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Optimal Programming by Genetic 
Algorithms for Pavement Management 

T. F. FWA, w. T. CHAN, AND C. Y. TAN 

Optimal programming of pavement activities is a desired element in 
pavement management systems. The complexity and scale of the prob
lem, however, have prevented the widespread use of such analytical 
tools in practice. An application of a relatively new optimization tech
nique, known as the genetic algorithms, to the pavement programming 
problem is described. This technique does not require any information 
on the differentiability, convexity, or other auxiliary properties of the 
problem parameters. On the basis of the mechanics of natural selection 
it has a robust search algorithm that makes it an attractive technique for 
pavement programming at the network level. Through an example 
application to a network-level pavement programming problem, the 
considerations involved in genetic representation of the problem and 
generation of new solutions (known as offspring) are presented. The 
convergence characteristics of the genetic algorithm solutions are also 
analyzed. Finally, the applicability of the technique to the general pave
ment management problem is discussed. 

A primary objective of pavement management at the network level 
is to program pavement investments and schedule pavement activ
ities to achieve optimal results of pavement network performance. 
Many optimization techniques have been developed since the mid-
1970s to provide the necessary analytical tools to assist highway 
agencies in making such management decisions. These techniques 
include dynamic programming (1), optimal control theory (2), inte
ger programming (3), linear programming (4), and nonlinear pro
gramming and heuristic methods (5). Because of the complexity of 
the pavement programming problem at the network level, different 
techniques are suitable under different circumstances. 

This paper illustrates the application of a general purpose problem
solving and optimization technique, known as the genetic algo
rithms, (GAs) to the pavement management problem. The genetic 
algorithms are formulated loosely on the basis of the principles 
of Darwinian evolution ( 6, 7). The general operating principles of 
genetic algorithms are presented first in this paper; this is followed 
by an application example that solves a network-level pavement 
programming problem. 

OPERA TING PRINCIPLES OF GAs 

Theoretical Basis of GAs 

GAs are robust search techniques formulated on the basis of the me
chanics of natural selection and natural genetics. It was in the 1980s 
that genetic algorithm applications started to spread across a broad 
range of disciplines, including function optimizers (8), pattern 
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recogmt10n (9,10), computer-aided operation control (JJ), and 
robot kinetics (12). 

GAs are different from traditional optimization techniques in a 
few important aspects. First, GAs work with a coding of the pa
rameters instead of the parameters themselves. The choice of the 
parameter representation is important because GAs work on a coded 
version of the problem to be solved and not on the problem directly. 
Second, GAs operate by manipulating a pool of feasible solutions 
instead of one single solution in the search of good solutions. Work
ing with a pool of solutions enables GAs to identify and explore 
properties that good solutions have in common. Third, GAS employ 
probabilistic transition rules to move from one pool of solutions to 
another. This introduces perturbations to move out of local optima. 
Last, GAs rely only on objective function evaluations. They do not 
require any information on differentiability, convexity, or other 
auxiliary properties. GAs are thus easy to use and implement for a 
wide variety of optimization problems. 

Mechanics of GA Solution Process 

For a given problem with a specified objective function, the 
problem-solving process of GAs begins with the identification of 
problem parameters and the genetic representation (i.e., coding) 
of these parameters. The search process of GAs for solutions that 
best satisfy the objective function involves generating an initial ran
dom pool of feasible solutions to form a parent solution pool and 
obtaining new solutions and forming new parent pools through an 
iterative process of copying, exchanging, and modifying parts of 
the genetic representations in a fashion similar to that of natural 
genetic evolution. 

Each solution in the parent pool is evaluated by means of the ob
jective function. The fitness value of each solution, as given by its 
objective function value, is used to determine its probable contri
bution in the generation of new solutions, known as offspring. The 
next parent pool is then formed by selecting the fittest offspring on 
the basis of their fitnesses (i.e., their objective function values). The 
entire process is repeated until a predetermined stopping criterion is 
reached on the basis of either the number of iterations or the mag
nitude of improvement in the solutions. Figure 1 presents a flow 
chart that summarizes this solution process. 

