches: model-based 
adaptive-parameter and backpropagation neural network-based pre­
diction. The adaptive-parameter predictor requires prespecified models 
with parameters determined on line using the Kalman filter. Two such 
models are formulated. The first model is developed for normal week­
days and requires both historical and current-day measurements. The 
second model is designed for situations in which no historical infor­
mation is available. Neural network-based prediction does not require 
a _prespecified functional form that relates traffic measurements to pre­
dicted flow. However, an appropriate network structure and training 
method need to be· determined before the network is trained. A three­
layer backpropagation neural network was trained with the same data 
that are used to determine the historical pattern for the adaptive­
parameter predictor. The new predictors were tested with real data 
from the I-35W freeway during a 2-week period and their performance 
was compared with that of the urban traffic control system (UTCS)-
2 predictor. The error indexes from the two new predictors are very 
close and substantially better than those from UTCS-2 under the same 
conditions. 

The most advanced concept for optimal freeway control that has 
been proposed in the literature employs a hierarchical structure. 
In such a structure, the overall control problem is decomposed 
into components, such as demand prediction, network optimiza­
tion, and direct control (1,2). The main principle is that, on the 
basis of predicted demand, optimization determines optimal con­
trol strategies over a short period. Because of the discrepancies 
between predicted demand and actual traffic volume, these strat­
egies are further adjusted by direct control in real time. However, 
the lack of reliable algorithms that can predict freeway demand 
in real time has forced traffic engineers to adopt reactive control 
strategies. To be sure, most traffic-responsive ramp metering sys­
tems currently in operation employ automatic rate selection pro­
cedures that are based on past freeway data. Ramp metering rates 
are selected from a predetermined library using previously col­
lected data, generally 1 min old, from detectors on the main free­
way, thereby reacting to freeway conditions rather than acting to 
prevent congestion. Similarly, in urban network traffic control, the 
inaccuracy of existing on-line predictors, such as the third­
generation urban traffic control system (UTCS), has led to the 
development of purely reactive control systems (3). 

Addressing the need for reliable real-time prediction, earlier 
work by the authors developed a method for adaptive prediction 

E. Kwon, Center for Transportation Studies; Y. J. Stephanedes, Depart­
ment of Civil Engineering, University of Minnesota, Minneapolis, Minn. 
55455. 

of demand diversion at freeway entrance ramp areas. This method 
determines the parameters in the prediction models on line using 
the extended Kalman filter (4,5). This paper assesses the effect­
iveness of two approaches for on-line prediction of freeway exit 
demand. To accomplish this, it develops an extension of the 
model-based adaptive-parameter prediction method previously de­
veloped by the authors and neural network-based prediction. Two 
models are formulated for adaptive-parameter prediction, depend­
ing on the availability of historical information. Further, a three­
layer backpropagation neural network is trained with the same 
data used for extracting the historical demand pattern for the adap­
tive-parameter predictor. 

The resulting predictors were tested with real data from the I-
35W freeway exit ramps in Minneapolis, Minnesota. The test data 
were collected during two periods, a normal weekday period and 
a Thanksgiving holiday period. The performance of each predictor 
was compared with that of the UTCS-2 predictor. 

BACKGROUND 

Most traffic prediction algorithms developed to date use a func­
tional form that relates the traffic measurements to the predicted 
flow with a set of parameters. Such model-based algorithms can 
be categorized into four classes, depending on the method used 
for determining the model parameters, such as, off or on line, and 
the type of data used, that is, historical and current-day data versus 
current-day data only (Table 1). The most common predictors use 
constant parameters determined off line with historical data. For 
example, the parameters in the demand predictor of the second 
generation of UTCS-2 are determined off line using a represen­
tative data set collected from the location in question. The UTCS-
2 predictor employs both historical and current-day measurements. 
Using current-day traffic measurements, the UTCS-2 predictor 
tries to correct for the traffic deviations from the average historical 
pattern. In contrast, the UTCS-3 predictor, employing only cur­
rent-day measurements, uses the interpolation between the most 
recent smoothed and unsmoothed measurements as the predicted 
value. Off-line determination of parameters and use of only cur­
rent-day measurements for prediction are also featured by later 
research that focuses on freeway mainline volume and occupancy 
prediction (6-8). These models, mostly ARIMA-type Box-Jenkins 
time series models, assume that demand prediction is a point pro­
cess and use purely statistical techniques to identify the stochastic 
nature in the observed data. 

