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New Predictive Modeling Techniques for 
Pavements 

YING-HAUR LEE AND MICHAEL I. DARTER 

Statistical regression algorithms have been utilized extensively in 
pavement engineering for more than three decades. Multiple linear 
regression, stepwise regression, and nonlinear regression techniques 
are the most popular ones for pavement predictive modeling. The 
advantages, the deficiencies, and the limitations of these regression 
techniques are reviewed. To minimize these problems, the projection 
pursuit regression (PPR) introduced by Friedman and Stuetzle (1981) 
was selected to assist in the proper selection of functional forms. 
Through the use of local smoothing techniques, the PPR attempts to 
model the response surface as a sum of nonparametric functions of 
projections of the explanatory variables. The projected terms are es­
sentially two-dimensional curves that can be graphically represented, 
easily visualized, and properly formulated. As a result a two-step pre­
dictive modeling approach is proposed and demonstrated in a case 
study for the prediction of the edge stress of a pavement slab. It is 
also demonstrated that statistical regression techniques should not be 
used alone to obtain a more reliable and comprehensive predictive 
model. The importance of subject-related engineering knowledge, the 
principles of dimensional analysis, the proper selecton of functional 
forms, and applicable engineering boundary conditions are considered 
essential and are also demonstrated. A comparison of the predictive 
models previously developed and the proposed approach to ''predic­
tion" and "extrapolation" clearly shows the preference of the pro­
posed approach and the promising features of the PPR algorithm. 

Statistical regression techniques have been utilized extensively in 
predicting complicated pavement performance indicators for more 
than three decades. Multiple linear regression, stepwise regression, 
and nonlinear regression techniques are the most popular ones 
among transportation engineers. Undoubtedly, regression analysis 
is a very important statistical tool for many sciences. This paper 
starts with a review of the advantages and the limitations of these 
currently used regression techniques. Some specific problems in 
the selection of proper functional forms and the violation of some 
embedded statistical assumptions 'by use of these techniques are 
discussed. 

Traditional parametric regression techniques such as linear and 
nonlinear regressions require the imposition of a parametric form 
on the functions and then obtaining the parameter estimates af­
terward. In situations in which little knowledge about the shape 
and the form of a function exists, several new nonparametric re­
gression techniques developed over the past 10 years have grad­
ually gained popularity. Without imposing an unjustified para­
metric assumption, nonparametric regression techniques strive to 
estimate the actual functional form that best fits the data through 
the use of scatter plot smoothers (J). 

The alternating conditional expectation (ACE) algorithm de­
veloped by Breiman and Friedman (2) for optimal transformation 
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of multiple regression and correlation does an excellent job in 
maximizing the squared multiple correlation, R2 (1-3). By using 
the same alternative backfitting procedures for variable transfor­
mations as used in the ACE algorithm, Tibshirani ( 4) introduced 
the additivity and variance stabilization (AVAS) algorithm, which 
tries to achieve the constant error variance assumption of regres­
sion (1,4). Both techniques provide an invaluable tool in sug­
gesting proper transformations of variables. However, neither the 
ACE nor the AVAS algorithm is capable of modeling interactions 
between the explanatory variables. The variable interactions must 
be explicitly specified in the assumed model form. 

Consequently, the projection pursuit regression (PPR) intro­
duced by Friedman and Stuetzle (5) and Friedman ( 6) is selected 
because of its ability to handle variable interactions. As a result 
a two-step predictive modeling approach is proposed and dem­
onstrated in a case study for the prediction of concrete pavement 
edge stress owing to the finite slab length effect. 
· The demonstration is based on a comparison between the pre­
vious modeling approaches from the zero-maintenance study (7), 
a stress analysis procedure (8), and the proposed methodology. 
The importance of incorporating subject-related engineering 
knowledge such as the use of the principles of dimensional anal­
ysis and the proper selection of functional forms is demonstrated. 
The proposed modeling procedure illustrates how to select a 
proper functional form through the use of the PPR as well as the 
aid of graphical representation and visual inspection. Nonlinear 
regression is used to obtain the parameter estimates for the spec­
ified functional forms. The proper selection of initial parameter 
estimates is also discussed to guarantee convergence of the iter­
ative nonlinear regression routines. The applications of the re­
sulting predictive models to "prediction" and "extrapolation" 
are also discussed. 

MULTIPLE REGRESSION 

Multiple regression is one of the most time-honored and widely 
used regression techniques for the study of linear relationships 
among a group of measurable variables. Suppose there exists a 
true model to describe the relationship between response variables 
(y's) and explanatory variables (or predictors, x's) (9-11): 

y; = xf~ + E; (i = 1, ... , n) (1) 

where xf is the ith row of the (n X p) matrix X of the column of 
l's if an intercept and the explanatory variables are included. The 
superscript T denotes the transpose of the column vector X;. ~ is 
a p X 1 vector of unknown regression coefficients, and p and n 
are the number of parameter estimates in the model and the total 
number of observations, respectively. 
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The basic assumptions are usually that the random errors (e's) 
are mutually uncorrelated and normally distributed with zero mean 
and constant variance and are additive and independent of the 

expectation function. For any arbitrary 13 value of ~. the residuals 

r;(~) can be determined by the following expression: 

(i = 1, ... , n) (2) 

On the basis of the above assumptions multiple regression tries 

to find a set of parameters ~ such that the sum of the squared 
residuals given in Equation 3 is minimized, which is also best 
known as the least-squares (LS) method. 