EXAMPLE PROBLEM 

Problem Description 

The application of GAs to pavement management is illustrated in 
this paper by solving an integer-programming optimization problem 
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BEGIN 

INPUT PROBLEM PARAME1ERS.AND 
DEFINE OBJECTIVE FUNCTION 

CODE PROBLEM PARAMETERS 
AS S1RING STRUCTURES 

GENERA TE A NUMBER OF STRING 
STRUCTURES AS THE INITIAL 
POOL OF PARENT SOLUTIONS 

EVALUATE THE PARENT POOL 
BY MEANS OF OBJECTIVE FUNCTION 

GENERA TE OFFSPRING 

SELECT OFFSPRINGS ~ASED ON FflNESS 
TO FORM NEXT PARENT POOL 

PRINT BEST SOLUTION 
OBTAINED 

END 

FIGURE 1 Solution process of GAs. 

analyzed by Fwa et al. (3). On the basis of the framework of pave
ment management practice in Indiana, Fwa et al. solved for an op
timal pavement repair program at the network level for a given re
habilitation schedule and subject to six forms of resources and 
operation constraints. Mathematically, the problem can be ex
pressed as follows: 

Ni Nz N3 

Maximize L L L WukF;jk (1) 
i=i j=i k=i 

with W;jk as integers for i = 1, 2, ... Ni, j = 1, 2, ... Nz, k = 1, 
2, ... N3, subject to the following constraints: 

1. Production requirements: 

T;jk 'Yijk 

uijk 

2. Budget constraint 

N1 Nz N3 

I I I wijkuijkC;jk :5 B 
i=i j=I k=I 

N1 N3 . 

I I wijkuijkcijk :5 bj 
i=i k=i 

i = 1, 2, ... Ni. j = 1, 2, ... N2, 

k = 1, 2, ... N3, 

j = 1, 2, ... Ni 

(2) 

(3a) 

(3b) 
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3. Manpower availability 

g = 1, 2, ... , G (4) 

4. Equipment availability 

Ni Nz N3 

I I I %kqjr :5 Qr r = 1, 2, ... , R (5) 
i=i j=I k=I 

5. Material availability 

Ni Nz N3 

L L L Wukmjs :5 Ms s = 1, 2, ... 's (6) 
i=i j=I k=i 

6. Rehabilitation constraints 

D - d;jk 

'Yijk = D i = 1, 2, ... Ni, j = 1, 2, ... Nz, 

k = 1, 2, ... N3, (7) 

where all variables are defined in Table 1. The practical meaning 
and rationale for each of the above equations are found in the tech
nical paper by Fwa et al. (3). Fwa et al. solved this problem by the 
integer programming technique with the branch and bound algo
rithm of the multipurpose optimization scheme (MPOS) (13). 

Input Data 

The problem solved by Fwa et al. (3) considered four pavement de
fects and three levels of maintenance-need urgency. Table 2(a) 
gives the production rate and unit cost data for each combination of 
pavement defect and urgency level. The requirements for four man
power types and six equipment types are listed in Table 2(b). 
Recorded in Table 2(c) are the pavement repair priority weighting 
factors, which are functions of highway class, pavement repair ac
tivity type, and its need-urgency level. 

The estimates of the amount of work required for each type of 
repair in terms of workdays are found in Table 3(a). The input for 
rehabilitation constraint factors are given in Table 3(b). A zero value 
of 'Yijk represents a case in which there is a complete interference 
from rehabilitation work, whereas a 'Yijk value of unity indicates no 
interference from rehabilitation. Other necessary input information, 
namely, the analysis period, budget allocation, manpower avail
ability, and equipment availability, are found in Table 3(c). 

APPLICATION OF GAs TO EXAMPLE PROBLEM 

Main Features of Problem 

Two main features of the problem affect the choice of solution tech
niques. First, the decision variables W;jk are integers that restrict the 
methods to those that can handle integer variables. The other fea
ture of the problem is what is commonly known as the combinato
rial explosion of the feasible solution space. In the current problem, 
there are four highway types (i = 4), four pavement repair activities 
(j = 4), and three need-urgency levels (k = 3). There are altogether 
48 (4 X 4 X 3) decision variables (W;jk). In the extreme case in 
which each decision variable is allowed to take up any integer value 
from 0 to 45 workdays, the total number of possible solutions is 
equal to 4648