The above constant-parameter algorithms treat demand predic­
tion as an open-loop process and employ historical demand pat-
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TABLE 1 Traffic Demand Prediction Algorithms 

CURRENT-DAY & CURRENT-DAY DATA ONLY 
HISTORICAL DATA 

OFF-LINE CALIBRATION UTCS-2 (FHWA, 1973) UTCS-3 (Lieberman,1974) 

(CONSTANT PARAMETERS) Time-Series Models 

- Ahmed (1979,1983) 

- Moorthy (1988) 

ON-LINE CALIBRATION Okutani & Stephanedcs ( 1984) 

(VARIABLE PARAMETERS) Stephanedes& Kwon (1989.1992) 

terns to predict the current-day trend. Therefore, the accuracy of 
these algorithms depends on the similarity between the trend of 
the historical data used . for the determination_ of the parameters 
and that of the actual measurements. Although the algorithms that 
use only current-day measurements are more responsive to current 
traffic variations, inherent time lags characterize prediction with 
those algorithms (9). Further, under normal traffic conditions, the 
algorithms employing historical information as reference provide 
better prediction than those that use only current-day measure­
ments (9). 

Updating the prediction parameters in real time with filtering 
was first introduced by Okutani and Stephanedes ( 10), who ap­
plied the Kalman filtering algorithm to 15-min volume prediction 
in urban networks. Recent research by the authors combines be­
havioral modeling and the extended Kalman filter. In this ap­
proach, the prediction model parameters represent the behavioral 
state of traffic flow. The nonstationary random walk process de­
scribes the time-dependent state evolution of the model parame­
ters, and the extended Kalman filter updates the model parameters. 
This approach employs both historical data -and current-day mea­
surements and was applied to predict the traffic diversion in free­
way entrance ramp areas (5). 

Recent developments in the area of neural networks provide a 
new dimension in traffic prediction. Unlike the above model-based 
predictors, the neural network-based approach does not require a 
prespecified functional form for prediction. A large data set is 
needed to identify a set of parameters associated with each link 
of the neural network. The neural network learns by adjusting the 
parameters of each link in the direction of desired output (11). 
Although the neural network-based prediction approach, using 
mostly the backpropagation network, has been studied by re­
searchers in other areas, only limited research has been conducted 
in predicting traffic demand in real time. 

In this research, an adaptive-parameter predictor that predicts 
freeway exit demand· at 5-min intervals is developed first. The 
predictor consists of two prediction models. The first, developed 
for normal traffic conditions, uses both historical data and current­
day measurements. The second model employs only current-day 
measurements and is designed for applications in which substan­
tial discrepancies exist between historical demand patterns and 
actual measurements as a result of unexpected events or holidays. 
In both models, the parameters are estimated on line using the 
most recent prediction error. Second, a neural network-based pre­
dictor is developed by training a three-layer backpropagation neu­
ral network with the same data used in developing the adaptive 
predictor. The trained network uses both current- and previous-

day measurements to predict freeway exit demand at 5-min inter­
vals. The resulting predictors were tested with real data collected 
from the I-35W freeway section and their performance was com­
pared with that of the UTCS-2 predictor. The model formulation, 
training method, and test results are described in this paper. 