RSS(~) = L [r~(~)] = ri(~) + r~(~) + · · · + r~(~) (3) 
i=l 

The LS method is best known and most frequently adopted 
because of its simple structure, elegant LS theory, fast computa­
tion time, as well as its estimators, which can be obtained explic­
itly from the data and are interpretable to its user. 

As far as variable selection is concerned, all-subset regression 
and stepwise regression techniques are often utilized for automatic 
variable selection for preliminary and exploratory analyses of lin­
ear relationships among a group of important variables. 

ALL-SUBSET REGRESSION AND STEPWISE 
REGRESSION 

All-subset regression procedure finds all possible combinations of 
variables in the model when the set of candidate variables is not too 
large. To select the "best" subset of variables, different mea­
surements including the coefficient of determination (R2

), adjusted R2 

(adj-R2
), and the Cp statistics due to Mallows have been proposed 

(11,12). The Mallows Cp statistic can be defined as follows: 

RSS 
C=-.+2p-n 

P s2. (4) 

where RSS represents the residual sum of squares of the regres­
sion, p is the number of parameters, and s2 is the estimate of the 
residual variance from the full regression model. According to 
Draper and Smith (12), a regression model with "a low CP value 
about equal to p'' is preferred such that the model fits the actual 
data better with the least number of parameters (11,12). 

Stepwise regression uses a forward selection or a backward 
elimination procedure that iteratively adds or deletes one explan­
atory variable at a time to find the ''best'' subset of significant 
independent variables in the model (13). However, this procedure 
does not necessarily produce the ''best'' subset among a group of 
candidate variables. The first variable added or deleted may not 
necessarily be the best or the worst overall. It is quite possible 
that the first variable selected by forward selection becomes un­
necessary in the presence of the other variables entered afterward 
or vice versa. In other words, forward selection and backward 
elimination techniques may result in totally different subsets of 
variables with similar summary statistics. ''It is unlikely that there 
is a single best subset, but rather several equally good ones,'' as 
observed by Gorman and Toman (14). 
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In comparison with the high computational cost of all-subset 
regression, stepwise regression is one of the most popular tech­
niques used in transportation research because of its fast compu­
tation, simplicity of use, and capability in progressively adding or 
dropping variables in a regression model. It is expected that some 
latent or lurking variables may be included in a regression model. 

Because of the ease of use and the efficiency of computation, 
stepwise regression may be easily abused in some respects if one 
fails to recognize possible physical interpretations on the param­
eter estimates and the embedded basic assumptions. A very long 
regression model with dozens of parameter estimates may be the 
typical result of a stepwise regression that fits the data very well 
but with no comprehensive engineering insight into the data an­
alyzed. Often, some applicable engineering boundary conditions 
are violated as well. 

NONLINEAR REGRESSION 

Practical real-world problems are often found to be nonlinear in 
nature. Because of its favorable feature of handling a complicated 
nonlinear model, nonlinear regression has been widely used as a 
modeling technique for pavement research. In addition, some ap­
plicable boundary conditions may be incorporated into the spec­
ified nonlinear model form and the parameter estimates may have 
their own physical meanings as well. However, nonlinear models 
are more difficult to specify and develop than linear models. 

Suppose there exists a true model that best describes the rela­
tionship between response variables (y's) and explanatory varia­
bles (x's) (10,15): 

Yi = F(13, X;) + E; (i = 1, ... , n) (5) 

where F(l3, x;) is a nonlinear function based on the predictors X;. 

13 is a p X 1 vector of unknown regression coefficients to be 
estimated, and n is the total number of observations. Similar to 
linear regressions, the disturbance (or error) term is usually as­
sumed to be additive, mutually uncorrelated, and normally dis­
tributed with zero mean and constant variance. For any arbitrary 

13 value of ~. the residuals r;(~) are 

r;(~) = y; - F(~, x;) (i = 1, ... , n) (6) 

Unlike linear regressions whose parameters can be explicitly es­
timated by a closed-form expression, nonlinear regressions must 

use an iterative routine to find the best parameter estimates (~) 
such that the sum of the squared residuals as given in Equation 3 
is minimized. 

Before carrying out a nonlinear regression, engineers must first 
assume a feasible descriptive (or conceptual) model form with the 
most important parameters prespecified on the basis of previous 
experience and engineering knowledge. In a two-dimensional fac­
tor space the model form can be determined as easily as it can be 
visualized in a scatter plot. Subsequently, reliable parameter es­
timates may be obtained. 