, or 6.4 x 1079• Even if one were to assume a case in 
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TABLE 1 Definitions of Variables in Equations 1-7 

Variable 

w 
ljk 

F 
ljk 

u 
ljk 

H 
CJ 

G 

Q 
r 

R 

m 
js 

M 
B 

s 
d 

ljk 

D 

Definition 

equivalent workload units in number of workdays of pavement 
repair activity J of need urgency level k performed on highway i 

priority weighting factor for pavement repair activity J of need 
urgency level k on highway i 

total number of highways considered 

total number of pavement repair activities considered 

total number of need urgency levels considered 

total workload of pavement repair needs expressed in work 
measurement units (see Table 2) for pavement repair activity J 
of need urgency level k on highway i 

rehabilitation constraint factor for pavement repair activity J 
of need urgency level k, 0 s 7lJk s 1 

work productivity for pavement repair activity J of need urgency 
level k on highway i 

cost per production unit of pavement repair activity j of need 
urgency level k on highway i 

total budget amount allocated for the analysis period considered 

budgeted fund for pavement repair activity j 

number of mandays of work crew type g required for each unit of 
pavement repair activity j 

total available number of mandays of work crew type g 

total number of work crew type 

number of equipment days of equipment type r required for each 
production day of pavement repair activity j 

total available number of equipment days of equipment type r 

total number of equipment types 

quantity of material type s required for each production day of 
pavement repair activity j 

total available quantity of material type s 

total number of material types 

number of working days before a scheduled rehabilitation during 
which no pavement repair activity j of need urgency level k 
would be performed on highway i 

total number of working days in analysis period 
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which each decision variable could only take up a value from 0 to 
5 workdays, the total number of possible solutions of 648

, or 
2.2 X 1037, would still require a modern supercomputer many years 
to enumerate all possible solutions. 

Figure 3 shows a genotype that represents a solution with the val
ues of Wijk indicated therein. Because each Wijk can assume any in
teger value from 0 to 45, the representation is different from the tra
ditional binary representation used in GA applications. 

Genetic Representation of Problem 

In GAs a solution to a problem is represented by a string structure 
similar to the chromosomes in natural evolution. As shown in Fig
ure 2 the chromosomal representation of a solution is known as a 
genotype, which consists of a string of genes. The value of each 
gene is called its allele. 

Each genotype is a solution in the structure of the solution space 
represented by the genetic representation chosen. For example, 

GA Operations 

After the genetic representation is determined, an initial parent pool 
of solutions can be randomly generated. A pool of 80 solutions was 
selected for the present example. The following three GA opera
tions were then executed in sequence repeatedly: (a) generation of 
offspring, (b) the formation of of a new parent pool, and (c) perfor
mance evaluation and convergence assessment of the parent pool 
solutions. 
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TABLE 2 Production and Resource Requirements Data 

(a) Production rate and unit cost data 

Production Rate U Unit Cost c 
Need".'" ljk ljk 

Urgency Shallow Deep Premix Crack Shallow Deep Premix Crack 
Level Patching Patching Leveling Sealing Patching Patching Leveling Sealing 

k j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 
(kg mix (kg mix (kg mix (km per ($ per ($ per ($ per ($ per 
per day) per day) per day) day) kg mix) kg mix) kg mix) km) 

High 6,537.6 17,978.4 10,896.0 10.1 0.0938 0.0852 0.0403 81.37 (k=l) 
Medium 3,813.6 9,443.2 80,448.8 13.5 0.1311 0.1333 0.0420 70.19 (k=2) 
Low 2,542.4 6,174.4 49,940.0 16.4 0.1751 0.1817 0.0467 63.98 (k=J) 

(b) Manpower and equipment requirements 

Manpower Requirement h 
JCJ 

Equipment Requirement q 
Jr 

Repair (Man-days/Production Day) (Equipment-days/Production Day) 
Activity 

g = 1 g = 2 g = 3 g = 4 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 

J = 1 0 2 4 0 1 0 1 0 0 0 
J = 2 l 1 5 1 1 1 0 0 0 1 
j = 3 1 3 5 2 3 1 1 1 0 1 
J = 4 1 2 2 4 2 1 0 1 0 0 

Note: Manpower types 1 to 4 represent supervisors, drivers, laborers, and 
equipment operators, respectively; equipment types 1 to 6 represent 
dump trucks, pickup trucks, crew cabs, distributors, loaders, and 
rollers, respectively. 

