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Simulation-Neural Network Model for 
Evaluating Dilemma Zone Problems at 
High-Speed Signalized Intersections 

X. PETER HUANG AND PRAHLAD 0. PANT 

The commonly used traffic control devices or techniques used to 
address dilemma zone problems at low-volume, isolated, high-speed 
signalized intersections include detector configurations, advance warn­
ing signs with or without flashers, and timings of change intervals or 
green extensions. The levels of effectiveness of these devices or tech­
niques are sensitive to roadway geometric, speed distribution, and traf­
fic volume. The measures of effectiveness of traffic control at a high­
speed intersection approach are expressed as the (a) probability of being 
caught in a dilemma zone, (b) speed of a vehicle in different segments 
of the intersection approach, and (c) vehicle conflict rate. A simulation 
model has been developed to dynamically represent each element of 
the traffic control system such as roadway geometric, traffic control 
devices (advance warning signs, flashers, detectors, and signals), and 
vehicular movements. Artificial neural networks have been developed 
to estimate vehicular speeds in different segments of the intersection 
approach in response to different advance warning signs, flashers, and 
signal indications. The simulation model has been integrated with the 
neural networks to provide better accuracy of the simulation. A case 
study showed that the results of the simulation-neural network model 
compared well with the field data collected at several low-volume, 
high-speed signalized intersections in Ohio. The model can be used as 
a non-accident-based safety evaluation procedure for high-speed 
signalized intersections. 

At an isolated high-speed signalized intersection, a high potential· 
for an accident exists in a roadway section close to the stop line, 
called the dilemma zone, where a driver, on seeing a yellow light, 
may have a difficult time in making a decision whether to stop or to 
proceed through the intersection. The driver may not be able to stop 
in advance of the stop line at an acceptable deceleration rate or to 
clear the intersection during the change interval. 

A schematic representation of the dilemma zone is shown in Fig­
ure 1, where Xs is defined as the minimum distance from the stop 
line that would ensure that a vehicle would stop before the stop line 
at an acceptable deceleration rate, and, similarly, Xe is the maximum 
distance from which a vehicle can clear the intersection during the 
yellow interval at current speed. If Xs is greater than Xe, a dilemma 
zone is formed within which neither the distance from the stop line 
is adequate for a safe stop nor the yellow interval is adequate for 
clearing the intersection. When a vehicle is caught in the dilemma 
zone, the driver is exposed to a potentially unsafe and indecisive sit­
uation. A rear-end collision may occur if the driver stops abruptly 
during the yellow interval, or a right-angle collision may occur if 
the driver attempts to go through the intersection during the red 
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interval. These conditions commonly exist on rural, low-volume 
highways where vehicle speeds are high and signals are unexpected 
or hidden by horizontal or vertical curves. 

Some researchers (J) have defined the dilemma zone as that area 
of the approach between a point where 90 percent of the drivers will 
stop on yellow and a point where 90 percent of the drivers will go 
(i.e., 10 percent will stop). The boundaries of a dilemma zone for 
various speeds are shown in Table 1. 

To reduce dilemma zone problems at high-speed signalized in­
tersections, various types of traffic control devices or techniques 
have been used. These include advance warning signs with or with­
out flashers, vehicle detectors, and yellow interval timings. An 
advance warning sign informs the driver about potentially haz­
ardous conditions on the roadway, and the active flasher on the sign 
tells the driver whether to expect a yellow or a red indication when 
he or she arrives at or near the stop line. Vehicle detectors that are 
strategically placed at the entrance point of a dilemma zone may 
extend the green interval while there are vehicles traveling within 
the dilemma zone. A proper yellow interval may provide reasonable 
yellow timing to minimize the dilemma zone problem. The levels 
of effectiveness of these traffic control devices are sensitive to road­
way geometric, speed distribution, and traffic volume. Hence the 
design and evaluation of a traffic control system should incorporate 
these factors to minimize dilemma zone problems. 

