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Backcalculation of Flexible Pavement 
Moduli Using Artificial Neural Networks 

ROGER W. MEIER AND GLENN J. RIX 

Artificial neural networks provide a fundamentally new approach to 
backcalculation of pavement layer moduli from falling-weight deflec
tometer deflection basins. An artificial neural network is a highly in
terconnected collection of simple processing elements that can be 
trained to approximate a complex, nonlinear function through repeated 
exposure to examples of the function. In the context of backcalcula
tion, a neural network can be trained to approximate the inverse func
tion by repeatedly showing it forward problem solutions. The single 
most important advantage of using neural networks for backcalcula
tion is speed. Neural networks trained in this study are more than 
three orders of magnitude faster than conventional gradient search 
algorithms. Such speed makes real-time backcalculation of moduli 
possible. Two backpropagation neural networks were trained to back
calculate pavement moduli for three-layer flexible pavement profiles. 
Synthetic deflection basins with a wide variety of layer moduli and 
thicknesses were used to train both networks. One network was 
trained using ideal deflection basins. Subsequent testing showed that 
the network could backcalculate pavement layer moduli accurately. A 
second network was trained using basins, with random noise added 
to simulate measurement errors. When tested using similarly noisy 
deflection basins, that network did a reasonably good job of predicting 
moduli, although it exhibited much more scatter in the results. That 
same network performed very well on experimental data from two 
pavement test sections of the Strategic Highway Research Program. 

The falling-weight deflectometer (FWD) is used widely to non
destructively assess the structural properties of flexible pavements. 
Evaluation of FWD test results entails backcalculating in situ 
pavement layer moduli from measured deflections. It is usually 
accomplished by matching theoretical and experimental deflection 
basins. Theoretical deflection basins commonly are calculated us
ing static, multilayer, linear-elastic analyses. In principle, it is also 
possible to use algorithms that account for dynamic effects and 
nonlinear material behavior, but they involve significantly greater 
computation times, which makes them unacceptable for produc
tion use. 

Current basin-matching programs fall into two broad groups. 
Most programs employ gradient search techniques to adjust the 
pavement layer moduli iteratively until the theoretical and ex
perimental deflection basins agree within a specified tolerance. The 
_l)EF series of programs (1) is typical of the approach. Required 
inputs include experimental deflection measurements and pave
ment layer thicknesses. The iterative solution technique also re
quires an initial estimate of the solution (seed moduli) and a range 
of moduli to constrain the solution. 

A second approach is to interpolate within a data base of the
oretical basins. The MODULUS program (2) is an example of 
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this approach. A data base of theoretical basins is generated for 
prescribed pavement layer thicknesses by parametrically varying 
the pavement layer moduli within expected ranges. Once the data 
base is complete, MODULUS uses the Hooke-Jeeves pattern
searching algorithm to choose the deflection basins in the data 
base that most closely match the experimental basin. MODULUS 
then calculates the layer moduli corresponding to the experimental 
ba~in using Lagrange interpolation. Besides deflection measure
ments, MODULUS requires a range of moduli for the surface 
layer and base course and an initial estimate of the subgrade 
modulus. 

The authors of this paper present a fundamentally different ap
proach to FWD backcalculation by using artificial neural net
works. Artificial neural networks have been used to solve prob
lems involving pattern recognition, classification, and mapping 
(3). The class of neural networks known as backpropagation net
works is universal functional approximators (4) that can "learn" 
a functional mapping through repeated exposure to examples of 
that mapping. In the context of FWD analysis, a backpropagation 
neural network can be "trained" to map deflection basins onto 
their corresponding pavement layer moduli. The best way to train 
such a network is to use experimentally determined deflection 
basins along with independently measured pavement layer moduli. 
Lacking sufficient quantities of such data over a broad range of 
layer moduli and thicknesses, synthetic deflection basins can be 
obtained by solving the forward problem with many different 
combinations of pavement layer properties. A neural network can 
then be taught to map these synthetic deflection basins back onto 
their corresponding layer moduli. The latter approach is taken in 
this paper. 