DEVELOPMENT OF ADAPTIVE-PARAMETER 
PREDICTOR 

A model-based freeway-exit demand predictor is developed by 
extending the adaptive prediction approach previously developed 
by the authors for freeway-entrance demand. This approach de­
termines the parameters in the prediction model in real time using 
the Kalman filtering algorithm and thus requires a prediction 
model that relates the traffic measurements to the predicted flow. 
1\vo models are formulated to predict the exit demand by using 
the data collected from the ramp in question. The first model is 
developed for normal traffic conditions, such as normal weekdays 
without incidents or unexpected events, and uses both historical 
data and current-day measurements collected from the exit ramp 
in question; for example, 

1-2 

v; = 2: v~ - 01.1 v;_l (1) 
i=l 

where 

v; = predicted exit demand for tth time interval; 
V~ = historical average exit volume for tth time interval; 
v; =current-day measurements at tth time interval; and 

01,, 02,1 = parameters to be updated in real time. 

The model is based on the findings from an extensive analysis of 
the 1\vin Cities freeway data, indicating that cumulative exit ramp 
volume exhibits limited daily variations during weekdays in nor­
mal traffic conditions (5). Prediction reflects the current traffic 
trend by applying time-variant weights on the current-day exit 
volume measurements in the previous interval and on the cumu­
lative exit volume before that interval. The weights are updated 
on line by a Kalman filter and the most recent prediction error. 

The second model is designed for situations in which substan­
tial discrepancy between historical demand pattern and actual traf­
fic volume exists,_such as during incidents or holidays, so that the 
historical data are no longer meaningful for prediction. The model 
updates the moving average of current-day exit volume measure-
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men ts with a time-variant parameter determined . on line with 
a Kalman filter; that is, 

where 

V, = predicted exit volume for tth interval; 
V, =current-day exit volume for tth interval; 
N =number of periods considered (here, N = 4); and 
01 = parameter. to be updated in real time. 

(2) 

This model adjusts the moving average of current-day measure­
ments to reflect the current traffic pattern. Because the model does 
not require historical data and the parameter is estimated on line, 
no prior knowledge of exit demand trends is necessary for 
prediction. 

The adaptive prediction approach considers the model param­
eters as status variables representing the behavioral status of traffic 
flow at a given interval, and the Kalman filter algorithm identifies 
the optimal unbiased estimates of the behavioral status in real time 
using the most recent prediction error. The status evolution of the 
model parameters, 0, is assuined to follow the nonstationary ran­
dom walk process; that is, 

(3) 

where w denotes noise. The random walk process has been suc­
cessfully applied to model physical systems that are subject to 
rapid variation (12). Using the prediction models as observation 
equations, the Kalman filter continuously updates the model pa­
rameters by recursively determining the minimum variance esti­
mates of the prediction parameters. The Kalman filter is based on 
the theory developed by Kalman (13) and was intended for the 
status identification of a linear dynamic system. The procedure for 
updating the model parameters via the Kalman filter. is summa­
rized as follows: 

1. Initialize algorithm (k = 0) with any prior knowledge of 
model parameters for each ramp: 

L 111 =Lo 

where L 111 = E[(0, - 01/,)(0, - 0111f]. 
2. Set the model parameters 0,+ 111 = 01/,. 
3. Predict the exit ramp demand V, using prediction Model 1 

or 2 with the parameters 01+111 

4. Measure actual exit ramp volume V, and obtain prediction 
error e,, where e, = [measured value ]i - [predicted value ]i. 

5. Update model parameters 01+.111 using gain and error; 

where 

(4) 

~+1 = L1+wS;+1[S1+1 L1+1/ts;+1 + s,r1 is the gain vector, 

L1+1t1 = L1 + q,, the covariance matrix; 
S1+1 = [iJV/a0f with 0 = 0,+ 111; 

V = prediction Model 1 or 2; 
L1+111+1 = (/ - K1+1S1+J L1+11,, the updated covariance ma­

trix; 
E[w1wJ] = q1i, the covariance of state noise vector; 
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E[v,vf] = s,i, the covariance of observation noise vector; and 
w, v = zero-mean Gaussian white noise sequences for state 

Equation 3 and prediction Model 1 or 2, 
respectively. 

