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Belief-Function Framework for Handling 
Uncertainties in Pavement Management 
System Decision Making 

B.N.0. ATTOH-0KINE AND DAVID MARTINELLI 

Belief functions, otherwise known as the Dempster-Shafer theory ~f ~v­
idence, were applied to pavement management system (PMS) dec1s10n 
making. The theory has been advocated by many as a method of repre­
senting incomplete evidence of a system's ~owledg~ b~se: De~pster­
Shafer theory has attracted much attention m the art1fic1al mtelhgence 
community in recent years because it suggests a coherent approach to 
aggregate evidence bearing groups of m~tually excl~sive hypotheses. 
Two related issues in PMS decision making are exanuned: (a) the han­
dling of overall uncertainty in project-le.vel an~ network-le~el decisi.ons 
and (b) the handling of incomplete and 1mprec1se data and mformat10~. 
A prototype evidential decision network for pavement manage~ent is 
constructed to illustrate the applicability of the theory. The resultmg for­
mulation demonstrates that many of the shortcomings of alternative 
methods of handling uncertainty may be overcome. 

Recently, there has been considerable interest in addressing uncer­
tainties in pavement management systems (PMS) decision making. 
Attoh-Okine (1,2) proposed the use of Bayesian influence diagrams, 
a type of directed acyclic graphs (DAGs). DAGs express outcomes 
in terms of combinations of primitive events. In addition, the graph­
ical structure of these models captures the dependency structure 
among events, enabling the decision maker to exploit conditional 
independence to reduce specification and computation. Attoh­
Okine (1,2), using influence diagrams and value-of-information 
analysis, addressed the question of perfect and imperfect informa­
tion in PMS decision making under uncertainty. Bayesian influence 
diagrams provide users with a clear view of the variables in a PMS 
framework and the relationship between them. Madanat (3) used the 
latent Markov process, which explicitly recognizes the presence of 
measurement errors in facility condition assessment. Madanat (3) 
uses a methodology "value of more precise information," which al­
lows the decision maker to evaluate various measurement tech­
nologies with different precisions and costs and shows how the 
methodology fits into a PMS framework. Kulkarni (4) discussed the 
application of Markovian decision processes in PMS decision mak­
ing. Using the fact that the behavior of pavement is not determinis­
tic but probabilistic, Kulkarni developed probability-based decision 
making in PMS. 

Although there are currently several alternatives for address­
ing uncertainty in pavement management, they have several short­
comings. 

1. They have difficulty handling incomplete or conflicting evi­
dence. It is well understood that many data bases for pavement man-
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agement are quite incomplete. Because data collection for condition 
assessment can be performed in several ways, conflicting evidence 
is quite common in pavement management. 

2. They have difficulty incorporating updates or corrections in 
evidence. As new techniques for measurement and data collection 
emerge, updates in hypotheses relevant to pavement decision mak­
ing will increase in frequency. 

3. They have difficulty addressing the nested or hierarchical na­
ture of hypotheses for pavement management. Hypotheses for pave­
ment management can typically be broken down into subhypothe­
ses. For example, the yalidity of pavement performance can be split 
into the validity of data collection and the validity of the prior con­
dition assessments. 

4. They have difficulty generating alternative solutions. 
5. They have difficulty taking advantage of all available infor­

mation. 

One characteristic feature of the previous model is that the man­
agement of uncertainty in the decision-making process is based on 
conventional probabilities, an assumption of repetitive situations in 
PMS data collection and measurements that are possible and can be 
used readily. Unfortunately, at the present stage of PMS data col­
lection and measurements and with the changing nature of pave­
ment condition and the interaction between various pavement con­
dition variables, it will be appropriate to use the belief-function 
framework in decision making and in addressing uncertainty. This 
is because the aforementioned factors (pavement condition, data 
collection and measurements, etc.) are constantly changing. Fur­
thermore, the uncertainties of subjective judgments are also present 
when a decision must specify an optimal alternative, like in PMS 
decision making. Therefore, instead of using a fixed sample frame, 
one must be able to constantly recognize new relationships between 
frequency and experience. The aim of this paper is to discuss the be­
lief function, otherwise known as Dempster-Shafer theory, in han­
dling uncertainties in PMS decision making. 