The situation is quite different for the case of multidimensional 
(three or higher) factor space, where the data trend and the pos­
sible interactions among candidate variables cannot be easily iden­
tified. Unfortunately, real engineering problems most likely belong 
to the latter case, in which higher dimensions are concerned and 
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the true functional forms are rarely known to engineers. Thus, the 
proper selection of a plausible functional form from a multidi­
mensional factor space provides a real challenge for pavement 
engineers. 

Guessing initial parameter estimates for a multidimensional 
model is also a very time-consuming process. It is not uncommon 
that the resulting model does not converge or contains insignifi­
cant parameter estimates, with poor initial parameter estimates and 
an improper model form. In addition, parameter estimates are 
sometimes toward the wrong direction of their physical interpre­
tations, and they may depend heavily on the initial starting values 
as well. Specifying bounds for some parameters is not uncommon, 
although the final resulting model may eventually reach the as­
sumed bounds but without achieving the specified convergence 
criterion. Thus, "some models are difficult to fit, and there is no 
guarantee that the procedure will be able to fit the model suc­
cessfully'' (1 O,p.576). 

Furthermore, even w&en parameter estimates are successfully 
obtained, the assumption of constant error variance is frequently 
violated, as indicated by residual analyses. This problem, which 
is probably due to improper selection of the model form, is often 
unrecognized, and there is no quick remedy for this situation. 

Thus, it is very dangerous to develop such a nonlinear model 
without acquiring more knowledge of the complicated relation­
ships between the predictors and the dependent varia~le. The pre­
diction based on an inadequate model specification is also very 
questionable. 

PROJECTION PURSUIT REGRESSION 

Unlike the ACE and the AVAS algorithms previously discussed, 
the projection pursuit regression introduced by Friedman and 
Stuetzle (5) and Friedman (6) is capable of modeling interactions 
between predictor variables when suggesting nonparametric trans­
formations to improve the fit. This algorithm is an exploratory 
nonlinear regression technique that tries to model the response 
surface (y's) as a sum of nonparametric functions of projections 
of the predictor variables (x's) through the use of super smoothers 
(5,6). Assume there exists a true model given as follows (16, Vol. 
2): 

Mo 

Y = Y + L J3m<l>m(a~x) + E (7) 
m=l 

where X is equal to (Xi. X 2 , ••• , Xpf and denotes the vector of 
predictor variables and y is the expected value (or mean) of the 
response variable. The "projection" part of the "projection pur­
suit regression'' indicates that the vector of predictors, x, is pro­
jected onto the direction vectors, am, to get the lengths of the 
projection a-::,X, where m = 1, ... , M 0 • The "pursuit" part indi­
cates that an optimization technique is used to find the best di­
rection vectors, am. <l>m(a-::,X) stands for the unknown nonparametric 
transformation functions of the projected lengths a-::,X to be esti­
mated.Eis the random error. Notice that <l>m has been standardized 
to have zero mean and the unity variance given in the following 
expression: 

E[ <l>~(a~x)] = 1 

(m = 1, ... , Mo) (8) 
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The PPR algorithm strives to minimize the mean squared resid­
uals, E[r2

], over all possible combinations of J3m, <l>m, and am values. 
This algorithm first performs a forward stepwise fitting procedure 
starting with a single term and ending up with Mmax terms. Super­
smoother is used to estimate the conditional expectation functions. 
After having fitted the Mmax term model in a forward stepwise man­
ner, a backward stepwise procedure is followed and stopped with 
an Mmin term model. Notice that Mmax and Mmin are the user-specified 
maximum and minimum number of terms in the model, respec­
tively. The relative importance of each term can be measured by 
the absolute value of J3m as well. The expectation function of the 
squared residuals is given as follows: 

(9) 

Conceptually, the explanatory variables x's are projected onto 
the direction vectors ai. ai. ... , am, to find good nonlinear trans­
formations <l>i. <1>2 , ••• , <l>m for the multidimensional response 
surface. In other words, the response surface is broken down into 
a series of smooth projected terms adding all together. Thus, the 
largest trend in the factor space is captured as the first projected 
term <l>i. and the residuals become the sources for additional pro­
jections afterward. More technical details about the development 
process, the application, and the demonstration on modeling in­
teractions of the PPR algorithm can be found elsewhere (5,6,16). 

PROPOSED TWO-STEP MODELING APPROACH 

The proper selection of regression techniques is one of the most 
important factors in the success of prediction modeling. Since 
most of the regression algorithms currently available do not di­
rectly consider interaction effects during the modeling process, the 
interaction terms must be subjectively determined prior to per­
forming a regression analysis. With the multidimensional pave­
ment engineering problems in mind, several unresolved deficien­
cies are frequently identified in the use of stepwise regression and 
nonlinear regression. These include problems in the selection of 
correct functional form, violations of the embedded statistical as­
sumptions, and failure to satisfy some engineering boundary con­
ditions as previously discussed. 

The projection pursuit regression, however, appears to have the 
most favorable features in handling these problems. As a result a 
two-step regression analysis procedure is proposed herein to better 
find the correct functional form and to better fit the response sur­
face as well. 