6. Let t = t + 1 and ret.urn to Step 2. 

DEVELOPMENT OF NEURAL NETWORK-BASED 
PREDICTOR 

An artificial neural network is an abstract simulation of a real 
nerve system. It is determined by the connection between neu­
rodes, the transfer function used by the neurodes and the weight 
change law that controls training of the network (11). Owing to 
their self-organizing and adaptive features without a prespecified 
functional form representing a physical system, neural networks 
have become a popular alternative to the traditional model-based 
approaches in various areas of science and engineering. In this 
research, a three-layer backpropagation neural network (BNN) is 
designed and trained to predict freeway exit demand at 5-min 
intervals. The three-layer backpropagation network, the most 
widely used network in the area of prediction, has one hidden 
layer linking input and output layers. The following weight 
change law, also called the generalized delta rule, is used to adjust 
the weight associated with each connection link between neu­
rodes: 

Aw;,j,k = ~E;X; + aAw;,j,k-1 

where 

Aw;J,k = change in the weight for link ij for kth iteration; 
E; = error for neurode i; for example, the difference between 

desired and actual outputs; 
X; = input for neurode i; 
a = momentum constant; and 
~ = learning rate. 

As rioted in the weight change law, the backpropagation training 
algorithm requires two parameters-learning rate and momentum 
constant-whose values need to be specified before training. Fur­
ther, the number of neurodes in the hidden layer should be deter­
mined before training starts. The values of these training pa­
rameters and the input-output structure substantially affect the 
performance of the neural network. · 

First, the input-output structure of the backpropagation neural 
network is determined. Although a neural network does not re­
quire a prespecified functional form for prediction, the type of 
output, that is, the value to be predicted, and the input to the 
network need to be specified before the network is trained. The 
neural network, trained with real data, is expected to have learned 
the inherent pattern that may exist between the inputs and the 
output. In this· research, it is assumed that the freeway exit demand 
is affected by both upstream and downstream traffic conditions 
from the ramp in question. Table 2 summarizes the input-output 
structure used in the BNN predictor developed in this research. 
As indicated in Table 2, the BNN predictor uses both current- and 
previous-day measurements upstream, downstream, and at the 
ramp in question. A total of 80 input and one output data are 
identified for the proposed BNN predictor. 

Second, the training method for the proposed BNN predictor is 
determined to achieve the best prediction performance. As dis-
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TABLE 2 Input-Output Specifications for BNN Predictor 

Ramp in 
question 

INPUT Current day Volume at t-1, 
Cumulative 
volume at t-1, 
t-2 

Previous Day Volume at t, 
t-1, Cumulative 
volume at t, t-1, 
t-2 

OUTPUT Currenttday Volume at t 

cussed earlier, the performance of the BNN predictor substantially 
depends on the training method, that is, values of the training 
parameters, such as learning rate, momentum, and the number of 
neurodes in the hidden layer. However, no theory is available that 
can determine the best set of these values for any given problem. 
In this research, a sensitivity analysis is conducted on these pa­
rameters with real data collected from the test section. An example 
ramp that shows a typical exit demand pattern in the test section 
is selected and the sensitivity of the BNN-based prediction with 
respect to various values of the training parameters is analyzed 
for the selected ramp. Finally, a set of training parameters with 
the best prediction performance is selected. The resulting training 
parameters are used to train the BNN predictor for all other ramps 
in the test section. 

TESTING AND COMPARISON WITH UTCS-2 
PREDICTION 

The performance of the new predictors was tested with the real 
data collected from the I-35W northbound freeway in Minneap­
olis, Minnesota. Further, the results were compared with those of 
the UTCS-2 predictor using the same data. The test freeway sec­
tion and the location of the loop detector stations operated by the 
Traffic Management Center, Minnesota Department of Transpor­
tation, are illustrated in Figure 1. As a result of the detection 
system configuration, only 5-min exit ramp-mainline volume data 
were available from each detector station. Four exit ramps of the 
test section were selected and their 5-min exit volume was col­
lected during a 2-week period, November 12 through 23, 1989. 
The data from the first week, November 12 through 16, were used 
to determine the historical demand pattern for the adaptive­
parameter predictor. Data from the first week also were used to 
train the BNN predictor. The resulting predictors were applied to 
predict the exit demand of the selected ramps in the second week, 
November 19 through 23. 