(c) Pavement Repair Priority Weighting Factors, F 
ljk 

Highway Need-Urgency Level Shallow Deep Premix Crack 
Patching Patching Leveling Sealing Class k J = 1 j = 2 j = 3 j = 4 

Urban k = 1 (High) 90 100· 70 50 
Interstate k = 2 (Medium) 63 90 63 45 
(g = 1) k = 3 (Low) 54 60 42 30 

Urban k = 1 (High) 72 80 56 40 
Arterial k = 2 (Medium) 54 70 49 35 
(g = 2) k = 3 (Low) 45 50 35 25 

Rural k = 1 (High) 76.5 85 59.5 42.5 
Interstate k = 2 (Medium) 58.5 75 52.5 37.5 
(g = 3) k = 3 (Low) 40.5 45 31.5 22.5 

Rural k = 1 (High) 70.5 65 45.5 

I 
32.5 

Primary k = 2 (Medium) 36 40 28 20 
(g = 4) k = 3 (Low) 18 20 14 10 

Generation of Offspring on two genotypes. A common point is randomly chosen, and the 
two parts of each genotype are swapped to create two offspring. 
Each offspring therefore consists of a part of each parent. In the case 
of a simple mutation operation on the binary genotype shown in 
Figure 4(b), a random number is generated for each allele and an 
allele is mutated if the random number generated is less than a pre
determined number. 

The crossover operation and mutation operation are the two most 
commonly used GA operations for generating offspring from par
ent solutions. Figure 4 illustrates the mechanism of a simple 
crossover operation and that of a simple mutation operation. Figure 
4(a) shows a simple crossover operation with a single cross point 
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TABLE 3 Repair Needs Data and Constraint Information 

(a) Repair work requirements in workdays, T I U 
ljk . ljk 

Highway Need-Urgency Level Shallow Deep Premix track 

Class k 
Patching Patching Leveling Sealing 

j = 1 j = 2 j = 3 j = 4 

Urban .k = 1 (High) 4 6 8 2 
Interstate k = 2 (Medium) 6 4 2 3 
(g = 1) k = 3 (Low) 3 25 13 18 

Urban k = 1 (High) 2 6 9 2 
Arterial k = 2 (Medium) 2 10 8 8 
(g = 2) k = 3 (Low) 4 20 15 15 

Rural k = 1 (High) 5 8 6 5 
Interstate k = 2 (Medium) 5 2 10 10 
(g = 3) k = 3 (Low) 5 15 15 10 

Rural k = 1 (High) 3 4 8 4 
Primary k = 2 (Medium) 4 16 12 20 
(g = 4) k = 3 (Low) 15 15 18 15 

(b) Rehabilitation constraint factors, ~ 
ljk 

Highway Need-Urgency Level Shallow Deep Premix Crack 

Class k Patching Patching Leveling Sealing 
j = 1 j = 2 j = 3 ·j = 4 

Urban k = 1 {High) 0.82 0.83 1.00 0.80 
Interstate k = 2 (Medium) 0.70 0.90 0.90 1. 00 
(g = 1) k = 3 (Low) 1.00 1.00 1.00 1. 00 

Urban k = 1 {High) 0.93 1. 00 1.00 0.92 
Arterial k = 2 (Medium) 0.84 1.00 1.00 0.96 
(g = 2) k = 3 (Low) 0.81 1. 00 1.00 0.90 

Rural k = 1 {High) 0.92 1.00 1.00 o.83 
Interstate k = 2 (Medium) 0.78 1. 00 1. 00 0.91 
(g = 3) k = 3 (Low) 0.80 1.00 1.00 0.96 

Rural k = 1 (High) 1.00 1.00 1. o.o 1.00 
Primary k = 2 (Medium) 1.00 1.00 1. 00 1. 00 
(g = 4) k = 3 (Low) 1.00 1.00 1. 00 1. 00 

