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Short-Term Traffic Flow Prediction: 
Neural Network Approach 

BRIAN L. SMITH AND MICHAEL J. DEMETSKY 

Much of the current activity in the area of intelligent vehicle-highway 
systems (IVHS) focuses on one simple objective: to collect more data. 
Clearly, improvements in sensor technology and communication sys­
tems will allow transportation agencies to more closely monitor the con­
dition of the surface transportation system. However, monitoring alone 
cannot improve the safety or efficiency of the system. It is imperative 
that surveillance data be used to manage the system in a proactive rather 
than a reactive manner. 'Proactive traffic management will require the 
ability to predict traffic conditions. Previous predictive modeling ap­
proaches can be grouped into three categories: (a) historical, data-based 
algorithms; (b) time-series models; and (c) simulations. A relatively 
new mathematical model, the neural network, offers an attractive alter­
native because neural networks can model undefined, complex nonlin­
ear surfaces. In a comparison of a backpropagation neural network 
model with the more traditional approaches of an historical, data-based 
algorithm and a time-series model, the backpropagation model· was 
clearly superior, although all three models did an adequate job of pre­
dicting future traffic volumes. The backpropagation model was more 
responsive to dynamic conditions than the historical, data-based al­
gorithm, and it did not experience the lag and overprediction character­
istics of the time-series model. Given these advantages and the back­
propagation model's ability to run in a parallel computing environment, 
it appears that such neural network prediction models hold considerable 
potential for use in real-time IVHS applications. 

An emerging group of technologies and systems known as intelli­
gent vehicle-highway systems (IVHS) have the potential to serve as 
powerful tools in combating transportation safety and congestion 
problems by improving the manner in which the nation's extensive 
existing surface transportation system operates. The backbone of 
IVHS is the "smart highway" -advanced traffic management sys­
tems (ATMS). ATMS collect, utilize, and disseminate real-time 
data on the status of the surface transportation system; ATMS rely 
on extensive traffic surveillance systems, thereby providing all 
other IVHS components with accurate, real-time information. Fur­
thermore, A TMS provide traffic control in both time and space 
through techniques such as the optimization of traffic signal timing 
and ramp metering. These techniques have proven benefits, such as 
freer traffic flows, shorter journey times, and fuel savings (1). 

The challenge of effectively using real-time data extends to the 
area of advanced traveler information systems (A TIS), the basic 
premise of which is to provide travelers with accurate and timely in­
formation to allow them to make sound decisions. Clearly, there is 
a well-defined link between ATMS and A TIS in that both rely on ac­
curate real-time data that describe the status of the transportation 
network. In addition, it is possible that ATIS will serve as an addi­
tional control measure for A TMS by encouraging individual route 
selection, which would spread demand across all available capacity. 
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Although many of the physical components of ATMS and A TIS 
are still some years away from wide-scale deployment, the prelim­
inary development of software support systems is feasible and 
should receive immediate attention. At this time, most research has 
focused on specific applications, such as incident detection and 
ramp-metering algorithms; very little consideration has been given 
to developing more general support systems, such as real-time, 
short-term prediction of traffic conditions. The development of such 
software support systems will enhance the performance of current 
systems and serve as a critical step in developing ATMS and ATIS: 

REAL-TIME INFORMATION 

Real-time data primarily will consist of vehicle counts, vehicle lo­
cations, and vehicle speeds. Clearly, vehicle counts alone cannot 
he.Ip a traveler make a routing decision or a traffic manager set a se­
ries of signal timings. It is critical that the raw data be processed to 
derive true information that will support intelligent decision making. 

