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Urban Rail Corridor Control Through 
Machine Learning: An Intelligent 
Vehicle-Highway System Approach 

SNEHAMAY l<HASNABIS, TOMASZ ARCISZEWSKI, SYED l<HuRSHIDUL HODA, 

AND WOJCIECH ZIARKO 

Traffic control along an urban rail corridor with closely spaced stations 
can be considered a sequence of decision-making stages. A train on an 
urban rail corridor that connects two terminal points with a number of 
intermediate stations can follow various regimes of moving and stop­
ping, which identify individual driving scenarios. The execution of 
these regimes may result in different values of attributes that describe 
driving scenarios, namely, travel time, energy consumption, passenger 
comfort, and others. An attempt is made to demonstrate how to develop 
decision rules for driving scenarios along an urban rail corridor that can 
optimize travel time, energy consumption, and passenger comfort, 
using the concept of machine learning. Machine learning is a science 
that deals with the development and implementation of computational 
models of learning processes. The concept of knowledge acquisition 
through inductive learning as an intelligent vehicle-highway system ap­
proach is explored to establish some initiai decision rules. A computer 
model, REGIME, was developed for the estimation of values of evalu­
ation criteria, such as travel time, energy consumption, and passenger 
comfort levels for a hypothetical rail corridor for various driving sce­
narios. Next, a commercial learning system, ROUGH, was used in con­
junction with the examples created through REGIME to develop deci­
sion rules. The learning algorithm is based on the theory of rough sets. 
The feasibility of machine learning in automated knowledge acquisition 
to develop decision rules for complex engineering problems, such as 
urban rail corridor control, is demonstrated. Further research is needed 
to verify the rules developed before these can be applied. 

Machine learning so far has had only limited applications to knowl­
edge acquisition in civil engineering (J). However, there are some 
examples of the ap.plication of machine learning in the areas of con­
ceptual design (2,3). A feasibility study of automated acquisition of 
knowledge of traffic control along an urban rail corridor was con­
ducted at Wayne State University as a part of a program on intelli­
gent vehicle-highway systems (IVHS). In this paper, the authors ex­
plore the concept of machine learning to develop decision rules for 
optimum control along an urban rail corridor. An earlier version of 
this paper was published previously (4). 

PROB_LEM STATEMENT 

A train on an urban rail corridor connecting two terminal points 
with a number of intemiediate stations can follow. various regimes 
of moving and stopping, which identify individual driving scenar-
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ios. The execution of these regimes may result in different values of 
attributes that describe these scenarios, namely, travel time, energy 
consumption, passenger comfort, and others. 

The concept of preprogrammed driving for urban rail corridors, 
as proposed in the literature will permit an automated selection of 
driving scenarios consistent with the distribution· of ridership de­
mand along the corridor (5). The driving scenarios are likely to 
change with the time of day as the demand changes. This concept is 
consistent with IVHS technology that aims at the integration of the 
vehicle, the facility, and the driver using the state-of-the-art com­
munication, computer, and electronic technology (6). 

When a large number of train driving scenarios is considered, the 
evaluation of individual scenarios and selection of the optimal one 
becomes difficult because of the complexities involved in analyz­
ing these scenarios. An ciltemative approach is a knowledge-based 
selection. In this case, the optimal scenario may be selected using a 
knowledge-based decisfon support tool. This paper examines such 
an approach. 

OBJECTIVES 

The paper is based on a pilot study to explore the concept of knowl­
edge acquisition through inductive learning to establish decision 
rules for an urban rail corridor. Ideally, one would like to 

• Minimize travel time, 
• Minimize energy consumption, 
• Maximize access, and· 
• Minimize level of discomfort. 

In actuality, it is not possible to minimize travel time and energy 
consumption at the same time because these two are nearly in­
versely related entities, as evidenced from empirical studies (5). The 
question of maximizing access has never been satisfactorily re­
solved in the literature. Passenger discomfort levels are associated 
with acceleration and deceleration characteristics of the train, and 
these are difficult entities to quantify. The objective of this paper is 
to demonstrate how to develop decision rules for driving scenarios 
along an urban rail corridor that can improve travel time, energy 
consumption, and comfort levels of passengers. 