(c) Resource constraints and other input information 

Parameter Value 

Analysis Period D = 45 working days 

Budget Allocation bl = $18,000 b2 = $20,000 b3 = 13,000 b4 = 9,000 

Manpower Availability Hi = 90 mandays H2 = 135 mandays 
H3 = 270 mandays H4 = 90 mandays 

Equipment Availability Q1 = 135 equipment days Q2 = 45 equipment days 
Q3 = 45 equipment days Q4 = 45 equipment- days 
Qs = 45 equipment days Q6 = 45 equipment days 

In the present example problem the simple crossover and muta
tion operations were found to be ineffective because they consis
tently led to more than 80 percent invalid offspring. This was be
cause the problem was highly constrained. Various approaches have 
been used to handle constrained problems in GAs. One approach is 
to apply a penalty weightage to the objective function value of in-

valid offspring (11). Other approaches use what are known as 
decoder or repair algorithms to avoid creating invalid offspring 
(14,15). 

The present study adopted an approach that made use of 
specialized GA operations to handle the constraints. These 
specialized operations were the single arithmetic crossover and 
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Genotype [AJ represented 
bynalleles A1,A2, ... ,An 

Genotype [BJ represented 
by n alleles B1, B2, ... , Bn A Selected Solution Pool 

Represented by Genotypes 
[AJ, [BJ, ..... and [XJ 

Genotype [XJ represented 
by n alleles X1 , X2, ... , Xn 

FIGURE 2 GA representation of knowledge. 

W Ilk workload units as defined in Equation ( 1) 

for i = 1,2,3,4 j = 1 ,2,3,4 k = 1,2,3 

Wilk E [0, 1,2, ............. ,45] 

FIGURE 3 Integer coding for genetic representation of example 
problem. 

the nonuniform mutation (14). The relative probabilities of 
applying the crossover and mutation operations were selected 
as 0.8 and 0.2, respectively. These two operations function as 
follows. When a single arithmetic crossover is operated on 
two parent genotypes <Xi. X2, ••• , Xn> and <Yi. Y2, ••• , Yn>, 
the resulting offspring are <Xi. X2, ••• , X/, ... , Xn> and 
<Yi. Y2, ••• , Y/, ... , Yn>, whereke [1, n],Xt' = q Yk + (1 - q) 
Xt. Yk' = q Xk + (1 - q) Yt. and q is a random decimal value 
between 0 and 1. 

When a nonuniform mutation operation is executed on a parent 
genotype <Xi. X2, ••• , Xn> and Xk is the gene to be mutated, the 
resulting offspring would be <XI> Xi, ... , Xk', ... , Xn>, where 
Xk' has one of the following values: (0.2 q Xmax) when Xk = Xmax, 
(1 - 0.2q) Xmax when Xk = 0, or (Xk + pqz) when 0 < Xk < Xmax· 
Xmax is the maximum permissible value of Xt. q is a random deci
mal value between 0 and 1, p is either + 1 or -1 with equal 
probability decided randomly by the program, and z is minimum 
(Xt. Xmax - Xk). 

Formation of New Parent Pool 

In the offspring generation phase 160 offspring were generated 
from the 80 solutions in the parent pool. The next step was to select 
80 solutions from the offspring pool to form the next parent 
pool. Each offspring was first evaluated by means of the objec
tive function to arrive at the so-called fitness value of the off
spring. The top 80 genotypes in terms of fitness were then selected 
to form the new parent pool. This process ensures that the 
GA search is always directed toward solutions that return better 
values of fitness (i.e., the values of objective function) as the solu
tion process proceeds. 

tCroHpofnt 

IA,IAJAJAJAJ IA,IAJBJBJBJ 
{Parent Genotype 1) {Offspring 1) 

IB,IBJBJBJBJ IB,IBJAJAJAJ 
(parent Genotype 2) (Offspring 2) 

Col Crossover Operator 

t selected gene 

11101110111 ~ 
t mutated gene 

11111110111 
(Offspring) (Offspring) 

(b) Mutation Operator 

Crosspoint t 
IA,IAJAJAJAJ 

-~ 

IB,IBJBJBJBJ 

A'. = q8 4 + {1-q)A4 • B~ + qA, + {1-q)B4 • O<q<1 

(cl Simple Arithmetic Cro~sover 

t mutated gene 

IA,IAQAJAJAJ 

whon A2 + (A,)_ 

when A2 + 0 

when O<A,<(A,)_ 

whoni p = -1 or +1 • 0<q~1 • z=mln(X, .X -- X,) 