A particularly important function in transforming raw data into 
information is the prediction of traffic conditions. The current focus 
on real-time applications is likely to result in reactive control of the 
transportation system. There is certain to be some lag between the 
collection of real-time data and the implementation of a control 
strategy. Therefore, the system will operate under control strategies 
that are based on past conditions. To control the system in a proac­
tive manner, A TMS must have some sort of predictive capability: 
"The ability to make and continuously update predictions of traffic 
flows and link times for several minutes into the future using real­
time data is a major requirement for providing dynamic traffic con­
trol" (2, p. x). Traffic prediction is also an important function for 
A TIS: "the rationale behind using predictive information (for route 
guidance) is that travelers' decisions are affected by future traffic 
conditions expected to be in effect when they reach downstream 
sections of the network" (3). In fact, traveler information services 
are hampered by the lack of a capability to predict future traffic con­
ditions. For example, changeable message signs aie rarely used to 
provide travel time information because they are inaccurate. 
Clearly, the success of IVHS is dependent on the development of a 
traffic prediction capability. Consequently, "special attention 
should be given to the ability to make short-term traffic predictions 
with real-time sensor data" (2, p. viii). 

PREDICTION OF TRAFFIC CONDITIONS: 
PREVIOUS EFFORTS 

"The short-term forecasting of traffic conditions has had an active 
but somewhat unsatisfying research history" (1). Most efforts have 
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focused on traffic prediction for surface signal control systems, such 
as the Urban Traffic Control System (UTCS). There have been a 
limited number of freeway traffic prediction applications. The ap­
proaches used for traffic prediction are largely dictated by the fact 
that traffic conditions are time dependent and often follow fairly 
well-defined patterns. Previous traffic prediction efforts can be clas­
sified as historical, data-based algorithms; time-series models; or 
simulations. 

Historical, Data-Based Algorithms 

The basic premise behind historical, data-based algorithms is that 
traffic patterns are cyclical. In other words, a knowledge of typical 
traffic conditions on Tuesday at 5:30 p.m.will allow one to predict 
the conditions on any particular Tuesday at 5;30 p.m. AUTO­
GUIDE, an ATIS demonstration project in London, utilizes the sim­
plest historical, data-based algorithm possible. AUTOGUIDE sim­
ply uses a historical traffic data base to predict travel times on the 
basis of time of day (4). Such an algorithm is attractive in that it re­
quires no real-time data. 

The UTCS traffic control system utilizes predictions of traffic 
conditions in an attempt to control signals in a proactive manner. In 
general, UTCS relies on historical data as support for predictions. 
A weakness of this method is that UTCS requires an extensive set 
of historical data; consequently, It !s difficult to install the system 
in a new setting (6). An enhancement to the prediction capabilities 
of the second-generation UTCS (UTCS-2) is that the system uses 
"current traffic measures to correct for the traffic deviation from the 
average historical pattern" (5, p. 28). Finally; it is interesting to note 
that the third-generation UTCS (UTCS-3) does not utilize histori­
cal data; it predicts conditions oh the basis of current traffic mea­
surements only. Although the predictive models of both UTCS-2 
and UTCS-3 have serious problems with time lag, UTCS-3 is inca­
pable of performing at a level comparable to UTCS-2 (5). 

LISB, which is a European traveler information experiment, uses 
a simple methodology to predict future traffic conditions. LISB uses 
both historical data and real-time data. A projection ratio of the "his­
torical travel time on a specific link to the current travel time as re­
ported by equipped vehicles" is used to predict travel times on the 
link for future intervals. A major weakness of this methodology is 
that it implicitly assumes that the projection ratio will remain con­
stant (3, p. 4.) 

Time-Series Analysis Techniques 

In a traffic management system, detectors are used to measure the 
system's condition at time t, x(t). These measurements can easily be 
stored for use in predicting the system's condition at time t + D, 
where D is the prediction interval. As such, the prediction problem 
boils down to forecasting x(t + D), given x(t), x(t - D), x(t - 2D), 
and so on. This representation of the prediction problem describes 
a time series. There have been a number of techniques developed in 
the field of statistics to model time series. Transportation re­
searchers have applied many of these time series analysis tech­
niques to traffic prediction. 