RAIL TRAFFIC CONTROL 

Traffic control along an urban rail corridor with closely spaced sta­
tions can be considered a sequence of decision-making stages. In 
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this study, three evaluation criteria are used: travel time that is based 
on regimes of motion, energy consumption, and comfort levels. 

Regimes of Motion 

Typically, the train operator has the option of selecting regimes of 
motion for individual segments (Figure 1) from four basic regimes, 
A through D, as discussed (5): 

• Regime A: The interstation spacing is shorter than the critical 
spacing; critical spacing is the minimum distance between stations 
needed for the train to attain its maximum speed (Figure la). 

• Regime B: The interstation spacing is longer than the critical 
spacing. The train maintains a sustained level of maximum speed 
before deceleration is initiated for the next stop (Figure lb). 

• Regime C: The interstation spacing is longer than the critical 
spacing. However, as an energy conservation measure, the train 
starts coasting (decelerating at a very slow rate) immediately on 
reaching its maximum speed and continues to coast until decelera­
tion is initiated as the train approaches the next station (Figure le). 

• Regime D: Regime D represents an intermediate condition be­
tween Regimes B and C that allows the train to travel at its maxi­
mum speed and to coast between two stops. The train accelerates to 
its highest speed, travels at the maximum speed for a predetermined 
period (as described ·in Regime B ), and starts coasting (as described 
in Regime C) before the deceleration process is started. Within 
Regime D, infinite combinations are possible, depending on the in­
stant when coasting is initiated. If coasting begins immediately be­
fore deceleration, the resulting is Regime B as a limiting condition. 
If, on the other hand, coasting is initiated immediately upon the at­
tainment' of maximum speed, Regime C will result as the other limit 
(Figure ld). 
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Energy Consumption 

Studies of Hamburg rail systems by empirical and computer simu­
lation technique~ have demonstrated the importance of different dri­
ving regimes in the context of energy consumption (7). The trade­
off between energy consumption and travel time, developed from 
time-speed-energy consumption data, was used in this study to de­
velop surrogate measures of energy consumption for varying travel 
times in the form of an empirical relationship (Figure 2). Although 
this relationship does not explicitly consider different regimes of 
motion, lower energy consumption resulting from longer coasting 
and consequent longer travel times are incorporated in this rela­
tionship ( 8). 

Four models were developed for estimating energy consumption 
for the purpose of this study using the data presented in Figure 2. 
These models included simple, polynomial, logarithmic, and expo­
nential models. The following exponential model was used for the 
study reported here. 

y = 1322.5 * 10 <-1.o091e-zx ••• (A) R2 = 0.983 

where 

X = travel time surrogate and 
Y = energy consumption surrogate. 

Passenger Comfort Levels 

Every change in the acceleration/deceleration phase is associated 
with a level of discomfort for the passenger. The rate of accel­
eration/deceleration (second derivative of speed with respect to 
time) is commonly termed "jerk." It was assumed that the level 
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FIGURE 1 Interstation travel regimes (5). (a) Regime A, (b) Regime B, (c) Regime C, and (d) Regime D. 
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FIGURE 2 Travel time verses energy consumption trade­
off (5). 

of discomfort experienced by a passenger is measured by the 
number of jerks during a given pass of the train along the entire 
corridor. Ideally, not only the frequency of jerks but also their 
respective magnitudes should be considered. However, magni­
tude was considered too complex to quantify for the purpose of 
this study. 

A review of acceleration/deceleration characteristics indicates 
that for a typical interstation travel, a total of two instances of jerks 
will be experienced during the acceleration phase, two during the 
deceleration phase, and one during the beginning of the coasting 
operation. Further, for every skip-stop operation, a total of four 
instances of jerk can be "saved," resulting from the elimination of 
deceleration and acceleration operation as the train approaches and 
leaves the station in question, respectively. 