(d) Non-Uniform Mutation 

FIGURE 4 Examples of genetic operations. 
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Performance Evaluation of Solutions 

There are four possible measures for assessing the performance of 
GA solutions. The first measure, known as the online performance, 
is the running average of the value of the objective function of all 
valid genotypes that have been generated. The second measure, 
known as the offiine parent-pool performance, records the average 
of the objective function values of the genotypes of each parent pool 
selected. The third measure, known as the offiine offspring-pool 
performance, records the average of the objective function values 
of the genotypes of each pool of offsprings generated. Finally, the 
best solution is the value of the objective function of the best geno
type that has been generated. An example is given in Figure 5, 
which plots the four performance measures against the number of 
generations on the basis of the results of one of the GA solution runs 
obtained in the study. The best solution criterion is typically used to 
compare the performance of GAs, whereas the online performance 
and the offline performance are often used to monitor the conver
gence of GA solutions. 

Convergence of GA Solutions 

The typical trend of convergence of GA solutions is clearly dis
played in Figure 5. When the curves of best solution and offline 
parent-pool performance are considered, it can seen that the GA 
solutions converged after the 28th generation, although the best 
solution was achieved at the 23rd generation. The average of parent
pool solutions lagged· the best solution in terms of convergence, as 
expected. The fluctuations of the offline offspring-pool perfor
mance curve, after convergence had been achieved by the best
solution and the offline parent-pool performance curves, indicate 
the on-going GA mechanism of search for possible improvements. 
In comparison with these three performance measures, the online 
performance does not appear to provide as good an indication of the 
trend of convergence. 

4100 

3700 

of" 3300 

~ 
t:j:: ~900 
w·-

1300 

900 

0 0 0 
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Figure 6 shows the best solution performance curves for four 
solution runs of the GA program for the example problem. The 
number of generations at which the best solution was reached 
vru:jed from the 14th generation in Solution Run 1 to the 26th gen
eration in Solution Run· 3. The offline parent-pool performance 
curves in Figure 7(a) indicate that convergence.of the parent-pool 
solutions occurred at the.19th generation.for Solution Run 1 and at 
the 30th generation for Solution Runs 3 and 4. Figure 7(b) plots 
the offline offspring-pool performance for the four GA runs. All 
four curves exhibit the postconvergence fluctuations typical ~f the 
response of offspring-pool solutions described in the preceding 
paragraph. 

COMPARISON OF INTEGER 
PROGRAMMING AND GAs 

GA Solutions Versus Integer-Programming Solution 

Table 4 presents the GA solutions obtained in the study together 
with the integer-programming solution produced by Fwa et al. (3). 
Table 4(a) shows that all the four GA runs could produce good so
lutions with objectiv.e function value_s comparable to those achieved 
by the integer programming solution. The improvements over the 
integer programming solution were 0.57, 0.21, 4.93, and 3.95 per
cent for GA Solution Runs 1, 2, 3, and 4, respectively. Table 4(b) 
shows the output values of decision variables W;jk for all five solu
tions. For easy comparison Table 5 summarizes the results by high
way class and pavement repair activity type in terms of the decision 
variables W;jk· These answers in. W;jk can be converted into work
load measurement units by multiplying the production ·rates given 
in Table 2(a). · 

It is apparentfrom the results in Tables 4 and 5 that the choices 
of pavement repair activities were different among the five solu
tions, although the concentration of activities in all of the solutions 

Best-Solution l'trformance 
Offline Parent- "-I P!rformance 

Off line Offspring-Puol Pert ormance 
Online Performance 

10 20 30 40 50 60 70 90 100 
NUMBER OF GENERATIONS 

FIGURE 5 Performance evaluation of GA solutions. 
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FIGURE 6 Best-solution performance curves for four 
GA solution runs. 

was heavily influenced by the priority weighting factors [see Table 
2(c)]. This is clearly depicted in Figure 8, in which the results of 
Table 5 are presented graphically. In general, as shown in Table 
2(c), urban Interstate (i = 1) received the highest priority, whereas 
rural primary received the lowest; shallow and deep patching (j = 
1 andj = 2, respectively) also had higher priorities than the other 
two repair activities. These priority patterns are generally reflected 
in all five solutions. It should be noted; however, that the need to 
maximize the objective function had the ultimate impact on the so
lutions. For example, on the whole more workdays of shallow 
patching (j = 1) than deep patching (j = 2) were assigned, even 
though the latter had higher priority. 