The Box and Jenkins technique is a widely used approach to 
specifying a variety of time-series models (7). It has been shown to 
yield accurate forecasting results in a number of application areas. 
The most developed Box and Jenkins technique is the autoregres-
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sive integrated moving average (ARIMA) method. ARIMA models 
require very little computational time for execution, which makes 
them useful for applications in real-time traffic management. How­
ever, ARIMA models have not shown great promise in traffic ap­
plications. For example, in attempts to apply ARIMA models to 
UTCS, it has been found that they "resulted in unsatisfactory good­
ness of fit and high errors; in certain cases they have not been more 
accurate than a simple moving average" (6, p. 1). 

Simulation Models 

Simulation models provide predictive capability because they 
demonstrate how the system is likely to react to varying conditions 
and control strategies. Given the importance of predictive capabili­
ties in A TMS, it is natural to consider the application of simulation 
in a real-time environment: "Ah effective on-line simulation model 
would enable the A TMS control center to project promptly future 
traffic patterns considering any previously implemented strategies 
in a real-time operating environment" (8, p. 13). Unfortunately, at 
this time, the real-time application of traffic sifuulation is not feasi­
ble because existing model/algorithrti cbhstfuds cannot support 
real-time applications (9). A need exists for new approaches to the 
simulation of transportation systems. 

An exciting development that may support real-time simulation 
is parallel computing. Parallel computing, or processing, is defined 
as "an efficient form of information processing which erripi:iasizes 
the exploitation of concurrent events" (8, p. 14). In other words, a 
parallel computer has multiple processors that work simultaneously 
(in parallel). Of course, this parallelization allows for tremendous 
increases in the speed of execution. However, tlie programming of 
a parallel computer is extremely challenging because of the need to 
synchronize certain procedures. A recent research effort attempted 
to develop ah architecture for a parallel traffic simulation applica­
tion. Although it shows promising results, the effort is still in pre­
liminary stages (8). The wide-scale deployment of parallel traffic 
simulation appears to be far from realization. 

Assessment 

Although a number of approaches to the prediction problem have 
been described in this section, the fact remains that very few traffic 
control systems include any proven forecasting capability. There is, 
thus, a need to develop efficient and accurate real-time traffic pre­
diction models. To be effective, such a model must be able to rec­
ognize patterns, use historical or time-series data or both, and rep­
resent complex, nonlinear relationships. The next section will 
introduce neural networks, which have shown considerable promise 
in these areas. 

NEURAL NETWORKS 

Over the past several years, both in research and in practical appli­
cations, neural networks have proven to be a very powerful method 
of mathematical modeling. In particular, neural networks are well 
suited for pattern recognition, offer efficient execution, and model 
nonlinear relationships effectively. Clearly, neural networks are well 
worth exploring as a tool for the short-term prediction of traffic. 

Neural networks may be defined as "an information processing 
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technology inspired by studies of the brain and nervous system" 
(10, p. 30). This inspiration obviously led to the use of the word 
neural. However, neural networks in no way attempt to produce bi­
ological clones; rather, they are simply models with a rigorous 
mathematical basis (11). Although neural networks are typically as­
sociated with the field of artificial intelligence, they function as a so­
phisticated form of regression. The use of neural networks has been 
proven successful in a number of applications for the following rea­
sons (12): 

1. Neural networks can perform highly nonlinear mappings be­
tween input and output spaces; 

2. The parallel structure of neural networks lends them to im­
plementation on parallel computers, which offers the potential for 
extremely fast processing; and 

3. The neural networks approach is nonparametric; therefore, 
one need not make any assumptions about the functional form of the 
underlying distribution of the data. 

These characteristics have attracted the attention of researchers 
from a number of disciplines to problems such as classification, 
forecasting, process control, and signal processing (10). 

Neural Networks Basics 

To gain a fuller understanding of the underlying mechanics of 
neural networks, it is instructive to consider the following defini­
tion: "a neural network is a computing system made up of a num­
ber of simple, highly interconnected processing elements" (13, p. 
71). The basic structure of a neural network is illustrated in Figure 
1. A description of the elements follows. 