1. With the help of the PPR a multidimensional response sur­
face is broken down into the sum of several smooth projected 
curves that are graphically representable in two dimensions. Plau­
sible functional forms and applicable boundary conditions may 
then be easily identified and specified through visual inspection 
or engineering knowledge of the physical relationships to model 
these individual projected curves separately. 

2. Traditional parametric regression techniques such as linear 
and nonlinear regressions are then utilized for these purposes with 
higher confidence in the parameter estimates. 

The overall regression statistics and the goodness of fit often 
clearly show the advantages of the proposed two-step modeling 
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approach over the traditional counterparts. The S-PLUS statistical 
package (16-19), which has been widely used by statisticians, 
was selected for the analysis due because of the availability of 
this new regression technique. 

EDGE STRESS DUE TO LOADING AND FINITE 
SLAB LENGTH EFFECTS: CASE STUDY 

Since transverse cracking is one of the major structural distresses 
in jointed concrete pavements, the determination of the maximum 
bending stress at the longitudinal edge (midway between the trans­
verse joints) is very crucial in any mechanistic or mechanistic­
empirical design procedures. 

However, the theoretical Westergaard edge stress solution (20) 
based on an infinite slab assumption may not be well suited for 
the actual finite slab size conditions. To assess the effect of a finite 
slab length, a series of finite-element (FE) runs are often per­
formed. Unfortunately, the FE model cannot be easily imple­
mented as a part of a design procedure because of the required 
running time. 

Several attempts in edge stress prediction that proved to be very 
successful in the past are reviewed and discussed below. The basic 
concepts behind those analysis procedures were to design and per­
form a full factorial of FE runs under various combinations of 
different conditions. Statistical regression techniques were utilized 
to develop predictive models for different situations. The predic­
tive equations were then used as alternatives for design purposes 
with sufficient accuracy in estimating stresses. 

To demonstrate the proposed two-step predictive modeling pro­
cedures, the following case study was performed. The purpose of 
this case study was to demonstrate the advantages of incorporating 
dimensional analysis and selecting proper functional forms for the 
predictive models analyzed. Three different approaches are dis­
cussed in the following sections: 

1. Use arbitrary but ''best'' linear combinations of individual 
variables with interaction terms for regression; 

2. Introduce as many mechanistic variables as possible on the 
basis of engineering knowledge, and also find the ''best'' linear 
combinations of these variables with interaction terms for regres­
sion; and 

3. Introduce as many mechanistic variables (or clusters of vari­
ables) as before, and also try to find the best functional forms on 
the basis of the proposed two-step predictive modeling procedures. 

Principles of Dimensional Analysis 

According to Westergaard (20,21), the closed-form stress solution 
due to a circular edge loading on a semi-infinite slab over a dense 
liquid foundation on the basis of medium-thick plate theory is 
given as follows: 

3(1 + µ)P [ Eh
3 

cr = 'TT(3 + µ)h2 log,, l00ka4 + 1.84 

4µ 1 - µ a] - - + -- + 1.18(1 + 2µ)-
3 2 I 

(10) 

where 

cr = theoretical Westergaard edge stress (FL - 2
), 

P = total applied wheel load (F), 
a= radius of the applied circular load (L), 
E = elastic modulus of the concrete slab (FL - 2

), 

h = slab thickness (L ), 
µ=slab Poisson's ratio, 
k = modulus of subgrade reaction (FL-3

), and 
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I = radius of relative stiffness of the slab subgrade system (L) 
given by 

v Eh3 
I =12(1 - µ 2)k (11) 

[Note that the basic dimensions are abbreviated as length (L) and 
force (F).] 

Through the use of the principles of dimensional analysis, the 
above stress equation may be reduced to the following equation 
form in which both sides of the equation are dimensionless 
(22,23). 

(12) 

Therefore, the above normalized stress equation (crh2IP) is simply 
a function of the dominating variable, all, representing the com­
bination effect of the input parameters, namely E, h, k, and a, for 
constant µ (usually µ = 0.15). 

To account for the finite slab length effect, Ioannides et al. (21) 
introduced a normalized length term, LI I, when comparing FE 
results with the theoretical Westergaard solution. Similarly, a nor­
malized width term, W/l, was introduced to account for the effect 
of finite slab width. Note that L and W represent slab length and 
slab width, respectively. However, it is also recognized that the 
finite slab width effect (Wll) is not as significant as the other two 
dimensionless p(!rameters (i.e., a/I and Lil), as suggested by ear­
lier investigators (8,23). 