METHODOLOGY 

The primary objective of this study was to apply a learning system 
as an automated knowledge acquisition tool for an urban rail corri­
dor. The following methodology was used. 

Machine Learitjng 

Machine learning is the process of generating decision rules repre­
senting logical relationships between various combinations of 
attributes and their values. It is a science that deals with studies and 
development and implementation of computational models of learn­
ing and discovery processes. Learning systems are computer pro­
grams that transform input in the form of data (usually examples) 
into knowledge (usually in the form of decision rules). 

A decision rule is a logical relationship between a group of 
attributes called "independent attributes" and a single attribute 
called a "dependent attribute." In this case, independent attributes 
are those that are controlled by the rail traffic operator, whereas 
dependent attributes can be only indirectly controlled. Therefore, 
independent attributes affect the values of dependent attributes. For 
example, an independent attribute "skipping one or two stops" 
affects the value of the dependent attribute "travel time." 
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ROUGH as a Machine Learning Tool 

Automated knowledge acquisition was conducted using ROUGH, 
Version 1.1, a commercial inductive learning system developed by 
Ziarko (9). This algorithm utilizes the theory of rough sets proposed 
by Pawlak (JO). Its objective is to produce decision rules for the 
classification of examples into one of the categories of the depen­
dent attribute. 

In the theory of rough sets, the determination of decision rules is 
based on the analysis of individual attributes in the context of a 
given collection of examples. This analysis includes the determina­
tion of the dependency relationship between the dependent attribute 
and any group of independent attributes, identification of a minimal 
set of independent attributes that are necessary and sufficient to pro­
duce decision rules, and the determination of the relative impor­
tance of individual attributes from this group. 

ROUGH conducts the learning process in two stages. First, it 
performs the analysis of dependency factors for individual attri­
butes and identifies a set of "reducts" for a given collection of ex­
amples. The term reduct signifies a minimum and sufficient collec­
tion of attributes describing a given system. This stage can be 
considered an analysis and modification of the representation space 
for given examples. In the second stage, actual learning occurs, and 
the system uses individual reduct attributes to produce decision 
rules using these attributes. 

Study Approach 

A computer program, REGIME, was developed for the estimation 
of values of evaluation criteria, which included travel time and sur­
rogates of energy consumption and comfort level for a given train 
driving scenario along an assumed corridor. The necessary algo­
rithms for computing travel times were obtained from Vuchic (5). 
Equation A, derived by the authors of this paper from Hamburg rail 
data, was used for estimating energy surrogates. The number of 
jerks experienced during a complete journey for each scenario was 
computed from first principles. 

Although the computation of travel time for Regimes B and C is 
relatively straightforward, for Regime D it is somewhat complex, 
because of an infinite number of possibilities when coasting may be 
initiated. The model provides the user with a range of possible val­
ues of the coasting speed for different skip-stop combinations to 
help the user converge to a definite solution. The model produces 
the output at the individual station level (microscopic) as well as the 
corridor level (macroscopic). 

All the driving scenarios were then identified by the condition at­
tributes in binary form by assigning yes or no values (Table 1). 
After identifying the scenarios, the decision attributes, that is, total 
travel time, energy consumption factor, and passenger comfort, 
were determined. The decision attributes were identified by high, 
medium, and low desirability. The condition attributes and decision 
attributes were then entered in the ROUGH system as inputs to de­
velop decision rules. 