Fundamental to the belief function is the representation of un­
certain knowledge in the form of basic probability assignment in 
which the probabilities can be assigned directly to subsets of the 
states of nature and to individual states of nature. The direct conse­
quence of this kind of assignment is that, although the actual prob­
ability of any individual subset of the nature may not be specified, 
its minimum and maximum values will be specified (5). 

Given pieces of independent evidence, general inferences may be 
made about what each piece implies. Dempster-Shafer theory of ev­
idence reasoning allows one to combine evidence in a consistent 
and probabilistic manner. The theory can be applied to obtain a 
more complete assessment of what the entire body of evidence 
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taken as a whole implies. For example, in obtaining condition as­
sessments for pavement sections several pieces of evidence may be 
compiled, including equivalent single axle loadings, roughness, rut­
ting, and cracking. Each piece of evidence alone may be used to 
lend credibility or "belief' to a particular hypothesis; however, it is 
helpful to know what each piece of evidence implies relative to the 
set of all possible outcomes. 

For example, given roughness measurements, a pavement engi­
neer may be 70 percent confident that a section may be in poor con­
dition within a 5-year period. The engineer is therefore 30 percent 
confident that the roughness measurements tell nothing. In this case 
it would be wrong to assume that the remaining 30 percent proba­
bility contradicts the notion that the section will be poor in 5 years. 
This remaining probability should be assigned to the complete so­
lution space. In this way evidence in support of a particular hy­
pothesis does not diminish the strength of future evidence rejecting 
it. If a Bayesian approach had been followed, then the 30 percent 
probability would have been assigned to the notion of rejecting the 
hypothesis. A problem then arises if there is future evidence indi­
cating that the section will not be poor within 5 years. Then no mat­
ter how strong this evidence might be it cannot carry a weight 
greater than 30 percent. 

BACKGROUND 

Formulation of problems by using the theory involves defining the 
set E> to contain all possible outcomes or hypotheses about the prob­
lem. E> is commonly referred to as the frame of discernment. An ex­
ample of E> in the context of pavement condition 5 years from now 
might be (excellent, good, fair, poor), where each element repre­
sents a particular hypothesis. The basic assignment (BPA) has a 
range of (0, 1) and reflects the quantity of belief in a hypothesis. 
Given the one piece of evidence stated, we can assign values to the 
sets H1 and 0. 

H1 =(poor), 
BPA =.70, 
e (excellent, good, fair, poor), and 
BPA = 1 -.70 =.30. 

Note that E> is not the complement of H 1 but encompasses all 
possible outcomes, including H1• Therefore, if later tests give strong 
evidence (e.g., 60 percent) that the section condition will be "good," 
then there is sufficient probability to reclaim the belief reflected by 
this evidence. 

SPACET 

A =r(t) 
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Next, the theory uses the quantity known as the plausibility of a 
given hypothesis PL(H). The plausibility is the maximum amount 
of belief possible, given the amount of evidence negating the hy­
pothesis. Specifically, it is obtained by subtracting the BPA associ­
ated with all subsets of the complement of the hypothesis (H). 

The next basic element of Dempster-Shafer theory is the belief 
function, BEL(H). The belief function measures the amount of be­
lief in the hypothesis only on the basis of the observed evidence. 
Specifically, it is obtained by combining the BPA of H with that of 
all of its subsets. 

The BEL(H) and PL(H) represent lower and upper limits of be­
lief in the hypothesis, respectively, and form the belief interval. 
These intervals effectively measure the degree in which further 
evidence might increase the belief in H. Larger intervals reflect a 
greater uncertainty in the value of BEL(H). In other words, there 
is a greater opportunity for additional evidence to further sub­
stantiate H. 