The exit ramps selected for testing are also indicated in Figure 
1, in which ramp notation indicates the traffic movement and cross 
street; for example, 94NX represents the northbound exit ramp at 
94th Street. In particular, 94NX and 66NX ramps are typical low­
volume ramps in the test section. Demand at the 82NX ramp is 
high relative to the other ramps, and the 78NX2 ramp is the bus­
iest, serving as the exit to westbound I-494 freeway. For evalu-

Upstream Upstream Downstream 
3 entr. ramps 3 mainline 2 mainline 
3 exit ramps locations locations 

Volume at t-1, Volume at t-1 Volume at t-1 
Cumulative 
volume at t-1, t-2 

Volume at t, k-1, Volume at t, Volume at t, 
Cumulative t-1, t-1, 
volume at t, t-1, Cumulative Cumulative 
t-2 volume at t volume at t 

ating the performance of the predictor, the mean absolute error 
(MAE) and the mean square error (MSE) are calculated for each 
prediction. These are defined as 

N 

L !(Measured), - (Predicted), I 
MAE = -'-';-=1 __________ _ 

N 

v 

L !(Measured), - (Predicted), 12 

MSE = -'-;1-----------­
N 

where N denotes the number of predictions. 

Prediction with On-Line Adaptive-Parameter Predictor 

First, the adaptive-parameter predictor was tested with the data 
collected from the four exit ramps in the test section. For each 
ramp, the exit volume of three normal weekdays, November 19 
through 21, was predicted with the first prediction model using 
both current-day measurements and the historical data for every 
5-min interval from 6:00 to 9:00 a.m. each day. For each day's 
prediction, the average exit volume of the previous week, that is, 
November 12-16, at the same interval was used as historical data. 
The following set of the initial parameter values was used for all 
exit ramps in the test section: 

01,0 = 1.0, 02.0 = 1.0, So = 5.0, 

(
30 5) 

qo = 10 25 . 

The remaining two days, November 22 and 23, were Thanksgiv­
ing holidays, and prediction was performed with the second pre­
diction model without historical data because a substantial dis­
crepancy exists between holiday traffic demand and normal 
weekday traffic patterns. The following initial parameter values 
were used: 

00 = 1.0, ~o = 5.0, So = 7.0, qo = 10.0. 



70 

6 
N 

•DETECTORS 

• EXIT RAMPS USED 

IN PREDICTION 

IL ~ 

82ND ST 

94TH ST 

106TH ST 

122ND ST 

HWY 13 

FIGURE 1 Location of test freeway section (l-35W, 
northbound, Minneapolis, Minnesota). 

HWY 62 

The initial parameter values for both models were determined by 
conducting limited sensitivity analysis with real data for each 
model. The prediction results from the two models are summa­
rized in Table 3. 

Prediction with BNN Predictor 

Determination of the appropriate values for the training parame­
ters, that is, learning rate, momentum, and the number of the hid­
den neurodes, is of critical importance in developing neural net­
work-based predictors. In this research, the values of training 
parameters were determined by conducting a sensitivity analysis 
on those parameters with the real data collected from the test 
section. The 82NX exit ramp, located in the middle of the test 
freeway section, is the example ramp for this analysis. For each 
parameter, three values were selected: 

1. Number of hidden neurodes: 50, 30, 10; 
2. Learning rate: 0.05, 0.03, 0.01; and 
3. Momentum: 0.7, 0.5, 0.3. 

The proposed BNN predictor was trained for the example ramp 
with the above parameters using the real data collected from the 
test section. A total of 136 patterns, each with 80 inputs and one 
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output, were developed using the data from the first week (No­
vember 12-16) for this training. The training of the BNN was 
performed using the NeuroShell 2 software, developed by Ward 
Systems Group. The training was stopped when no error improve­
ment was made after 10,000 iterations. 