9 1700 
;:! 

1300 

9111 

GA Solution 
Roo llo.1 

lol Offline Parent- Pool 
Performance 

12 16 20 2" 28 32 
NUMBER OF GEllERATIOIS 
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Comments on GA Application to Pavement 
Management Problems 

GAs have the inherent property of being able to process a large 
number of similar string structures. Holland ( 6) gave the name of 
intrinsic parallelism to this property, which is related to the notion 
of schema. A schema can be defined as a pattern-matching device 
or a similarity template that describes a subset of strings with simi
larities at certain string positions. For example, a binary code 
schema 11 lxx describes a subset of four strings ( 11100, 11101, 
11110, 11101). In each generation GA operations process approxi
mately a total of n3 schemata (6), where n is the size of the parent 
pool. This property gives GAs great computational leverage. 

With the stochastic generation of offspring in their search for new 
solutions, GAs represent a global search process. However, they are 
not simply random procedures because the offspring are generated 
from a parent pool of solutions that have been selected on the basis 
of their fitness. GAs are therefore able to efficiently exploit past in
formation to explore new regions of the decision space with a high 
probability of finding solutions with improved fitness. 

The choice of genetic operators in offspring generation is an im
portant phase in GAs that can be used to provide meaningful ways 
of combining genetic information from different genotypes in the 
parent pool. Care should also be taken that the selected genetic op
erations do not lead to the creation of excessive numbers of invalid 
offspring or contribute to premature convergence. For example, the 
crossover operation alone would not be sufficient because lost alle
les cannot be recovered, hence leading to premature convergence 
(16). A lost allele occurs when the entire parent pool or all offspring 
solutions have the same value for a particular gene. This problem is 
overcome by the use of the mutation operation that helps to main
tain the genetic diversity and keep the gene pool well-stocked. It is 
significant that the mutation operation allows the search to reach 
new areas of the parameter space. 

It is observed from the example application (e.g. Table 4 and Fig
ures 6 and 7) that there were differences among the solutions ob
tained from different GA runs because of the stochastic nature of 
the technique. This is a genetic phenomenon known as genetic drift 
(11). Genetic drift is common and expected in applications to com
binatorial optimization problems, and the differences are usually 
small. It should be noted that it is not possible to perform an ex-

lb) Offline Offspring-Pool 
Ptrfonnonce 

12 16 20 24 28 32 
llUMBER If GEllRATIONS 

FIGURE 7 Performance curves for offiine parent-pool solutions and offiine 
offspring-pool solutions. 



TABLE 4 Solutions of Example Problem by Integer Programming and GAs 

(a) Values of Objective Function of Solutions 

Method of Integer GA Solution GA Solution GA Solution GA Solution 
Analysis Programming Run No. 1 

Value of 
Objective 3865.5 3887.5 
Function 

Percent -- 0.57% 
Improvement 

(b) Values of Decision Variables W 
ljk 

Run No. 2 

3873.6 

0.21% 

w IP GAl GA2 GA3 GA4 w IP 
ljk ljk 

W111 3 2 2 2 3 W3tt 4 
W112 4 3 4 4 3 W3t2 3 
W113 3 2 3 3 3 W3t3 4 
W121 4 4 4 4 4 W32t 0 
W122 3 2 2 3 3 W322 2 
W123 0 0 0 0 0 W323 0 
Wt3t 0 1 0 6 2 W331 0 
Wt32 1 1 1 0 0 W332 0 
Wt33 4 1 3 4 4 W333 0 
Wut 1 1 1 0 0 W341 4 
Wt42 3 2 3 3 3 W342 1 
Wt43 0 0 0 0 0 W343 0 
W211 1 1 1 0 0 W411 3 
W212 1 1 1 0 0 W412 4 
W21J 3 2 3 3 3 W413 1 
W221 0 0 0 0 0 W421 0 
W222 6 5 3 6 6 W422 0 
W223 0 2 0 0 0 W423 0 
W231 0 7 0 0 0 W43t 0 
W232 0 0 0 0 0 W432 0 
W233 0 0 0 0 0 W433 0 
W241 1 1 1 1 0 W441 0 
W242 0 2 1 0 0 W422 0 
W243 0 0 0 0 0 W423 0 