There are several advantages to using neural networks for FWD 
analysis. The mathematical simplicity of neural networks makes 
them computationally efficient. They make real-time backcalcu
lation of moduli possible using personal computers. Unlike other 
backcalculation techniques, a neural network does not require seed 
moduli or moduli ranges. That eliminates the subjectivity asso
ciated with choosing seed moduli and allows the backcalculation 
procedure to be automated for use by less experienced operators. 
Furthermore, because a neural network does not explicitly match 
deflection basins, the pavement moduli determined by the neural 
network are independent of the error measures (e.g., mean-squared 
error, maximum absolute error) and the tolerance criteria used to 
determine convergence. 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks are biologically inspired analogues of 
the human brain. They are composed of a great many operation-
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ally simple but highly interconnected processing units. The proc
essing units themselves have certain functional similarities to bi
ological neurons, and their organization bears at least superficial 
resemblance to the organization of neurons in the brain. 

Artificial neural networks exhibit many characteristics of the 
human brain (5). For example, certain types of neural networks 
will "teach themselves," through repeated exposure to a set of 
data, to recognize common features within the data and to group 
the data accordingly. Other types of neural networks can be pro
grammed to associate a set of input patterns with their respective 
output patterns. Artificial neural networks can also generalize an 
ideal mapping from imperfect examples and extract essential in
formation from input containing both relevant and irrelevant data. 
Their ability to "see" through noise and distortion to the under
lying pattern has been exploited successfully for solving many 
problems related to pattern recognition. 

The most common network architecture used for mapping, clas
sification, and forecasting problems is the multilayer, feed-forward 
network (6). Such networks consist of several layers of processing 
elements (Figure 1 ). The processing elements pass information in 
the form of signal patterns from the input layer of the network 
through a series of hidden layers to the output layer. Signals travel 
between processing elements along connections whose strengths 
can be adjusted to amplify or attenuate the signal as it propagates. 
Each processing element sums the impinging signals to determine 
a net level of excitation. A nonlinear activation function provides 
a graded response to that excitation. The element then passes on 
the response to each of the processing elements in the next layer 
(Figure 2). The distribution of connection strengths throughout the 
network uniquely determines the output signal pattern that results 
from a given input signal pattern. In that respect, the connection 
strengths store the "knowledge" contained in the network. 

The excitation level of a processing element is modeled math
ematically as a weighted sum of its inputs: 

Nj = .2: Wj;X; (1) 
i=I 

where X; is the signal coming from the ith processing element in 
the preceding layer, and w;i is the weight assigned to that connec
tion. The weights determine the degree of signal amplification or 
attenuation on the incoming connections. 

Input Signal 
I 

FIGURE 1 Artificial neural network architecture. 
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FIGURE 2 Basic processing element for multi·:layer, feed
forward network. 

The processing element's response to the _net excitation Ni com
monly is modeled by the sigmoidal logistic function: 

(2) 

The function accepts input over the range (-oo, oo) and uniquely 
maps it into the range [0,1]. That not only prevents the signals 
from growing unbounded as they are summed repeatedly and 
passed on, but it also introduces nonlinearity into the network. 
Without this nonlinearity, the network would simply output linear 
combinations of the input signals. That would severely limit the 
type of mapping it could perform. 

A neural network gains its knowledge through training. A su
pervised learning method commonly is used to train feed-forward 
networks. In supervised learning, a set of training data (consisting 
of pairs of input-output patterns exemplifying the mapping to be 
learned) is presented to the network, one example at a time. For 
each example, the input pattern is propagated through the network, 
and the resulting output pattern is compared with the target output. 
A learning algorithm is employed to adjust incrementally the con
nection weights in order to reduce the difference between calcu
lated and target output. The ability to self-adjust is an essential 
feature of neural computing. It would be impossible to establish 
manually the connection weights needed to perform any but the 
simplest of mappings. 