• Processing element: The processing element is the basic build­
ing block of a neural network. Processing elements on the input 
layer simply pass the input value to the adjoining connection 
weights. Processing elements on the hidden and output layers sum 
their inputs and compute an output according to a transfer function. 

OUTPUT 
LAYER 

HIDDEN 
LAYER 

INPUT 
LAYER 

FIGURE 1 Neural network. 
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• Connection weight: Connection weight serves to join process­
ing elements within the neural network. The connections are of 
varying strength, which weight the value that the connection "trans­
ports" between processing elements. In effect, the connection 
weights may be compared with coefficients in a regression model. 

• Layers: Layers are sets of processing elements in which all 
processing elements in adjacent sets are connected. A neural net­
work generally has an input layer, a hidden layer (in which all con­
nection weights are internal to the network), and an output layer. 

• Bias: The bias is a constant input to each processing element. 
The input is defined solely by the connection weight between the 
bias input (which outputs a constant value of 1.0) and the process­
ing element. 

• Transfer function: The transfer function is an operator, usually 
nonlinear, that is applied to the summed inputs of a processing ele­
ment to produce the output value. 

In a basic feed-forward neural network, raw input data are pre­
sented to processing elements in the input layer. The input values 
are then weighted and passed to the hidden layer through the con­
nections. Processing elements in the hidden layer sum and process 
their inputs and then pass the output to the output layer. Processing 
elements in the output layer sum and process their weighted inputs 
to produce the network output. The following equation represents 
this process in a functional form: 

where 

<I> = transfer function, 
W1 = array of connection weights for layer/, 
X = input values, and 

0 1 = array of bias values for layer I. 

The description presents a neural network as a graphical mathe­
matical modeling technique. In a neural network, the fundamental 
variables are the set of connection weights. The definition of the 
connection weights, much like the definition of coefficients in a re-

PROCESSING 
ELEMENT 
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gression model, allows the model to be "fitted" to the data. In re­
gression, the method of least squares is utilized to define coefficient 
values. In the field of neural networks, the process. of defining con­
nection weights is generally referred to as "learning." The learning 
method utilized by a network defines the neural network paradigm. 
The backpropagation paradigm was chosen for this application. The 
strengths of this paradigm have led to the conclusion that "almost 
universally backpropagation has become the standard network par­
adigm for modeling, forecasting, and classification" (JO, p. 29). A 
complete description of this paradigm, can be found in a previous 
publication (14). 

APPLICATION OF NEURAL NETWORKS 
TO TRAFFIC FLOW PREDICTION 

The characteristics of neural networks make them excellent candi­
dates for application to the traffic flow prediction problem. In this 
section, recent studies examining neural network traffic flow pre­
diction models are described. 

Gilmore et al. (15) applied a backpropagation neural network to 
predict congestion on surface streets. On the basis of current and 
past volumes on the surface system, the network predicts traffic 
flow over the next half hour, in 5-min intervals. The development 
of this network is based strictly on data obtained from a simulation 
model (15). Although the effort illustrates the potential of neural 
networks, it is difficult to generalize the results. In effect, a mathe­
matical model (the neural network) was developed to predict the be­
havior of another mathematical model (the simulation model). 

A similar study illustrates the potential of neural networks for the 
prediction of freeway traffic volume. Zhang et al. describe a back­
propagation network to emulate a macroscopic traffic flow model. 
They chose such an approach on the basis of the fact that "traffic 
flow on freeways is a complex process that is often described by a 
set of highly non-linear dynamic equations" (12, p. 2). After train­
ing and testing the network on data developed by the macroscopic 
model, it was concluded that the neural network captured the traf­
fic dynamics of the macroscopic model. Clearly, this is an encour­
aging conclusion. However, again one will note that a mathemati­
cal model (the neural network) was developed to predict the 
behavior of another mathematical model (the macroscopic model). 