The belief-function approach is linked to conventional probabil­
ity by considering a multivalued mapping from one space to another 
(5). Figure 1 shows the concept of multivalued mapping. Let 0 rep­
resent the parameter space of interest, let 0 represent the region of 
values where the value might lie, and let e c e represent each in­
dividual possible value; Twill represent a probability space with the 
probability density µT On it; f(t) C E) Will represent a multivalued 
mapping from T to E>, which means that an observation tin Tis 
equivalent to the observation that the true value of e is f(t) c e. 
The conventional probability distribution µTin Tis called imprecise 
probability distribution on e. 

The belief-function approach (6) involves three related repre­
sentations for belief concerning a topic: the belief function (BEL), 
the plausibility function (PL), and the basic probability assignment, 
a generalization of a probability mass distribution. Let the 0 frame 
of discernment be a set of mutually exclusive and exhaustive hy­
potheses about some problem domain. A basic probability assign­
ment (bpa) is a function m from 28 , the power set of E> to (0, 1 ), such 
that 

m(<f>) = 0 

k m(A) = 1 
A!:;;0 

(1) 

(2) 

The quantity m(A), called A's basic probability number, corre­
sponds to the measure of belief that is committed exactly to 
hypothesis A in general and not to the total belief committed 
to A. Hence, a belief function is defined as BEL induced by a bpa 
mby · 

SPACE& 

(A, m(A)) 

FIGURE 1 Multivalued mapping from T to 0, which generates a bpa 
onE>. 
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BEL(A) = L m(B) (A, B ~ 0) 
Bc;;A 

m(A) = L (-l)IA-BI BEL(B) (3) 
BkA 

A - B denotes A n B, and IA - Bl denotes the cardinality of this 
set. m-values either can be assigned directly by the decision maker 
basis of subjective judgment or they can be derived from compati­
bility relationships between a frame with known probabilities and 
the frame of interest. From Equation 3 

BEL(A) + BEL(A):::; 1 (4) 

a nonadditive formalism. This is different from probability (Pr) the­
ory in which 

Pr(A) + Pr(A) = 1 (5) 

From Equation 4 

BEL(A) :::; 1 - BEL (A) (6) 

The quantity 1 - BEL(A) is called the plausibility of A and is de­
noted by PL(A). Intuitively, the plausibility of A is the degree to 
which A is plausible in light of the evidence. A zero plausibility for 
a hypothesis means that we are sure that it is false, but a zero degree 
for a preposition means only that we see no reason to believe the 
preposition. 

Notice that each function from { m, BEL, PL] uniquely determines 
the other two. The equation 

BEL(A) + BEL(A) = 1 (7) 

which is equivalent to 

BEL(A) = PL(A) (8) 

holds for all subsets of A if and only if BEL' s focal elements are all 
singletons. A subset of A of 0 is called a focal element of BEL if 
m(A) is greater than 0. By setting m(0) equal to 1 and m(A) equal 
to 0, for every subset of A of 0, BEL also satisfies BEL(A) 
equal to 0 for every subset A; this is called vacuous belief function. 
The BEL indicates no positive beliefs at all to where the truth of 0 
lies. This belief-function is appropriate when evidence being con­
sidered does not itself tell us anything about which element of 0 is 
the truth (6). 

In the belief-function theory, the information about the degree of 
certainty of an element is represented by the belief interval: 
[BEL(A) PL(A)]. The belief and plausibility functions denote a 
lower and an upper bound for unknown probability function. The 
lower bound represents the degree to which tlie evidence supports 
the preposition; the upper bound represents the degree to which the 
evidence fails to refute the preposition to the degree to which it re­
mains plausible. 