Study Area 

Evaluation of individual scenarios was produced for a hypothetical 
urban rail corridor of 50 station spaces (sections) divided into five 
segments. The two end segments, Segments 1 and 5, consist of four 
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TABLE 1 Binary Representations of Condition Attributes 

Segment Condition Attributes Binary 
Decision 

Constant Speed Yes No 

Coasting Yes No 

No. I and 5 Constant speed and Cc>asting Yes No 

One stop ski oocd Yes No 

Two stops skioocd Yes No 

Constant speed Yes No 

Coasting Yes No 

No. 2 and 4 Constant speed and Coasting Yes No 

One stop ski oocd Yes No 

Two stops ski ppcd Yes No 

Constant speed Yes No 

Coasting Yes No 

No.3 Constant speed and Coa~ting Yes No 

One stop ski oocd Yes No 

Two stops skipped Yes No 

station spaces. Segments 2 and 4 are the two intermediate segments, 
each consisting of 12 station spaces. The central segment, 3, con­
tains 18 station spaces. Each spacing was assumed to be 2,000 ft for 
a total corridor length of 100,000 ft. The rail corridor analyzed is 
thus a symmetrical one, with Segments 1 and 2 being mirror images 
of Segments 5 and 4, respectively, and Segment 3 being the central 
portion. 

It was assumed that the decisions taken for Segments 1 and 5 
would be identical. Similarly, it was assumed that Segments 2 anc;l 
4 are described by identical decisions. Therefore, the entire rail cor­
ridor is described when decisions for three different segments are 
known (for Segments 1through3). For each of these segments, five 
binary decisions about train operations are to be made. Thus, the en­
tire problem of train control is represented as a sequence of 15 de­
cision-making stages. At these stages, decision_ making requires an­
swering binary (yes/no) questions (Table 1). 

When all these questions are answered for the three different seg­
ments identified, a train-driving scenario is produced in the form of 

TABLE 2 Output of REGIME Model (Micro Level) 
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a sequence of 15 answers. In this model, the total number of train­
driving scenarios is large, although it is significantly smaller than 
215 because some combinations of answers are infeasible. 

RESULTS 

The results are presented in two sections. First, the output of the 
software REGIME is presented in both microscopic (station) and 
macroscopic (corridor) levels. Next, the results of using the macro 
level output as an input to ROUGH to develop decision rules are 
presented. Finally, a brief discussion of the rationale of some of the 
decision rules thus developed is provi?ed. 

REGIME Output 

The basic input for REGIME is maximum speed, demand, head­
way, acceleration, deceleration, coasting deceleration, interstation 
distance, and the total length of the corridor. The input values for 
the study are shown as follows: 

Input 

Maximum speed 
Demand 
Headway 
Acceleration 
Deceleration 
Coasting deceleration 
Station waiting time 
Interstation distance· 
Total distance 

Value 

60mph 
45,000 passengers per hour 
2.00 min 
5 ft/sec2 

6 ft/sec2 

1 ft/sec2 

35 sec 
2,000 ft 
100,000 ft 

Table 2 shows the micro level output of REGIME. Table 2 indicates 
that when Regime Bis used, operating speed improves from 27.08 
ft/sec obtained for no-skip operation to 41.41, 50.29, and 56.32 
ft/sec for one-stop-skip, two-stop-skip, and three-stop-skip opera­
tions, respectively. At Regime C, skipping more than one stop 
results in a dysfunctional operation as the gradual drop in speed re­
sults in 0 speed. This is a consequence of coasting over an extended 
distance, caused by skipping more than one stop. The speed level 
attained at Regime D is between corresponding speeds at Regimes 
B and C for respective skip-stop operations. 

Table 3 shows the macro level output of REGIME. The following 
is an interpretation of the first row in Table 3, a scenario in which the 

Skip Stop Scenario 

Re2ime Operatin2 Data 0 Stop I Stop 2 Stops 3 Stops 

B Operating Soccd (ft/s) 27.08 41.41 50.29 56.32 

Tmvcl Time (sec) 73.86 96.59 119.32 142.04 

Operating Speed (ft/s) 26.96 37.l 1 0.00 0.00 

c Tmvel Time (sec) 74.19 107.78 0.00 0.00 

Coasting Speed (ft/s) 79.70 39.39 0.00 0.00 

Operating Speed (ft/s) 26.97 41.34 50.26 56.31 

D Tmvcl Time (sec) 74.16 96.76 119.39 142.06 

Coasting Speed(ft/s) 80.00 82.00 84.00 86.00 
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TABLE 3 Output of REGIME Model (Macro Level) 