Another important research effort exploring the applicability of 
neural networks to the traffic flow prediction problem was con­
ducted at the University of Leeds. A short-term traffic forecasting 
model was developed for a surf ace system using a backpropagation 
neural network. The model simply relies on current network flow 
levels as well as flow levels 5 and 10 min in the past. Data from a 
SCOOT traffic control system in England were utilized. Although 
the neural network model performed well, it was outperformed by a 
traditional Box and Jenkins time-series model (16). Although this re­
sult may seem disappointing, this effort is encouraging because it de­
scribes a viable neural network application in a real-world situation. 

Clearly, these efforts illustrate the potential of neural networks. 
However, the need remains to demonstrate the effectiveness of a 
neural network prediction model using data from an actual freeway 
facility. Data available from a traffic management system often 
leave much to be desired, particularly when compared with simula­
tion data. The challenge of maintaining loop detectors, noise in 
communication systems, and other system problems results in data 
streams that often look much different from those available from a 
simulation model. Clearly, it is important to examine the effective-
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ness of a neural network prediction model using data collected in an 
operational traffic management system. 

CASE STUDY: FREEWAY VOLUME PREDICTION 

The purpose of the case study was to develop short-term volume 
prediction capability at a site on the Capital Beltway. The site se­
lected for this study is on the inner loop of the Beltway near the 
Telegraph Road interchange in Alexandria, Virginia. At this loca­
tion, the Beltway is a four-lane freeway, carrying a high volume of 
local and interstate traffic. In addition, the section is affected by one 
the region's most notorious bottlenecks, the Woodrow Wilson 
Bridge. 

The Northern Virginia Traffic Management System (TMS) mon­
itors this site with a video camera and full loop detector stations in 
each of the four lanes. The stations provide the following data con­
tinuously to the TMS: 

• Volume (vehicles/hour), 
• Average speed (miles/hour), and 
• Average occupancy (percent). 

In addition, Virginia Department of Transportation operates an au­
tomatic weather monitoring system (SCAN) to collect pertinent 
weather data. The SCAN station in Rosslyn, Virginia, roughly 8 mi 
from the freeway site, is utilized to access the following data: 

• Air temperature and 
• Pavement condition (wet/dry). 

To develop predictive models, a traffic and weather data base 
was created. The data are stored in 15-min intervals from June 3, 
1993, through August 11, 1993, resulting in 3,000 records. This set 
of data was divided into training and test sets for model develop­
ment. The training set consisted of 2,550 records, and the test set 
consisted of 450. Each set of data consisted of roughly a uniform 
distribution of volume levels. Finally, a third set of data was col­
lected after August 11 to serve as a validation data base. 

Models Developed 

Three models were developed to predict the link volume at the Tele­
graph Road site on the Beltway. A 15-min prediction interval was 
utilized. These models were used to compare traditional approaches 
to short-term predictions of traffic conditions with a neural network 
model. A brief description of each model follows. 

Historical Average 

This model is a simple historical, data-based algorithm. The model 
developed in this case study simply used the historical average vol­
ume, which was calculated using the training data set, as the basis 
for predicting future volume. In other words, to predict volume on 
Monday, September 10, at 3:00 p.m., the historical average volume 
on Mondays at 3:00 p.m. was used. 

AR/MA 

ARIMA models are among the most powerful and advanced statis­
tical time-series techniques. On the basis of an analysis of autocor-
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relations and partial autocorrelations of the volume time-series, an 
ARIMA (2, 1,0) model was selected for this application. Such a 
model describes a second-order autoregressive process that is inte­
grated with no moving average. Model coefficients were based on 
an analysis of the training data set. 

Backpropagation Model 

The backpropagation neural network was developed using the fol­
lowing variables as inputs: volume (t), volume (t - 15 min), his­
torical volume (t), historical volume (t + 15 min), average speed 
(t ), and wet pavement (t) (a binary variable). It was trained using a 
learning rate of 0.3 and a momentum of 0.4. The network architec­
ture consisted of one hidden layer of 10 processing elements. 