Multilayer, feed-forward networks commonly are trained by a 
technique known as error backpropagation. After each training 
example is presented to the network, the differences between the 
calculated and target output patterns are computed and propagated 
backward through the network according to the existing network 
connection weights. Individual connection weights then are ad
justed in the direction that reduces the error apportioned to them. 
If training is successful, connection weights attain values that 
globally minimize the output error (commonly expressed as either 
the root-mean-square or arithmetic mean) for all the inputs in the 
training set. 

The most common learning algorithm used in backpropagation 
networks is the generalized delta rule (7,8). The generalized delta 
rule is essentially a gradient descent scheme that seeks a global 
minimum of the error surface that relates the output errors to the 
connection weights. In the simplest form of the generalized delta 



Meier and Rix 

rule, weight changes at each step in the gradient descent are cal
culated as follows: 

(3) 

where VE(w;i) is the gradient of the error surface with respect to 
the weight in question, and a is the "learning rate." The learning 
rate regulates the step size of the gradient descent. A more ad
vanced form uses an additional momentum term to help the gra
dient descent avoid shallow local minima: 

(4) 

where Llwu(t - 1) and Llwu(t) are the weight changes applied on 
successive steps, and 13 regulates the amount of momentum. 

Invoking the chain rule of differentiation, the gradient of the 
error surface with respect to an individual connection weight, 
W;i, instead can be expressed as 

(5) 

where the Bi (from which the generalized delta rule takes its name) 
are the gradients of the error surface with respect to the net ex
citation level of each processing element, and the a; are the in
dividual inputs to each processing element. At the output units, 
the Bi are computed as the product of the output error and the 
derivative of the activation function: 

(6) 

where ti is the target output. One of the reasons the sigmoidal 
logistic function is so popular as an activation function is that the 
derivative can be calculated easily: 

(7) 

At the processing elements in the other network layers, the target 
outputs are not known a priori. Instead, the errors attributed to 
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. those processing elements are estimated by assessing each ele
ment's relative contribution to the outputs and, thus, the errors of 
the elements in the succeeding layer: 

(8) 

By working backward from the output layer, errors can be appor
tioned successively to the processing elements in the remaining 
layers of the network. 

Once trained, the network will provide an approximate func
tional mapping of any input pattern onto its corresponding output 
pattern. This process is extremely fast because the input pattern 
is propagated once through the network, a task that involves pass
ing only weighted sums through the sigmoidal logistic function. 

The authors implemented the algorithm described above in a 
FORTRAN computer program. The program logic is summarized 
in Figure 3. The implementation is relatively straightforward be
cause a neural network gains its processing power from its highly 
interconnected architecture, not from mathematical complexity. 

FWD BACKCALCULATION USING ARTIFICIAL 
NEURAL NETWORKS 

Initial Network Training 

Backpropagation neural networks are universal approximators; 
their training times increase rapidly with increasing problem com
plexity, which places some practical limit on the mappings that 
they can learn. Instead of trying to train a network to handle a 
variable number of pavement layers, the authors chose to train a 
neural network to backcalculate moduli for a three-layer profile 
consisting of an asphaltic concrete (AC) surface layer, an unsta
bilized base course, and a subgrade. Assumed ranges of the layer 
properties are indicated in Table 1. Thickness of the subgrade was 
arbitrarily assigned a value of 30.4 m (100 ft) to eliminate the 
influence of the rigid layer, resulting in an essentially infinite sub
grade (9). The authors attempted to cover a broad range of realistic 
layer properties. If the anticipated layer properties were substan-

Read in the training parameters and network dimensions 
Initialize the connection weights to small random numbers 
For each training epoch: 

For each inpuUoutput pair in the training set: 
Propagate the input through the network (Eqs. 1,2) 
Compute the deltas for the output layer (Eqs. 6, 7) 
Compute the deltas for the remaining layers (Eqs. 7 ,8) 
Compute the weight changes for all of the layers (Eqs. 4,5) 