First, the proposed BNN was trained with varying numbers of 
the hidden neurodes while the other two parameters remained 
same. The trained networks were applied to predict the exit de­
mand of the example ramp for three days in the second week 
(November 19-21). Table 4 summarizes the prediction results of 
the proposed BNN predictor trained with different numbers of 
hidden neurodes. In particular, the network trained with 30 hidden 
neurodes was consistently the best performer in terms of MAE. 
and MSE, but the differences are not substantial. Because the time 
necessary for training the network increases with the number of 
hidden neurodes, 30 neurodes were considered adequate. Follow­
ing the same procedure, three values of learning rate and momen­
tum constant were tested and evaluated, and the results are sum­
marized in Tables 5 and 6. On the basis of these results, the 
structure of the proposed BNN predictor is determined to be 80-
30-1 with a learning rate of 0.05 and a momentum of 0.5. 

The proposed BNN with the above structure was trained for 
each exit ramp in the test freeway section with the data from the 
first week (November 12-16). After the training, the trained net­
work was applied to predict the exit demand of the first three days 
of the second week (November 19-21). The last two days of the 
second week (November 22-23) were the Thanksgiving holidays 
and were not included in this prediction. Table 3 includes the 
prediction results with the BNN predictor for each ramp during 
the 3-day period. 

Prediction with UTCS-2 

The second-generation UTCS predicts the n~xt-control-interval 

(5-15 min) traffic volume at each detector location in real time 
on the basis of the measurements from the same location only. 
The UTCS-2 demand prediction equation of UTCS-2 is as follows 
(9,13): 

1-l 

v; = m, + 'Y(m, ~ 'Yfi-1) + (1 - a) L <X
5(fi-s-1 - m1-s-1) 

s=O 

t-2 

+ 'Y(l - a) L (fi-s-2 - m1-s-2) 
s=O 

where 

v; = predicted volume at time t, 
m, = Fourier series approximation of historical volume at time 

t for each measurement location, 
fi = measured volume at time t, and 

a, 'Y = constants computed off line using representative volume 
data from the location in question. 

For each ramp, to determine the best set of UTCS-2 parameter 
values, a and "(, a sensitivity analysis was conducted on those 
parameters with the real data collected from that ramp. The pa­
rameter values that result in the best prediction are summarized 
in Table 7. Table 3 includes the UTCS-2 prediction results for 
each ramp in the test section. For purposes of comparison, the 



TABLE 3 Prediction Error Comparisons 

Prediction Error Comparison, 94NX 

Day Day 2 Day 3 

MAE MSE MAE MSE MAE MSE 

UTCS-2 5.0 45.9 4.2 29.2 5.3 45.8 

MODEL I 4.2 30.9 3.6 19.3 4.0 28.9 

BNN 4.5 37.0 4.0 25.5 3.7 22.9 

Prediction Error Comparison, 78NX2 

Day 1 Day 2 Day 3 

MAE MSE MAE MSE MAE MSE 

UTCS-2 10.9 175.9 16.6 372.8 12.1 197.8 

MODEL I 6.5 77.8 11.4 178.6 8.1 105.4 

BNN 7.6 94.3 9.1 122.3 8.3 97.8 

Prediction Error Comparison, 82NX 

Day I Day 2 Day 3 

MAE MSE MAE MSE MAE MSE 

UTCS -2 6.4 60.2 8.9 121.2 6.4 60.2 

MODEL I 5.9 26.9 6.3 57.2 4.5 26.9 

BNN 5.2 42.3 5.2 41.6 4.8 33.5 

Prediction Error Comparison, 66NX 

Day 1 Day 2 Day 3 

MAE MSE MAE MSE MAE MSE 

UTCS-2 3.6 22.8 3.6 21.0 3.7 23.5 

MODEL I 3.0 11.7 3.6 12.5 3.7 22.5 

BNN 3.1 14.9 3.0 14.2 3.6 18.3 
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TABLE 4 BNN Prediction Results with Different Numbers of Hidden Neurodes for 82NX 