Travel Time Energy 

Scenario No. of Jerks (seconds) Consumption 

Factor 

81-82-82 72 2056.76 129.33 

80-81-82 104 2465.83 81.45 

00-02-02 I IO 2298.79 98.37 

C0-02-02 110 2298.98 98.35 

C0-01-82 124 2550.49 74.01 

C0-82-01 117 2478.84 80.26 

00-82-82 96 2263.72 102.35 

01-82-CI 97 2338.22 94.09 

train would travel in: (a) Regime B, skipping one stop in Segments 
1 and 5; (b) Regime Band skipping two stops in Segments 2 and 4; 
and ( c) Regime B and skipping two stops in Segment 3 will result in 
72 jerks, 2,056.76 sec of travel time, and 129.33 surrogate units of 
energy consumption for the entire corridor consisting of 100,000 ft. 

ROUGH Output 

REGIME was used to analyze 102 train driving scenarios, and for 
each scenario, estimates of the values of three evaluation criteria 
were produced. Next, these cases were used to prepare examples for 
inductive learning. The preparation of examples required the trans­
formation of the evaluation criteria from interval into nominal at­
tributes high, medium, and low. For instance, it was assumed that 
short travel time, low energy consumption, and high comfort (small 
number of jerks) all have high desirability, whereas long travel time, 
high energy consumption, and low comfort (large number of jerks) 
all have low desirability. 

Automated knowledge acquisition was conducted using ROUGH 
to learn about driving scenarios for an urban rail corridor. Scenar­
ios were defined by 15 condition attributes (Table 4). Three deci­
sion attributes or logical extensions of the three measures of effec­
tiveness are as follows: 

1. D 1, Desirability for passenger comfort, 
2. D2, Desirability for travel time, and 
3. D3, Desirability for energy consumption. 

Four machine-learning processes were performed using the 
ROUGH system. In the first process, comfort was considered as a 
decision attribute, and a total . of 46 decision rules were developed 
(Table 5). Next, travel time was considered as a decision attribute, 
and a total of 41 decision rules were developed (Table 6). In the third 
process, energy consumption factor was considered as a decision at­
tribute, resulting in a total of 52 decision rules (Table 7). In the fourth 
and final learning process, all decision attributes were considered 
together. A total of 71 decision rules were obtained-(Table 8). 
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It is beyond the scope of this paper to off er exact interpretation 
of the above rules and, more importantly, to review the rationale be­
hind these rules. Just to provide an example on how to interpret 
these rules, referring to Table 8, rule 69, the following explanation 
is offered. 

To achieve high desirability in comfort (small number of jerks), 
medium desirability in travel time (medium travel time), and high 
desirability in energy consumption (low consumption levels) a 
driving scenario encompassing the following conditions should be 
fulfilled: 

1. Coasting in Segments 1 and 5; 
2. No constant speed and coasting in Segments 1 and 5; 
3. Skipping one stop in Segments 1and5; 
4. Skipping one stop in Segments 2 and 4; 
5. Skipping one stop in Segment 3; and 
6. No skipping two stops in Segment 3. 

A review of these rules indicates that Condition 2 is automatically 
preempted by Condition 1 and thus is redundant. The essence of the 
remaining conditions is that the combination of coasting and skip­
ping one stop in each segment will result in high desirability in 
comfort levels and in energy consumption levels. Further, skipping 
more than one stop may result in inordinately long travel times 
(particularly ifRegime Bis involved). As such, skipping more than 
one stop is discouraged. These rules thus appear logical and rea­
sonable. 

CONCLUSIONS 

The objective of this paper is to explore the concept of knowledge 
acquisition through inductive learning to establish decision rules for 
an urban rail corridor. The study demonstrates the feasibility of 
using machine learning in automated knowledge acquisition about 
complex engineering problems such as urban rail traffic control. 