For each inpuUoutput pair in the testing set: 
Propagate the input through the network (Eqs. 1,2) 
Compute output errors and update output error statistics 

Report on the training progress 
Close all input and output files 

FIGURE 3 Computer implementation of backpropagation algorithm. 
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TABLE 1 Pavement Layer Properties Used To Train Neural Networks 

Layer 

Asphalt 
Base 
Subgrade 

0 1MPa=0.145 ksi 
b1 cm= 0.394 in 

Layer Modulus (MPa)" 

1725 - 20,685 
35 - 1035 
35 - 345 

tially different from those used here, another neural network 
would have to be trained. 

A training set of 10,000 synthetic deflection basins was gen
erated using the static; multilayer, linear-elastic program 
WESLEA (10). For each deflection basin, the thicknesses and 
moduli of the AC and base layers and the modulus of the subgrade 
were selected randomly from uniform distributions within the lim
its identified in Table 1. Pavement deflections were calculated for 
a dynamic load of 40 kN (9,000 lb) acting over an area with a 
radius of 15 cm (5.91 in.). The authors assumed a fixed sensor 
spacing to reduce further the complexity of the mapping to be 
learned. Initial experimentation revealed that the Strategic High
way Research Program (SHRP) sensor spacings of 0, 20, 30, 45, 
60, 90, and 150 cm (0, 8, 12, 18, 24, 36, and 60 in.) provided the 
network with more information about the AC and base moduli 
than did a uniform 30-cm (12-in.) spacing and allowed the net
work to make better predictions. SHRP spacing therefore was used 
exclusively. 

If conventional backpropagation networks are used, the network 
architecture must be established before the start of training. At a 
minimum, the network must have an input layer and an output 
layer. The number of neurons in those layers is easy to determine: 
they are equal to the number of input and output parameters, re
spectively. There are, however, no well-established procedures for 
choosing the number of hidden layers nor the number of neurons 
in each hidden layer (11). As a result, trial and error must be used 
to determine the optimum network architecture, which must strike 
a balance between insufficient knowledge capacity (too few con
nections) and excessive capacity. If the network has insufficient 
capacity, it will be incapable of accurately performing the required 
mapping. On the other hand, if the network has excessive capacity, 
it will in essence "memorize" the training examples. In that case, 
the network will be incapable of performing mappings for deflec
tion basins that it has not memorized. 

In principle, it is possible to approximate any functional map
ping with a network consisting of one hidden layer ( 4). In practice, 
however, two hidden layers often allow the same functional map
ping to be learned with fewer neurons. After experimenting with 
several different architectures, the authors chose the network ar
chitecture represented in Figure 4. The first hidden layer (closest 
to the input layer) contained 11 processing elements and the sec
ond contained eight processing elements. The input layer of that 
network contained nine processing elements (corresponding to the 
AC and base layer thicknesses and the seven deflections), and the 
output layer contained three processing elements (corresponding 
to the AC, base, and subgrade moduli). 

Training proceeded by iteratively prsenting training examples 
. to the network. Each pass through the set of 10,000 examples 
constituted a training epoch. During each epoch, the first 9,750 

Layer Thickness (cm)b Poisson's Ratio · 

5 - 30 0.325 
15 - 75 0.35 
3050 0.35 

FIGURE 4 Neural network architecture used for 
backcalculating pavement layer moduli from synthetic deflection 
basins. 

examples were used to train the network. The remaining 250 ex
amples were used to test the network to monitor its training pro
gress. (Neural networks should never be tested with the same data 
that are used to train them. It is important that the network be 
able to generalize beyond the training examples, instead of simply 
memorizing them.) At first, the mean squared error of the outputs 
drops rapidly as the training epochs are completed, as indicated 
in Figure 5(a). With further training, the output error asymptoti
cally approaches some minimum level. Training of the network 
continued until it was clear that this level substantially had been 
reached. 