An adjustment (or multiplication) factor may be introduced to 
account for the theoretical difference between the Westergaard so­
lution (cr) and the results from the FE model by using only these 
two dimensionless factors (all and Lil). The adjustment factor (R) 
is defined by the following expression: 

cr- (a L) 
R =-;:=fl' I (13) 

where cr; is the edge stress determined by the FE model. 
The advantages of using the principles of dimensional analysis 

to derive the above formulation are evident. They can be very 
helpful in identifying the governing dependent and independent 
variables (or clustered variables) of a given relationship. In ad­
dition, they may also help to reduce the number of factorial FE 
runs needed for the analysis. The above formulation is not only 
easy to comprehend but is also dimensionally correct. Thus, the 
resulting edge stress from FE studies ( cr;) can be determined by 
multiplying the theoretical Westergaard solution and the adjust­
ment factor (R) together, if it is properly formulated. 
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Use of Arbitrary Linear Combination of Variables 

The analysis of edge stress due to different axle loads, slab 
lengths, slab thicknesses, foundation supports, thermal gradients, 
and edge supports was initially studied by Darter (7). A large full 
factorial of FE runs was performed to determine the edge stresses 
for different conditions, and subsequently separate predictive 
models were developed. For the case of loading only, an 18-kip 
single axle loading was applied on the following factorial pave­
ment sections: 

1. Slab length L = 15, 20, 25, and 30 ft; 
2. Slab thickness h = 8, 10, and 14 in.; 
3. Foundation support k = 50, 200, and 500 pci; and 
4. Edge support ES = 0, 12, 36, and 60 in. 

where other pertinent input parameters are 

E = 5 X 106 psi lblin2
, 

W= 12 ft, 
µ = 0.15, and 

loaded area per wheel= 12 X 15 in.2
• 

The results of these FE runs were directly used to derive a re­
gression model for edge stress (<h) prediction. 

Stepwise regression procedure was utilized to pick the ''best'' 
linear combinations of individual variables including interaction 
terms during the modeling process. The slab length (L) was not 
proved to affect the edge stress prediction significantly and thus 
was excluded from the model. The proposed-predictive model for 
single axle load without the loss of edge support (ES = 0) is given 
as follows: 

load ( h
3 

(J = -- . 17.35783 - 0.05388 . -
L 18 • h2 k 

h
3

) + 7.41722 • loglO k (14) 

Using Equation 14 to predict the actual calculated edge stresses 
from the above FE runs, a fairly good agreement is observed. 

However, this model does not contain the elastic modulus of 
the concrete slab (E) and the finite slab length (L) because of the 
limitations of the factorial runs conducted. The variables included 
in this model are numerically significant, but they are not the 
actual dominating factors with correct dimensions. Thus, the ap­
plicability of using this equation beyond the ranges of the data 
for which the model was originally developed such as different E 
values and other shorter slabs is very questionable. 

Introducing Mechanistic Variables (Clustered 
Variables) 

The analysis of edge stress was further studied by Salsilli-Murua 
(8). The concept of equivalent single axle radius (ESAR) was 
utilized for analyzing different load configurations including dual 
wheels, tandem gears, and tridem gears. The effects of slab sizes, 
widened outer lanes or tied shoulders, subbase and subgrade lay­
ers, and thermal curling were also analyzed separately. Through 
the use of the principles of dimensional analysis, a series of small 
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factorial FE runs covering most practical engineering conditions 
were performed and separate predictive models were developed. 

As previously discussed, the effects of wheel loading and finite 
slab length can be best represented by two dimensionless factors: 
all and Lil. Thus, only a minimum number of factorial FE runs 
on the basis of these two factors were performed. The adjustment 
(or multiplication) factor (R) as defined in Equation 13 was also 
introduced for edge stress prediction. Note that the Westergaard 
solution (a) for infinite slab condition is approximated by the 
resulting ILLI-SLAB edge stress (a"") for Lil = 7.0 herein when 
calculating the adjustment factor (R = aJaoo). 

A multiple stepwise regression procedure was utilized again 
because of its favorable feature of progressively adding and drop­
ping variables in a regression model. The proposed predictive 
model is given as follows: 

R = 0.582282 - 0.533078(7) + 0.181706(7) 

- 0.019824(7)' + 0.109051( 7)(7) (15) 

Statistics: N = 12, R2 = 0.996, SEE = 0.0028, CV= 0.29 percent 
Limits: 3 ::; Lil ::; 5, 0.05 ::; all ::; 0.3 
N is number of datum points, R2 is the coefficient of determi­

nation, SEE is the standard error of estimates, and CV is the co­
efficient of variation). 

His work has repeatedly demonstrated the advantages of using 
dimensional analysis to discover the underlying dominating fac­
tors for the analysis. In addition, the proposed predictive model 
not only has fairly good agreement with the data analyzed, but it 
may also be applied to a wide range of input parameters (i.e., E, 
h, k, and a). This model is also dimensionally correct. The pre­
diction of edge stress is simply a matter of multiplying the theo­
retical Westergaard solution by the predicted R value on the basis 
of this model. 

Nevertheless, the conclusions should be restricted to the ranges 
of the data for which the model was originally developed. This is 
also true for any regression technique chosen to develop such a 
predictive model. Besides, a reasonable doubt is raised as to the 
adequacy of the functional form, especially when an asymptotic 
trend of the relationship between R and Lil is observed. This as­
ymptotic trend could not be captured simply because of the mul­
tiple stepwise regression technique chosen. Thus, the usefulness 
of the model beyond the specified limits is highly questionable. 