Performance Analysis 

To compare the models, the third, independent validation data set 
was used. This data set was gathered on two consecutive days (a 
Monday and Tuesday) in September 1993. In general, all three of 
the models did an excellent job of predicting future volumes in the 
short term. In fact, a comparison of error measures in Table 1 re­
veals that the historical average and backpropagation models dis­
played comparable error measures, whereas the ARIMA model was 
less accurate. Figure 2 illustrates graphically the performance of the 
neural network model on the validation data. 

Table 2 displays the average estimate percentage of error for all 
cases and for cases in peak conditions (defined as afiy period in 
which the volume exceeds 3,000 vehicles per hour). Interestingly, 
the historical data model outperforms the neural network when con­
sidering all periods, whereas the neural network model demon­
strates better accuracy during peak periods. This indicates that the 
historical data model can be expected to consistently produce esti­
mates within 5 to 6 percent error levels. On the other hand, one 
would expect better performance from a neural network during peak 

TABLE 1 Error of Prediction Models 
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-Actual Vol ---··· Neural Net 

FIGURE 2 Backpropagation mode performance: validation 
data set. 

periods. This expectation is likely because of the neural network's 
capability to accurately model the complex characteristics of traffic 
flow during peak conditions. Clearly, performance during peak pe­
riods is of the utmost importance to traffic management and trav­
eler information applications. Therefore, a peak period of the vali­
dation data in detail will be examined. The period considered is the 
p:m: peak, from noon to 7:00 p.m. on Monday. 

Peak Period Analysis 

Figure 3 illustrates the performance of the historical data model. 
The model predicts consistently low values for this period. For 
whatever reason, higher-than-"normal" volumes occurred on this 
Monday, volumes that the historical model had no capability to pre­
dict. This illustrates the significant weakness of such a model; it 
cannot react to external or abnormal factors that may affect the vol­
ume level. 

Model Root Mean Square Error Average Absolute Error 

Historical Average 2730 

A RIMA 3490 

Backpropagation 2620 

TABLE 2 Average Percent Forecast Error 

Model Average % Forecast Error All C~ses 

Historical Average 6.4% 

A RIMA 9.0% 

Backpropagation 7.5% 

146 

195 

144 

Average % Forecast Error 
Volume > 3,000 veh/hr 

5.0% 

10.8% 

4.3% 
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FIGURE 3 Historical data model: p.m. peak. 
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FIGURE 4 ARIMA model: p.m. peak. 

Figure 4 illustrates the performance of the ARIMA model. It is 
clear that the predictions of the ARIMA model tend to lag roughly 
one interval (15 min) In addition, the ARIMA model tended to over­
predict values. This is evident in that volume peaks for the ARIMA 
model are consistently more extreme than those of the actual vol­
ume. The lagging and overpredicting are not surprising given the 
fact that the ARIMA model uses only time-series data, 

Finally, Figure 5 displays the performance of the backpropaga­
tion model during the p.m. peak period. This model does an excel­
lent job of predicting volume levels without the lag or overpredic­
tion problems of the ARIMA model. This example shows that 
although all three models have roughly comparable overall error, 
the backpropagation model clearly does the best job of modeling the 
underlying relationship between the state of the system and future 
traffic volume during peak conditions. 

CONCLUSION 

IVHS technology allows for vastly improved data collection and 
data communication capability. However, a very real risk is that the 
world will become data rich and information poor. Thus, a critical 
effort in the development of IVHS is to create real-time decision 
support software that will rely on advanced technology, such as ex-
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FIGURE 5 Backpropagation model: p.m. peak. 

pert systems and models. A critical element of such support soft­
ware that has been identified in this paper is a short-term traffic con­
dition prediction model. 

This paper has demonstrated the potential of neural networks to 
accurately predict short-term traffic conditions in real time. A 
neural network developed with data from an operational traffic 
management system performed comparably to traditional predic­
tion approaches when tested with an independent set of validation 
data. The neural network model, however, outperformed other mod­
els during peak conditions, demonstrating its ability to model com­
plex traffic characteristics. On the basis of these promising results, 
research is continuing to further refine neural network models for 
ultimate implementation in traffic management systems. 
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