Figure 5(b), (c), and (d) are scatter plots that compare the target 
and computed moduli of the asphalt, base, and subgrade layers, 
respectively, for the 250 test basins. The plots clearly show that 
the network successfully learned to backcalculate pavement layer 
moduli from synthetic deflection basins for the entire range of 
pavement layer properties included iri the training set. In a broader 
context, these results are significant because they indicate that 
neural networks can be taught to solve complex, nonHnear inverse 
problems using training data generated by solving the forward 
problem. 

Increasing Network Robustness 

Accurate deflection basin measurements are essential if backcal
culated layer moduli are to be correct. However, it is unrealistic 
to expect field measurements to be perfectly accurate. Two pri-
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FIGURE 5 (a) Training progress; moduli for network trained with synthetic data, including test results for 
(b) asphalt, (c) base, and (d) subgrade. 

mary sources of deflection measurement error exist: systematic 
errors and repeatability errors. Typical specifications for the FWD 
test (12) require a systematic error no greater than 2 percent of 
the measured deflection and a repeatability error no greater than 
2 µ.m (0.08 mil). Periodic calibration of the velocity transducers 
can minimize the systematic error, but repeatability errors are 
random. 

One approach to dealing with errors is to include random noise 
in the deflection basins that are used to train a network-a tech
nique known as noise injection (13). Including random noise in 
the training data makes the network more robust because it learns 
to produce reasonably accurate moduli in the presence of noise. 
The authors trained a robust version of the network by adding 
random noise to each of the seven deflections in each training 
example just before presenting it to the network. In this way, even 
though the training basins were reused for each epoch, the added 
noise was different every time. The random variates were drawn 
from uniform distributions whose limits were equal to the larger 
of ± 2 percent of the ideal deflection or ± 2.5 µ.m (± 0.1 mil). 
The latter was made slightly larger than the test specification to 
permit some room for error. Because the task of learning to map 
noisy data is more difficult for the network, the authors arbitrarily 
increased the number of processing elements in both hidden layers 
to 15 before the start of training. 

The training progress of the robust network is presented in Fig
ure 6(a). Note that the final value of mean squared error is about 
0.0055 for the robust network compared with 0.0007 for the net
work trained with noise-free data, as seen in Figure 5(a). A trade
off between accuracy and robustness is to be expected. Also note 
that the network required about twice as many epochs of training 

(8,000 versus 4,000) to achieve a nearly constant mean squared 
error. That is also to be expected because the technique used to 
generate the random noise ensured that the network never saw the 
same basin twice, whereas the network trained using ideal deflec
tion basins saw each of those basins 4,000 times. 

To assess the robust network's backcalculation abilities, the 250 
deflection basins used to test the original network were also mod
ified by adding random noise to the deflection measurements. 
Tests to determine the repeatability of FWD measurements (14) 
have shown that individual transducers have a standard deviation 
of ± 1.95 µ.m. Because the error is random, it can be lessened by 
replicating the test and averaging the results. Irwin et al. (14) 
recommend that three to five replicates be conducted for each test. 
Therefore, the amount of noise added to each deflection is estab
lished by averaging five random variates drawn from a Gaussian 
distribution with a mean of zero and a standard deviation that is 
rounded off to ± 2 µ.m (0.08 mil). Because the random variates 
were drawn from a Gaussian distribution instead of the uniform 
distribution used to train the network, it is possible that some of 
the test basins contained more noise than was present in the train
ing set. 