In the past several methods have -been used for the design and 
evaluation of traffic control at high-speed signalized intersections. 
These methods can be classified into the following three groups: 

1. Field study: conducting experiments such as before-and-after 
studies (2,3), 

2. Laboratory simulator: providing simulated driving environ­
ment and having subject drivers use a simulator to get results ( 4), 
and 

3. Judgments of experts: conducting a survey or interviewing 
experts to obtain their engineering judgments (5). 

However, some of the following difficulties have been experienced 
with these methods: · 

1. Limitations on the number of field experiments with different 
detector configurations, advance warning signs, flashers, change in­
tervals, and green extensions because of the long time, high risks, 
and high costs of the experiments; 

2. Inability to model a traffic control system at the microscopic 
level because driver behavior is not adequately understood; and 

3. Inability to conduct a comprehensive system analysis because 
the existing methods generally allow for the analysis of only one 
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FIGURE 1 Schematic representation of a dilemma zone. 

type of traffic control device at one time. The effects of specific traf­
fic control strategies involving detectors, advance warning signs 
with or without flashers, change intervals, green extensions, and so 
on are not fully understood. 

The objective of the study described here was to develop a 
simulation-neural network model for examining the dilemma zone 
problems at rural, low-volume, isolated high-speed signalized in­
tersections. It consisted of 

1. Developing a simulation model that can dynamically repre­
sent each element of the traffic control system such as roadway 
geometric, traffic controf devices (advance warning signs, flashers, 
detectors, signals), and vehicular movements; 

2. Developing artificial neural networks that can estimate a 
vehicular speed in response to different advance warning signs, 
flashers, and signal indications; 

3. Integrating the model by developing an interface between the 
simulation model and the neural network and supporting programs 
for.data input or output and statistical analysis; and 

4. Testing and validating the model. 

METHODOLOGY 

As stated previously a major safety concern at rural, low-volume, 
isolated high-speed signalized intersections is the accident potential 

TABLE 1 Dilemma Zone Boundaries (J, p71) 
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in the dilemma zone: The probability of a driver being caught in a 
dilemma zone can be interpreted as the chance or frequency of en­
countering a driver who meets a yellow light and can not proceed 
through the intersection on yellow at the current speed or stop in 
advance of the stop line at an acceptable deceleration rate. A high 
probability of being caught in a dilemma zone will indicate a high 
accident risk at the intersection and vice versa. Therefore, the 
effectiveness of a traffic control system can be expressed as the 
probability of being caught in a dilemma zone (PBCDZ). In the pres­
ent study PBCDZ was defined as one of the measures of effective­
ness for the design and evaluation of a traffic control system at high­
speed signalized intersections. The major parameters that affect 
PBCDZ are 

1. Type of advance warning signs; the following four types of 
advance warning signs are included in the study: 

-Passive symbolic signal ahead (PSSA) sign. This is a com­
monly used sign with green, yellow, and red circles. Flashers are 
not used. 

-Prepare To Stop When Flashing (PTSWF) sign. The flashers 
are activated a few seconds before the onset of the yellow indi­
cation. Some agencies [for example, the Ohio Department of 
Transportation) (DOT)] use the PTSWF sign in addition to the 
PSSA sign. 

-Flashing Symbolic Signal Ahead (FSSA) sign. The flashers 
act like the PTSWF sign. However, the written message is 
replaced by green, yellow, and red circles. 

-Continuously Flashing Symbolic Signal Ahead (CFSSA) 
sign. It has three circles as for the FSSA sign. However, the flash­
ers are active all the time. 
2. Location of advance warning signs; the signs are usually lo­

cated a few hundred feet upstream of the intersections. The location 
of an active advance warning sign is related to the vehicular speed 
(usually the 85th percentile speed) for maximum effectiveness. 

3. Configuration of detector loops; two or more detector loops 
are commonly used for high-speed signalized intersections. In a 
previous study (3) five detector loops were recommended to ac­
commodate high vehicular speeds. Some other loop configurations 
for high-speed signalized intersections were also recommended (1). 
Proper loop configuration will reduce the chances of "gap out" or 
"maximum green time out." 

4. Change interval and green extension; the length of the yellow 
interval is generally 3 to 5 sec (6). ITE has specified a formula for 
the calculation of yellow intervals (7). In theory a long change in­
terval seems to be a possible solution to the dilemma zone problem. 