If two bpa's on 0 are obtained as a result of two pieces of inde­
pendent information, they can be combined by using Dempster' s 
rule of combination to yield new bpa' s m. The combination can be 
performed as follows: 

m(C) = m,(A) EB mi(B) = K- 1 L mi(A) m2(B) (9) 
AnB=C 
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where 

K = 1 - L m,(A) m2(B) 
AnB=<I> 

The second term in K represents the conflict between two items of 
evidence. If the conflict term is unity, that is, if the two terms con­
tradict each other, K is equal to 0; in such a situation, the two items 
of evidence are not combinable. 

APPLICATION TO PMS DECISION MAKING 

The primary advantage of using belief functions in PMS decision 
making is that each data collection procedure, reliability of various 
pieces of equipment used for the data collection, pavement perfor­
mance, and cost analysis can be expressed at a level of detail of its 
own environment. The ability to represent ignorance concerning the 
reliability of data collection and the equipment used reduces the 
likelihood of erroneous interpretation of the overall decision mak­
ing. Another advantage is that in PMS beliefs are assigned not to a 
single preposition but to sets of prepositions. Finally, in PMS deci­
sion making decision makers have no a priori probabilities of all the 
variables that form the decision framework. 

Figure 2 is a prototype evidential network that represents vari­
ous objectives in PMS decision making. In this example it is as­
sumed that the overall payoff of the final decision in regard to the 
maintenance and rehabilitation decision depends on the budget 
level and the pavement performance. The pavement performance 
objective depends on data collection procedures, measurements, 
and how well the previous survey data were interpreted. The ob­
jectives are represented with rounded rectangles, and the circular 
nodes represent relations between the objectives that are of inter­
est to the decision maker. In the present example it was assumed 
that all the valUes of the objectives are binary and only "AND" tree 
relationships may exist among the objectives. Furthermore, it is as­
sumed that there is only one item of evidence for each objective. 
Figure 3 is an example qf an "AND" tree and three nodes. Thus, we 
will have only one m-value at different objectives. It was assumed 
that the decision has judgment (although subjective) about the level 
of support. To determine if the level of payoff is adequate or if there 
is overall support for payoff on the basis of mutually exclusive 
evidence, one must aggregate all the evidence to the payoff objec­
tive node. This is obtained by propagating the m-values. Because 
all the objectives are binary we will represent each m-function by 
triplet [m(p), m(-p), m(p, -p)]. For example if m(p) is equal to 
0.8, m(-p) is equal 0, and m(p, -p) is equal 0.2, we write mp (0.8, 
0, 0.2). 

In the present example (Figure 2) there are seven nodes and seven 
items of evidence. The items of evidence in this present example are 
considered from the methods and procedures pavement engineers 
and decision makers relied on to make certain assumptions and de­
cisions on the nodes shown. Table 1 shows this procedure and 
method. It is assumed that the decision maker has made judgments 
about the level of support obtained from these procedures and 
methods for the respective nodes. These values are represented as 
m-values. 

To determine the overall support for each node as a result of ag­
gregating all evidence, we propagate m-values at each node and 
combine them-values received by each node from its neighbor with 
the m-value defined at the node. The combination is done by using 
Dempster.' s rules of combination. 
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ENVl 

Payoff 

p 

9p = {P, -P} 

mp= (0.6, 0, 0.4) 

ENV - Evidence 

ENV2 

Budget 
Level 

BL 

0BL ={BL, - BL} 

m BL= (0.6, 0, 0.4) 

Pavement 
Perf onnance 

pp 
____ epp= {PP, - PP} 

ENV3 

mpp= (0.9, 0, 0.1) 

FIGURE 2 Prototype evidential tree for PMS. 

In the example we first propagate validity of data (VD) and 
reliability of equipment (RE) to data collection (DC). This yields 
m' vc,,__ vD+RE. The second step is to combine m' vc with mvc to obtain 
m"vc· The next step is to combine DC and PC to PP, and this yields 
m' PPf-DC+Pc; m' PPf-DC+Pc is then combined with mpp to obtain m"pp. 