Selecting Proper Functional Forms 

The importance of incorporating subject-related engineering 
knowledge into the modeling process, as has been done in the 
previous example in identifying dominating clustered variables, 
cannot be overemphasized. In addition, the selection of proper 
functional forms to satisfy some applicable engineering boundary 
conditions is a crucial component of a successful predictive 
model. The proposed two-step modeling approach was adopted 
herein to illustrate this point. The following factorial ILLI-SLAB 
runs were performed: 

all: 0.05, 0.1, 0.2, and 0.3 and 
Lil: 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, and 7.0. 
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Note that W!l was set to 7.0 for all runs. The FE grids were generated 
according to the recommendations of loannides (24, pp. 187-188) 
to provide sufficient accuracy. The pertinent input parameters and the 
results of these factorial runs are presented in Table 1. A three­
dimensional perspective plot providing a very clear picture of the 
relationship among R, a/l, and Lil is shown in Figure 1. 

TABLE 1 ILLI-SLAB Runs on Slab Size Effects 

a/l Lil c a p 

0.05 2.0 2.5 1. 995 1250 39.89 
0.05 2.5 2.5 1.995 1250 39.89 
0.05 3.0 2.5 1.995 1250 39.89 
0.05 3.5 2.5 1. 995 1250 39.89 
0.05 4.0 2.5 1. 995 1250 39.89 
0.05 4.5 2.5 1. 995 1250 39.89 
0.05 5.0 2.5 1. 995 1250 39.89 
0.05 6.0 2.5 1.995 1250 39.89 
0.05 7.0 2.5 1.995 1250 39.89 
0.10 2.0 .5. 0 2.821 2500 28.21 
0.10 2.5 5.0 2.821 2500 28.21 
0.10 3.0 5.0 2.821 2500 28.21 
0.10 3.5 5.0 2.821 2500 28.21 
0.10 4.0 5.0 2.821 2500 28.21 
0.10 4.5 5.0 2.821 2500 28.21 
0.10 5.0 5.0 2.821 2500 28.21 
0.10 6.0 5.0 2.821 2500 28.21 
0.10 7.0 5.0 2.821 2500 28.21 
0.20 2.0 10.0 5.642 10000 28.21 
0.20 2.5 10.0 5.642 10000 28.2~ 

0.20 3.0 10.0 5.642 10000 28.2:!. 
0.20 3.5 10.0 5.642 10000 28.21 
0.20 4.0 10.0 5.642 10000 28.21 
0.20 4.5 10.0 5.642 10000 28.21 
0.20 5.0 10.0 5.642 10000 28.21 
0.20 6.0 10.0 5.642 10000 28.21 
0.20 7.0 10.0 5.642 10000 28.21 
0.30 2.0 10.0 5.642 10000 18.81 
0.30 2. 5 10.0 5.642 10000 18.81 
0.30 3.0 10.0 5.642 10000 18.81 
0.30 3.5 10.0 5.642 10000 18.81 
0.30 4.0 10.0 5.642 10000 18.81 
0.30 4.5 10.0 5.642 10000 18.81 
0.30 5.0 10.0 5.642 10000 18.81 
0.30 6.0 10.0 5.642 10000 18.81 
0.30 7.0 10.0 5.642 10000 18.81 

a =radius of loaded area, in. 
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Because the relationship is a nonlinear three-dimensional sur­
face, a nonlinear regression model may be better suited for this 
prediction purpose than an arbitrarily selected linear or polynomial 
model form. But, what kinds of functional forms to be used in 
the model and how to choose a proper one remain unanswered. 

The proposed two-step modeling approach is aimed at search-

L w E k h a 

79.79 279.26 5 200 10.59 40.868 
99.74 279.26 5 200 10.59 43.559 

119.68 279.26 5 200 10.59 45.458 
139.63 279.26 5 200 10.59 46.744 
159.58 279.26 5 200 10.59 47.536 
179.52 279.26 5 200 10.59 47.973 
199.47 279.26 5 200 10.59 48.180 
239.37 279.26 5 200 10.59 48.287 
279.26 279.26 5 200 10.59 48.293 

56.42 197.47 4 300 8.23 100.494 
70.52 197.47 4 300 8.23 109.154 
84.63 197.47 4 300 8.23 115. 240 
98.73 197.47 4 300 8.23 119.399 

112.84 197.47 4 300 8.23 121.952 
126.94 197.47 4 300 8.23 123.347 
141.05 197.47 4 300 8.23 123.999 
169.26 197.47 4 300 8.23 124.304 
197.47 197.47 4 300 8.23 124.311 

56.42 197.47 3 400 9.97 178.536 
70.52 197.47 3 400 9.97 201.014 
84.63 197.47 3 400 9.97 216.928 
98.73 197.47 3 400 9.97 227.837 

112. 84 197.47 3 400 9.97 234.529 
126.94 197.47 3 400 9.97 238.158 
141.05 197.47 3 400 9.97 239.822 
169.26 197.47 3 400 9.97 240.510 
197.47 197.47 3 400 9.97 240.443 

37.61 131. 64 2 500 7.16 251.011 
47.02 131.64 2 500 7.16 292.598 
56.42 131. 64 2 500 7.16 322.461 
65.82 131.64 2 500 7.16 342.758 
75.23 131.64 2 500 7.16 355.316 
84.63 131. 64 2 500 7.16 362.178 
94.03 131.64 2 500 7.16 365.327 