TABLE 4 Description of Condition Attributes 

Condition Attributes Notation 

Constant Sneed in the 1st and 5th Segments S11 

Coasting in the 1st and 5th segments S12 

Constant soeed and Coasting in the 1st and 5th segments Sl3 

Skiooing One stoo in the 1st and 5th segments Sl4 

Skiooing Two stoos in the 1st and 5th segments Sl5 

Constant speed in the 2nd and 4th segments S21 

Coasting in the 2nd and 4th segments S22 

Constant Speed and Coasting in the 2nd and 4th segments S23 

Skiooing One stoo in the 2nd and 4th segments S24 

Skiooing Two stoos in the 2nd and 4th segments S25 

Constant speed in the 3rd segment S31 

Coasting in the 3rd segment S32 

Constant soeed and Coasting in the 3rd segment S33 

Skiooing One stoo in the 3rd segment S34 

Skiooing Two stops in the 3rd segment S35 



TABLE 5 Rules by Decision Attribute Dl (Passenger Comfort) as Output of ROUGH 

Rule I Decision 
Condition Attribute Attribute 

No.ISll Sl2 SIJ Sl4 SIS S21 S22 S2J S24 S2.5 SJI SJ2 S3J S34 SJS DI 

I N N N N N N N N L 

2 N N N N N N N y N M 

J N N N y N N N y N L 

4 N N N N N N y 1\1 

s N N N N y N N M 

43 y y N N y N M 

44 y y y N y N H 

4S y y y y N H 

46 y y y H 

TABLE 6 Rules by Decision Attribute D2 (Travel Times) as Output of ROUGH 

Rule I Decision 
Condition Attribute Attribute 

No.ISll Sl2 SIJ Sl4 SIS S21 S22 S23 S24 S2.5 SJI S32 SJJ S34 SJS D2 

I N N N N N N N L 

2 N N N N N N y M 

3 N N N N y N N N M 

4 N N N N y N N y II 

s N N N N y N y II 

38 y y N N y N L 

39 y y y N y N M 

40 y y y y N II 

41 y y y II 

TABLE 7 Rules by Decision Attribute D3 (Energy Consumption) as Output of ROUGH 

Rule I Decision 
Condition Attribute Attribute 

No. I Sil SI2 SIJ Sl4 SIS S21 S22 S23 824 S25 SJI SJ2 S33 S34 S35 DJ 

I N N N N N N H 

2 N N N N N y N L 

3 N N N y N y N N H 

4 N N N y N y N y M 

5 N N N y N N M 

49 y N y y N y y N M 

50 y N y y y y N M 

51 y N y y y L 

52 y y L 
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TABLE 8 Rules by Decision Attributes Dl, D2, and D3 as Output of ROUGH 

Condition Attribute Decision 
Rule 
No. Sil Sl2 SI3 Sl4 SIS S21 S22 S23 

I N N N N N 

2 N N N N N 

3 N N N N N 

4 N N N N N 

s N N N N N 

68 y N y 

69 y N y 

70 y N y 

71 y y 

The rules developed are based on three separate evaluatiori crite­
ria: passenger comfort, travel time, and energy consumption. Addi­
tionally, a set of rules was developed with all of the three attributes 
combined. No effort was made in this study to explain these rules, 
to validate them, or to assess how they can be applied in actual train 
control. The large number of decision rules and their interaction re­
flects the complexity of the rail corridor control. To gain further in­
sights into this problem, an automated rule verification method is 
recommended on the basis of the performance of the learning sys­
tem, measured by various empirical error rates. 

Machine learning in rail traffic control is a new complex and In­
terdisciplinary research, and more work is needed to determine the 
feasibility of machine learning irt rail corridor control, to develop 
better understanding of the problem, and to prepare a program that 
would lead from research to practical application of results. The 
technique of machine learning appears to complement the emerg­
ing IVHS area. 
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