Learning rate = 0.05 Number of neurodes in hidden layer 

Momentum = 0.5 52 30 10 

Nov. 19 MSE 46.89 42.3 45.4 

MAE 5.49 5.18 5.36 

Nov. 20 MSE 43.04 41.55 38.41 

MAE 5.41 5.2 5.01 

Nov. 21 MSE 35.28 34.83 37.49 

MAE 4.79 4.93 4.85 

TABLE 5 BNN Prediction Results with Different Learning Rates for 82NX 

Hidden Neurodes = 30 Learning rate 

Momentum = 0.5 0.05 0.03 0.01 

Nov. 19 MSE 42.3 44.49 44.91 

MAE 5.18 5.42 5.43 

Nov. 20 MSE 41.55 41.78 41.99 

MAE 5.2 5.27 5.32 

Nov. 21 MSE 34.83 33.09 33.46 

MAE 4.93 4.83 4.84 

TABLE 6 BNN Prediction Results with Different Momentum Values for 82NX 

Hidden neurodes = 30 

Learning rate = 0.05 

Nov. 19 MSE 

MAE 

Nov. 20 MSE 

MAE 

Nov. 21 MSE 

MAE 

same historical volume used in the adaptive-parameter predictor 
was also used as the historical volume for the UTCS-2 predictor, 
that is, as the value for m, in the above model. 

Test Results 

As indicated in Table 3, the new predictors, that is, the adaptive­
parameter (Model 1) and the BNN predictors, resulted in almost 

TABLE 7 Parameter Values in UTCS-2 Prediction 

Exit Ramp alpha gamma 

66NX 0.001 0.89 

78NX2 0.001 0.97 

82NX 0.001 0.94 

94NX 0.001 0.92 

0.7 

43 

5.25 

42.17 

5.27 

33.46 

4.82 

Momentum 

0.5 0.3 

42.3 43.56 

5.18 5.32 

41.55 41.77 

5.2 5.26 

34.83 34.09 

4.93 4.89 

the same level of accuracy in terms of MAE and MSE. The MAE 
from the adaptive-parameter predictor (Model 1) for three normal 
weekdays ranges from 3.0 to 11.4 vehicles per 5 min, whereas 
the MAE from the BNN predictor is between 3.7 and 9.1. The 
adaptive-parameter predictor uses only the data collected from the 
ramp in question, whereas the BNN predictor uses the upstream 
and downstream measurements in addition to the ramp data. Both 
predictors performed consistently better than the" UTCS-2 predic­
tor; this improvement was larger in the case of MSE and is prob­
ably the result of the higher proportion of large errors in the 
UTCS-2 prediction. Figures 2 and 3 show typical prediction 
examples resulting from Model 1 and the BNN predictor for the 
78NX2 ramp on November 19 and for the 82NX ramp on No­
vember 20, 1989. As indicated, the UTCS-2 predictor tends to 
fluctuate, depending on the prediction results of the previous in­
terval, whereas Model 1 tries to capture the trend in the current­
day exit volume without a substantial time lag. The prediction 
with the BNN does not exhibit substantial time lag but tends to 
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FIGURE 2 Prediction results at 78NX2 ramp on November 19, 1989. 
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FIGURE 3 Prediction results at 82NX ramp on November 20, 1989. 
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TABLE 8 Predictor Error for Holidays with Model 2 

Day4 Day 5 

MAE MSE MAE MSE 

78NX2 3.9 24.3 6.1 75.6 

82NX n/a n/a 5.1 28.2 

66NX n/a n/a 6.0 48.0 

without historical data 

be less adaptive to the demand fluctuation compared with the 
adaptive-parameter predictor. 