112.84 131. 64 2 500 7.16 366.408 
13.1.64 131.64 2 500 7.16 365.845 

c = load dimensions are c x c, except those cases with c = 2.5 use 2c x c instead, in. 
1 = radius of relative stiffness, in. 
h =slab thickness, in. 
E = elastic modulus of concrete, *Hf psi 
k = modulus of subgrade reaction, pci 
L = slab length, in. 
W = slab width, in. 
P = total applied load, lb 
a = edge bending stress, psi 

The tire pressure was held constant at 100 psi for all the runs. 
Note: 1 inch= 2.54 cm, 1 psi= 6.89 kPa, 1 pci = 0.27 MN/m3

, 1 lb= 0.454 kg. 
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FIGURE 1 Slab size effect: three-dimensional plot. 

ing for a series of two-dimensional projected curves first to ease 
these important modeling decisions. First, the PPR technique was 
utilized to determine the direction vectors for all and L /l and the 
suggested single-term nonlinear transformation <l>1(aix) by using 
only those datum points within the specified limits of Equation 15. 
The results of this PPR trial are given in the following equations: 

R = 0.9667 + 0.0330<1>1(ATXl) (16) 

ATXl = -08945~ + 0.447lfl . l (17) 

A graphical representation of this PPR trial is shown in Figure 
2. The first two plots are the scatter plots of the one-to-one rela­
tionships of R versus all and Lil. The next plot shows the resulting 
first PPR projected term versus the length of the projection, that 
is, <l>1(aix) versus aix. Notice that aix is represented by the axis 
label ATXl, whereas <l>1(ATXl) is represented by the axis label 
"1st Projected Term" in this plot. The goodness-of-fit of this PPR 
model including a plot of the predicted versus actual values and 
a plot of the residual versus predicted values is displayed in the 
last two plots. If this curve is properly modeled and the above 
two equations are used, fairly good predictions with a relatively 
high R2 of 0.995 may be obtained. 

Thus, the task was reduced to simply finding a feasible model 
for this projected curve. An asymptotic trend was clearly identified 
through visual inspection. Therefore, an asymptotic nonlinear 
model with two to three (or at most four) parameters may describe 
this curve adequately. The following four-parameter equation form 
was selected to offer the maximum flexibility in the modeling 
process: 

(18) 

The nonlinear regression technique was then used to obtain the 
parameter estimates. The first derivative of this equation form with 
respect to each parameter was also provided to help the iterative 
regression routine converge faster. The starting value of each pa­
rameter was carefully chosen so that a 1 and a4 were large negative 
values, for example, -4.0, and a1 was the minimum possible 
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value of <1>1. Since a2 and a3 were still undecided, two small pos­
itive values, for example, 0.01, were chosen as their starting 
points. The following equation satisfies the convergence criteria 
even with many other different starting values: 

<l>1(ATXl) = -5.5869 (19) 

1 + ~~~~~~~~~-
0. 1473 + 0.2627ATXi-5·1659 

The overall statistics for the prediction of R (or rr;/rroo) because 
of the slab length effect by using Equations 16, 17, and 19 are 
summarized as follows: 

Statistics: N = 20, R2 = 0.994, SEE= 0.0027, CV= 0.28 percent 
Limits: 3 ::;; L 11 ::;; 5, 0.05 ::;; all ::;; 0.3 

To illustrate how the three-dimensional response surface (Fig­
ure 1) might be broken down into the sum of a series of two­
dimensional curves, the PPR algorithm was utilized again to ob­
tain a two-term model and a three-term model as shown in Figures 
3 and 4, respectively. By analogy, the axis labels "ATX2" and 
'' ATX3'' represent a~x and arx, respectively, whereas the axis 
labels "2nd Projected Term" and "3rd Projected Term" represent 
<l>2(ATX2) and <l>3(ATX3) in Equation 7, respectively. The other 
plots are similar to the plots defined in Figure 2. 

As an example, the results of the two-term PPR model are given 
in the following equations: 

R = 0.9667 + 0.0330<1>1(ATXl) + 0.00210<1>2(ATX2) (20) 

ATXl 
a L 

-0.89451 + 0.4471 / (21) 

ATX2 0.99707 + 0.077877 (22) 

The second projected term contributes little to the prediction of 
R, since its coefficient is very small when compared with the 
coefficient of the first projected term (i.e., (32 = 0.0021, whereas 
(31 = 0.0330). The third projected term also contributes very little 
to the accuracy of the prediction when compared with the first 
one and the second one, and thus the associated equations for the 
three-term model are not presented herein. In fact, the use of only 
one or two projected curves can adequately describe this three­
dimensional response surface, as suggested by these figures. 

The plausible model forms suggested by these PPR trials are 
an asymptotic nonlinear model for the first projected curve, a 
second-degree polynomial for the second projected curve, and a 
third-degree polynomial for the third projected curve if necessary. 
Of course, some piecewise linear and nonlinear curves may also 
be formulated for these purposes without much loss of generality. 