Figures 6(b), 6(c), and 6(d) compare the target and computed 
moduli of the asphalt, base, and subgrade layers, respectively, for 
the 250 modified test basins. The fine dotted lines included in 
those figures indicate the 95 percent prediction interval associated 
with a linear regression of the calculated moduli on the target 
moduli. Those are the bounds within which 95 percent of all fu
ture predictions should lie. There is a very good linear correlation 
between the predicted and target moduli: the R2 values for the 
linear regressions are 0.961, 0.918, and 0.995 for the asphalt, base, 
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FIGURE 6 (a) Training progress; moduli for network trained with noise injection, including test results for 
(b) asphalt, (c) base, and (d) subgrade. 

and subgrade, respectively. The precision of results is, however, 
much lower than it is for the ideal deflection basins. There are 
more elaborate training algorithms and more complex network 
architectures that researchers could employ in the future to achieve 
better precision in the presence of noise. 

Backcalculation of Experimental Data 

The neural network's performance on experimental deflection ba
sins was evaluated using data from two SHRP pavement test sec
tions described by Rada et al. (15). Pavement Sections A and B 
were selected because they were considered similar to the three
layer, flexible pavements used to train the neural network. Pave
ment profiles for Sections A and B are presented in Table 2. In 
Section A, the crushed limestone base and the soil aggregate sub
base were combined to form a single base layer. In both sections, 
the subgrade was assumed to be semiinfinite because Rada et al. 
(15) report that no bedrock was encountered in either section 
within the top 6.5 m (20 ft). 

Pavement deflections were normalized to a load of 40 kN 
(9,000 lb) and propagated through the robust network. The same 
deflections and layer thicknesses were used in MODULUS 4.0 (2) 
and WESDEF (10) and the results compared (Table 2). The as
phalt and base moduli calculated by the neural network were sim
ilar to those computed by MODULUS 4.0. The WESDEF pro
gram predicted higher asphalt moduli and lower base moduli. All 
three programs predicted virtually identical subgrade moduli. Be
cause the true moduli at the two test sections are not known, 
success can only be measured in comparison to the predictions 

produced by other programs. The similarity of the neural network 
moduli to those predicted by MODULUS 4.0 (which uses the data 
base approach) and WESDEF (which uses the gradient-search ap
proach) is taken as an indication that the neural network per
formed well on these experimental data. 

Comparison of Processing Times 

An advantage of using artificial neural networks is the speed at 
which pavement moduli can be backcalculated. Table 3 shows the 
processing times required for the trained neural network to back
calculate moduli for the 250 synthetic testing basins, with and 
without the addition of random noise. Also included in Table 3 
are the times required by WESDEF to analyze the same 250 ba
sins. Convergence criteria in WESDEF were adjusted to yield pre
dictions ~s accurate as those of the neural network (Figures 5 and 
6). Timing comparisons were conducted on a 33-MHz 80486 per
sonal computer. 

For basins with no random noise added, the neural network 
backcalculated moduli for all 250 basins in 0.9 sec. WESDEF 
required 25 min to complete the task. With random noise ( ± 1.95 
µm) added to the synthetic deflections, WESDEF required 37.5 
min. The artificial neural network processed ''noisy'' data as 
quickly as noise-free data because deflection inputs were simply 
propagated through the network. WESDEF, on the other hand, had 
to seek iteratively a theoretical basin to match the noisy experi
mental basin. The authors know of no other backcalculation al
gorithm that has the neural network's ability to backcalculate 
pavement moduli in real time. 
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TABLE 2 Comparison of Backcalculated Moduli for SHRP Pavement Test Sections 

Backcalculated Moduli (MPa)" 

Layer Artificial Neural 
Section Layer 

A Asphalt 
Base" 
Subgrade 

B Asphalt 
Base 
Subgrade 

a1 MPa = 0.145 ksi 
bl cm= 0.394 in 

Thickness (cm)h 

12.6 
64.5 
Semi-Infinite 

10.7 
12.7 
Semi-Infinite 

Network 

8922 
290 
221 

5895 
365 
186 

MODULUS4.0 

8619 
283 
207 

6350 
386 
186 

WES DEF 

11570 
221 
228 

10343 
138 
200 

ccombination of crushed limestone base and soil/aggregate subbase 

Another advantage of a neural network is that the creation of 
the training data and the training of the network are completely 
separate from the use of the trained network. Thus, it is possible 
to train a network to account for dynamic effects and nonlinear 
material behavior without increasing its processing time. Although 
it will take significantly longer to create the training set, and 
slightly longer to train the network because of the increased com
plexity of the mapping, the trained network will backcalculate 
moduli as quickly as one trained using a static, multilayer, linear
elastic solution. That is in marked contrast to gradient-search pro
grams that must repeatedly solve the more-complex dynamic and 
nonlinear forward problem to obtain an answer. 