The same steps are used to combine PP and BL _(m' P ,,__ PP+BL), and 

Main Objective 

0x= tx. -xl 

mx 

FIGURE 3 "AND" tree with three nodes. 
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ENV4 

Data 
Collection 

DC 

enc= {DC, - DC} 

moc = (0.65, o, 0.35) 

------1 ENV7 
Previous 
Condition 

PC 
------9PC = {PC, - PC} 

mPC = (0.60, 0, 0.4) 

Validity of 
the Data 

VD 

ENV5 

9VD= {VD, - VD} 

mVD = (0. 7, 0, 0.3) 

Reliability 
cl 

Equipment 

RE 
0RE ={RE, -RE} 

ENV6 

mRE= (0.8, 0, 0.2) 

finally m' Pis combined with m' P to obtain m"p. Tables 2 to Table 7 
illustrate the propagation and combination of various nodes on the 
basis of the "intersection tableau" proposed by Gordon and Short­
liffe (7). In using the intersection tableau, m1 (±:) m2( <!>) for any sub­
set is set to be equal to zero. By definition Lm1 (±:) m2 (X) is equal to 
1. m" Pis the resulting total m-values obtained _by all of the mutually 

Subobjective I 

001 = {01, -01} 

mo1 

Subobjective 2 

002 = { 02. -02} 



Attoh-Okine and Martinelli 

TABLE 1 Potential Sources of Evidence 

Evidence 
Number Recommended Procedure and Method 

1 Prior Years Exoerience in PMS Decision Makine: 
The percentage difference between proposed budget and approved 

2 budget 

3 Use R-sauared obtained from pavement performance eauation 

4 Freauencv of Data Collection 

5 Outliers and the distribution pattern should be the maior focus 
They should be based on both operator competence and the reliability of 

6 previous collected data. 

7 Previous years condition of the pavement based on subiective iud11ment. 

exclusive gathered evidence on the payoff node P. m"p is (0.072, 0, 
0.928). 

By definition, the corresponding beliefs are 

BEL"p(P) = 0.072, BEL"p(-P) = 0, and BEL"p[(P - P)] = 1 

and the corresponding plausibilities are 

PL"p(P) = 1 - BEL"p(-P) = 1 

PL"p(-P) = 1 - BEL"p(P) = 0.928 

The results indicate that there is an overall assurance of 0.072 on the 
payoff node given the evidence or level of support in the present ex­
ample that there will be a payoff. PL" p( - P) can be expressed as the 
risk involved in the main objective node (payoff) on the basis of the 
evidence given. 

SUMMARY 

This paper illustrates that belief functions can be used in PMS de­
cision making. In designing decision-analytic framework models in 
PMS, decision makers must formulate relationships between vari­
ous objectives, incorporate subjective judgment, and pool evidence 
from various independent sources. The existing analytical tools 
presently used in PMS decision making do not adequately address 
such issues in a comprehensive manner. 

The belief-function approach provides a more rigorous but 
straightforward approach to dealing with decision making in PMS 
with imprecise probabilities and incomplete information from in­
dependent sources. 

TABLE 2 Combination of m' vv and mRE 

mvo 

{RE) (0.8) 

9(0.20) 

(mvo $ mRE) -+ m'oc 

VD 0.7 

$(0.56) 

{VD) (0.14) 

There is one null entry in the table 

K=0.56 

1 - K = 1 - 0.56 = 0.44 , thus 

mvo$mRE (RE) =0.24/0.44=0.546 

mvo$mRE {VD) =0.14/0.44=0.318 

mvo $ mRE { 9) = 0.06/0.44 = 0.136 

mvo $ MRE is zero for all other subsets 9 

9(0.3) 

{RE) (0.24) 

9(0.06) 

TABLE 3 Combination of m 'Dc and mDc 

(m'oc emnc)-+ m"oc 

m 

m'oc 

{DC) (0.65) 