The prediction results from 2 days over the Thanksgiving hol­
iday with the second model of the adaptive-parameter predictor 
using only current-day measurements are summarized in Table 8; 
the table indicates an MAE range between 3.9 and 6.1 vehicles 
per 5 min. Figure 4 shows the prediction results with Model 2 for 
the 78NX2 ramp on November 23, 1989, a Thanksgiving holiday. 
In addition, Figure 5 shows the performance comparison between 
Models 1 and 2 for the 78NX2 ramp on November 19. As indi­
cated, prediction with Model 2, without using historical data, 
tends to follow the measurements at the previous interval. This 
can cause a large amount of error when substantial fluctuations 
exist in traffic demand, as indicated in Figure 5. The prediction 
error for Models 1 and 2 of the adaptive-parameter predictor do 

140 

120 
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not propagate through time, and this indicates the adaptability of 
prediction. 

DISCUSSION OF RESULTS 

New freeway exit demand predictors are developed using two dif­
ferent prediction approaches: model-based adaptive-parameter and 
backpropagation neural network-based prediction. The adaptive­
parameter predictor uses the data collected from only the exit 
ramp in question; the neural network-based predictor also uses the 
traffic measurements collected from other locations, including 
those upstream and downstream from the ramp. Prediction Model 
1 and the BNN predictor use historical and current-day measure­
ments, but the second adaptive prediction model is developed for 
the case in which no historical information is available. The new 
predictors are tested with real data from the I-35W freeway sec­
tion, and their performance is compared with that of the UTCS-2 
predictor. The error indexes from the two new predictors are very 
close and consistently better than those from the UTCS-2 predic­
tor under the same conditions. 

The adaptive-parameter prediction approach determines the pa­
rameters in the prediction models in real time using a Kalman 
filter with the most recent prediction error. In this approach, an 
appropriate functional form of the prediction model must be de­
termined to relate the traffic measurements to the predicted traffic 
volume. Although the on-line parameter adaptation tries to mini­
mize the prediction error, the accuracy of the prediction largely 
depends on how closely the selected model represents the actual 
traffic demand process. The models formulated in this research 
use only the volume data collected from the ramp in question, 
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FIGURE 4 Prediction results at 78NX2 ramp on November 23, 1989. 
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FIGURE 5 Prediction results at 78NX2 ramp on November 19, 1989. 

and efforts to include additional information, such as upstream 
and downstream volume data, have not improved the prediction 
results significantly. 

Unlike the model-based approach, the backpropagation neural 
network-based prediction does not require a predefined functional 
form for the given traffic demand process. However, the perfor­
mance of the BNN predictor substantially depends on the network 
structure including the input-output specifications and the training 
method, that is, the values of the training parameters, such as 
learning rate and momentum. Although the selection of input and 
output values for a given network may be less difficult than the 
determination of an appropriate functional form for the adaptive­
parameter approach, no robust theory is available that can deter­
mine the best training procedure for a given problem. The com­
parison of results from the limited testing conducted in this 
research indicate that, with the same amount of historical data, 
the BNN predictor requires less time and effort than the adaptive­
parameter predictor and produces almost the same level of per­
formance. However, prediction with the BNN tends to be less 
adaptive to demand fluctuations than prediction with the adaptive 
prediction approach because the BNN prediction error is not re­
flected in the prediction at the next interval unless the network is 
retrained with new data. 

Current research seeks to combine the two approaches and to 
develop a comprehensive, hierarchical prediction algorithm that is 
more reliable and adaptive to the underlying traffic demand. In 
addition, research to develop new metering thresholds for ramp 
control reflecting the predicted exit demand volume is also on­
going. Finally, future phases of this research will address the need 
for developing optimal control algorithms that can determine me­
tering rates on the basis of predicted demand. 
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