Prediction and Extrapolation 

From the above demonstration, it is evident that using different 
regression procedures may result in totally different predictive 
models, but with excellent agreement with the same set of data. 
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FIGURE2 Slab size effect: one-term PPR model. 

Under the umbrella of statistical regression analysis, they are all 
feasible solutions of the targeted problem as long as the conclu­
sions are restricted to the range of the data. In other words "ex- , 
trapolation beyond the range of the data'' is never considered 
feasible with statistical regression analysis procedures. 

However, it is also recognized that "extrapolation" is often 
necessary in actual engineering practice because of the limited 
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resources available and technical limitations. To judge which 
equation is preferable, both Equations 15 and 16 were checked 
by plotting the predicted versus the actual R values within the 
specified data ranges as displayed by the symbol ''o'' in Figures 
S(a) and 5(b), respectively. It is clearly shown that both equations 
result in very good predictions within the range of the data from 
which they were originally developed. In addition, Figures S(a) 
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FIGURE 3 Slab size effect: two-term PPR model. 

and 5(b) present the results when extrapolating beyond the spec­
ified limits by using these two models and the data from all of 
the 36 FE runs, respectively. These datum points, as displayed by 
the symbol '' *'' in the graphs, clearly show the difference. 

Extrapolation by using Equation· 15 results in totally unaccept­
able predictions outside the specified limits as shown in Figure 
5( a). However, this problem is less pronounced as shown in Fig-

0.92 
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ure 5(b) when using Equation 16. In fact, the extrapolation of 
Lil greater than 5.0 provides excellent agreements with the actual 
data, since the functional form was properly selected to be as­
ymptotic such that the predicted R values are very close to unity, 
as they should be. Nevertheless, some discrepancies still exist 
when extrapolating Equation 16 to smaller Lil values, that is, 
Lil < 3.0, which generally result in smaller R values. 
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FIGURE 4 Slab size effect: three-term PPR model. 

This result may be explained by the fact that the first parameter 
[ai. or the minimum possible value of <l>1(ATXl)] of Equation 19 
was estimated to be -5.5869, such that Equation 16 will never 
result in a value below 0.7823. This approximation is acceptable 
for the ranges of data that were used to develop Equations 16, 17, 
and 19. However, it may not be as accurate when extrapolating 
too far away from this specified range. If the minimum possible 
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value of R is known, this boundary condition may also be imposed 
on the predictive model. Thus, better agreement with the data can 
be obtained even in the case of extrapolation. 

In summary, this case study not only demonstrates the benefits 
of using mechanistic variables through the use of the principles 
of dimensional analysis but it also emphasizes the importance of 
selecting proper functional forms. Correct functional forms pro-
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FIGURE 5 Extrapolated prediction plots using (a) existing model; (b) new model. 

vide more comprehensive insights into the performance of the 
predictive model and may also lead to reasonable results even 
when extrapolation beyond the range of the data is required. It 
can be concluded that proper functional form is also a very crucial 
component in the success of a modeling process. The proper se­
lection of functional forms to satisfy some applicable physical 
boundary conditions and subject-related engineering knowledge 
are the best supplements to statistical regression algorithms. 

CONCLUSIONS 

Several traditional linear and nonlinear regression techniques that 
have been widely adopted in pavement research were reviewed. 
Their advantages and limitations were discussed. Application of 
these regression techniques to practical engineering problems of­
ten shows the deficiencies in the selection of proper functional 
forms, the violation of some embedded statistical assumptions, 
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and failures to satisfy some applicable engineering boundary 
conditions. 

Through the use of projection pursuit regression technique, a 
two-step predictive modeling approach was proposed in an at­
tempt to minimize these problems. The proposed modeling ap­
proach was demonstrated in a case study for edge stress prediction 
owing to the finite slab length effect. Without imposing an unjus­
tified parametric assumption, the PPR provides a unique routine 
for breaking down higher-dimensional engineering problems into 
a series of sensible projected curves. By doing so the individual 
projected curves may be formulated separately with better choices 
of feasible functional forms as well as possible boundary condi­
tions. Not only did the demonstration reemphasize the advantages 
of using the principles of dimensional analysis but it also illus­
trated the importance of the proper selection of functional forms. 
Correct functional form provides more comprehensive insights 
into the performance of the predictive equation and may also lead 
to reasonable results even when extrapolation beyond the range 
of the data is required. 

The demonstration was based on the data from the theoretical 
FE solutions in which no erroneous data are expected. As for 
applying the PPR to field or laboratory data with some possible 
errors, the promising features of the PPR algorithm are also help­
ful for identifying any extremely strange behavior because of data 
errors. Engineering knowledge of the physical mechanism of the 
problem may be applied in identifying the possible bad datum 
points as well. 

It is also believed that only through the application of both 
engineering and statistical knowledge and techniques will a more 
theoretically correct predictive equation be developed. If properly 
developed it may also be applied beyond the range of the data. 
Nevertheless, the conclusions should be restricted to the range of 
the data. 
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