Note: IP integer-programming solution 
GA1 genetic-algorithm solution No. 1 
GA2 genetic-algorithm solution No. 2 
GA3 genetic-algorithm solution No. 3 
GA4 = genetic-algorithm solution No. 4 

Run No. 3 Run No. 4 

4056.0 4018.0 

4.93% 3.95% 

GAl GA2 GA3 GA4 

3 4 4 4 
2 3 3 3 
3 4 4 4 
0 3 0 0 
2 2 2 2 
0 0 0 0 
5 5 0 5 
0 0 0 0 
0 0 0 0 
3 3 4 4 
1 1 0 3 
0 0 0 0 
2 2 3 3 
3 3 4 4 
1 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 ·0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 2 0 
0 0 0 0 
0 0 0 0 

TABLE 5 Summary of Workloads (Wifk) by Highway Class and Repair Activity for Different Solutions 

Highway Shallow Patching Deep Patching Premix Leveling Crack Sealing 
Class 

i = 1 

i = 2 

i = 3 

i = 4 

Note: (1) 

(2) 

CJ = 1) CJ = 2) CJ = 3) CJ = 4) 

(10, 7, 9, 10, 9) (7, 6, 6, 7, 9) (5, 3, 4, 10, 9) (4, 3, 4, 3, 

(5, 4, 4, 3, 3) (6, 5, 3, 6, 6) (0, 7, 0, 0, 0) (1, 3, 2, 1, 

( 11, 8, 11, 11, 11) (2, 2, 5, 2, 2) (0, 5, 5, 0, 5) (5, 4, 4, 4, 

(8, 6, 6, 4, 7) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 

Highway class i = 1, 2, 3 and 4 represent urban interstate, urban 
arterial, rural interstate, and rural primary respectively. 
The set of 5 numbers in parentheses represents five solutions in 
the following order: integer programming, GA run 1, GA run 2, GA 
run 3 and GA run 4. 

3) . 

0) 

7) 

0) 
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FIGURE 8 Comparison of solutions by integer programming and GAs. 

haustive search for such problems, and what is important is the abil
ity to reliably obtain a good and acceptable solution within a prac
tical time frame. For the example problem, each GA solution run · 
took less than 6 hr on a PC386 executing at a clock speed of 33. 
MHz. 

Traditional methods of optimization most often are structurally 
rigid, with system models and improvement algorithms usually 
fixed in form. GAs do not have these major shortcomings because 
they require only payoff information defined by the objective func
tion. This presents yet another attractive aspect of GAs in that it is 
relatively easy to modify the objective function to suit the user's re
quirements without affecting the efficiency of the GA search. For 
example, in pavement management at the network level the objec
tive function could be to maximize production, as was specified in 
the example problem, to minimize the present worth of pavement 
expenditures over the analysis period, to maximize the use of allo
cated budgets, or to minimize the fluctuations of yearly demand for 
pavement expenditures. 

CONCLUSIONS 

This paper demonstrates the application of GAs to pavement 
management problems by solving a network-level pavement repair 
programming problem. The combinatorial explosion problem 
associated with a typical network-level pavement management 
programming analysis makes GAs an attractive technique for high
way engineers and planners.The global search ability and flexibil
ity and ease with which GAs can handle different objective func
tions facilitate comparison of the relative impacts of different 
strategies. 

Genetic representation and the choice of GA operators are two _ 
major elements in the GA formulation of the problem analyzed. The 
considerations involved in the selection of both were illustrated in 
the paper through the example application of GA to a network-

level pavement programming problem. In comparison with the 
solution obtained by an integer programming method, the ex
ample application showed that consistently good solutions can be 
achieved by GAs within a practical computation time on ~ personal 
computer. 
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