9(0.35) 

{RE (0.546) 

q,(0.355) 

{RE) (0.191) 

There are two null hypotheses 

VD 0.318) 

$(0.207) 

{VD) (0.111) 

K = 0.355 + 0.207 = 0.562 1 - K = 1 - 0.562 = 0.438 

moc $ m'oc {DC) = g:~~: = 0.201 

moc $m'oc {RE)= g:!~~ =0.436 

moc $ m' oc {VD) = g:!~~ = 0.253 

moc $m'oc {9) =g:~:=0.110 

moc $ m'oc is zero for all other subsets 9 

TABLE 4 Combination of m "DC and mpc 

(m"oc $ mPC) -+ m'pp 

m 

m"oc 

(PC) (0.60) 

9(0.40) 

$(0.121) 

{DC) (0.080) 

K = 0.121+0.262 + 0.152 = 0.535 

MPC $ m"oc {PC) = g:~~ = 0.142 

MPC $m"oc {DC)= g:~!~ =0.172 

MPC $m"oc {RE)= g:!~~ = 0.374 

MPC $ m"oc {VD) = g:!~~ = 0.217 

mPC $ m"oc { 9) = g:~ = 0.095 

VD (0.253 

q,(0.262) q,(0.152) 

{RE) (0.174) {VD) (0.101) 

1-K=0.465 

MPC $ m"oc is zero for all other subsets 9 

TABLES Combination of m' PP and mpp 

(m'pp $mpp)-+ m"pp 

m'pp 

9(0.136) 

{DC) (0.088) 

9(0.048) 

9(0.110) 

PC(0.066) 

9(0.044) 
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mpp VD (0.217 9(0.095) 

q,(0.128) $(0.155) q,(0.337) $(0.195) {PP)(0.085) {PP}(0.9) 

9(0.10) {PC)(0.014) {DC)(0.017) {RE)(0.037) (VD}(0.022) 9(0.010) 

K = 0.128 + 0.155 + 0.337 + 0.195 = 0.815 = 1 - K = 0.185 

mpp $ m'pp {PP)= g:?:; = 0.459 

mpp $ m'pp {PC) = g:?~~ = 0.076 

mpp $m'pp {DC)= g:?~~ = 0.092 

mpp $m'pp {RE)= g:?~~ =0.200 

,,, , {VD) 0.022 9 mppwmpp =o. 185 =0.11 

mpp $ m'pp { 9) = g:?~~ = 0.054 

mpp $ m'pp is zero for all subsets 0 
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TABLE 6 Combination of m "PP and m8 L 

(m"pp EB mBL) --+ m'p 

m"pp 

m PP o.459 PC om VD 0.119 9 0.054 

«0.275) ~0.046) cp(0.055) 41(0.120) «0.071) (BL )(0.032) (BL)(0.6) 

9(0.4) (PP)(0.184) (PC)(0.030) [OC)(0.037) (RE)(0.080) (VD)(0.048) 9(0.022) 

K = 0.275 + 0.046 + 0.055 + 0.120 + 0.071=0.567 

1- K=0.433 

m"pp EB mBL {BL) = g:~~i = 0.074 

m"ppEBmBL {PP)= g:!~j =0.425 

m"pp EB mBL {PC) = g:~~~ = 0.069 

m"pp EB mBL {DC) = g:~~~ = 0.o85 

,, ,.., {RE) 0.080 O g m ppwmBL = 0.433 = .1 5 

m"ppEBmBL (VD}= g:~~ =0.111 · 

m"pp EB mBL { 9) = g:~ii = 0.051 

Finally, the framework can be used to quantify the level of un­
certainty associated with the payoff node. This is equivalent to the 
width of the belief interval [BEL"p(P) PL"p(P)], which is the amount 
of uncertainty in the main objective payoff node with respect to the 
items of evidence given. The uncertainty interval associated with 
the present case study is [0.072, 0.928]. 
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