FUTURE CONSIDERATIONS 

This research is a first step in the development of a real-time 
backcalculation procedure for the FWD test that accounts for non
linear material behavior and the dynamic nature of the test. The 
applicability of the present neural network is limited by the range 
of pavement layer properties included in the training set. Networks 
capable of operating across a broader spectrum of field conditions 
than were addressed here are certainly feasible but will require a 
more diverse training set. For this feasibility study, a brute-force 
approach using a large number of randomly generated profiles was 
adopted. The authors anticipate that a comprehensive training set 
can be developed without increasing the number of training ex
amples, by using more refined methods of parameter variation. 
They also anticipate that network training can be accelerated de-

spite a broader scope by using second- and third-generation train
ing algorithms. 

SUMMARY AND CONCLUSIONS 

Artificial neural networks provide a fundamentally different way 
to backcalculate pavement layer moduli from FWD deflection ba
sins. Unlike conventional approaches that backcalculate moduli 
by trying to match theoretical and experimental deflection basins, 
a neural network simply maps deflection basins into their corre
sponding layer moduli. The network learns this functional map
ping by adjusting the connection weights between its processing 
elements during repeated exposure to a set of examples (training 
data). In this study, the training data consisted of synthetic de
flection basins generated for a wide range of pavement layer thick
nesses and moduli using WESLEA. 

Two backpropagation neural networks were successfully trained 
to backcalculate moduli for three-layer, flexible pavement sys
tems. The first network was trained using synthetic basins with 
no random noise added. After training, the network was capable 
of backcalculating layer moduli with excellent accuracy. This in
itial result is important because it illustrates that a neural network 
can learn to solve an inverse problem by training it using forward 
problem solutions. A second network was trained using deflection 
basins with random noise added to simulate measurement errors. 
By using random noise in the training data, a final network should 
be most robust (i.e., it should provide reasonable estimates even 
for imperfect data). Although the calculated moduli contained 

TABLE 3 Comparison of Processing Times To Backcalculate 250 Deflection 
Basins0 

Neural Network 
WESDEfb 

Basins with ±l.95µm of 
Noise-Free Deflection Basins Random Noise 

0.9 sec 
25min 

0.9 sec 
37.5 min 

aprocessing times measured on a 33-MHz 80486 personal computer 
busing sum of absolute percentage differences less than 3 .5%. as the convergence criterion 
and a 20-iteration limit 



82 

more scatter than the noise-free results, the estimates from the 
network trained and tested with noisy data were still reasonably 
accurate. The neural network trained with noise injections also 
backcalculated moduli that were similar to those predicted by 
MODULUS 4.0 for two SHRP pavement test sections. 

Artificial neural networks offer several advantages for the back
calculation of moduli. The most important one is speed. Neural 
networks trained in this study are 1,500 to 2,200 times faster than 
a conventional gradient search technique. Such speed makes it 
possible to determine moduli in real-time on personal computers. 
Neural networks also eliminate the need for the user to specify 
seed moduli and moduli ranges. Without seed moduli and moduli 
ranges, backcalculations are less dependent on subjectivity intro
duced by the user. 

The most promising aspect of neural networks is the ability to 
use more complex and realistic pavement and material models as 
the basis for a backcalculation. Solving the forward problem to 
create a training set is completely separate from use of the trained 
network for backcalculation. That means a neural network can be 
trained to account for dynamic and nonlinear material behavior 
and still be able to backcalculate moduli in real time. 
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