Approach 
Speed 

Distance from Intersection for 
Probabilities of Stopping 

Feet Meters 

mph kph 90% 10% 90% 10% 

35 56 254 102 77 31 
40 64 284 122 87 37 
45 72 327 152 100 46 
50 80 353 172 108 52 
55 88 386 234 118 71 
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However, in practice it may cause other problems, like encouraging 
drivers to use the change interval as part of the green interval or pro­
ceeding into the intersection from a longer distance upstream. The 
green extension is timed to permit a vehicle to travel from a detec­
tor to the next detector or to the stop line, subject to the preset max­
imum green interval. A short green extension results in a relatively 
snappy operation. -

In practice it is difficult to record PBCDZ in the field because the 
boundaries of a dilemma zone vary with individual vehicular speeds 
(1) and the effect of each traffic control device cannot be separated. 
In the present study, in addition to the PBCDZ the speed of a vehi­
cle in various segments of the intersection approach was used as a 
measure of effectiveness. In a previous study (2) the authors found 
that the signs with flashers described earlier had a strong influence 
on speeds at or near the intersections, and the speed of an individ­
ual vehicle in different segments of an intersection approach was 
related to the type and location of advance warning signs, flasher 
indication (active or inactive), and signal indication. 

The speed of a vehicle was recorded in four segments along the 
high-speed intersection approach. Each segment was called a speed 
zone. Zone 1 was the segment of the intersection approach just up­
stream of the advance warning sign. Zone 2 was the segment just 
past the advance warning sign but in advance of the dilemma zone 
for an average speed of 55 mph. Zone 3 was the final segment of the _ 
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intersection approach, measured from the beginning of the dilemma 
zone to the stop line. If the intersection approach had a PTSWF sign, 
a PSSA sign existed at an upstream location (per current practice in 
some jurisdictions). In this case an additional zone, called Zone 4, 
was used (Figure 2). The speed profiles along the approach were 
obtained from the recorded data and used later for simulating 
vehicle movements. 

Finally, in the present study vehicular conflict rate was used as an 
additional measure of effectiveness in the design and evaluation of 
traffic control systems at high-speed signalized intersections. The 
following types of conflicts ( 8) were examined: 

1. Run red light: a proceeding vehicle is upstream of the stop line 
when the signal turns red. 

2. Abrupt stop: at the last instant a driver decides to stop. The de­
celeration, particularly within 100 ft of the stop line, causes the front 
end of the vehicle to dip noticeably. 

3. Acceleration through yellow: the driver guns the engine to 
proceed through the intersection on a yellow light. . 

In the past several traffic simulation software programs have 
been developed, such as TEXAS for intersection analysis and NET­
SIM for network analysis. However, no existing simulation model 
can be used to effectively address dilemma zone problems and par­
ticularly to calculate PBCDZ or estimate the effects of advance 
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FIGURE 2 Speed zones. 



Huang and Pant 

warning signs, flashers, detectors, change intervals, and so on on 
speed and vehicle conflict rate. Hence, a personal computer-based 
simulation model was developed for evaluating dilemma zone prob­
lems at rural, low-volume, isolated high-speed signalized intersec­
tions. The simulation model was interfaced with a set of neural net­
works and supported by a graphic user interface and programs for 
data input/output, statistical analysis, and reporting. The neural net­
works allowed for a better representation of the changes in driver 
behavior as a result of different traffic control strategies imple­
mented at the intersections, which is not available with the existing 
simulation models. In this way better experiments could be con­
ducted in short time periods at low cost. In the present study the sim­
ulation system SLAM II (9) and Neuralworks Professional II/Plus 
(10) were chosen for use in the development of the simulation 
model and the neural networks, respectively. 

SIMULATION MODEL 

The simulation project involved many complex activities including 
building models, executing simulations, collecting data, generating 
alternatives, analyzing outputs, and interpreting results. The philos­
ophy in developing the simulation model was first to make the sim­
ulated system closely represent the character of a real-world system 
under various conditions and then to enable the model to generate 
PBCDZ and other results for further analysis. 

The simulation model contains the following four major subsys­
tems: (a) vehicle subsystem, (b) traffic control subsystem, (c) driver 
behavior subsystem, and (d) roadway subsystem. Several simula­
tion processors were developed to process each vehicle and to 
process the system information. Figure 3 shows the structure of the 
model, the relationships of the processors within the model, and the 
information flow from and to each processor. The subsystems are 
briefly described in the following paragraphs. 

The vehicle subsystem is a key component of the model, which 
contains vehicle arrival and attribute processors to simulate vehicles 
traveling through the system. Each vehicle is represented by several 
attributes such as vehicle type, current speed, location, and headway 
to leading vehicle. Each vehicle is generated at an entry point on the 
roadway, which is sufficiently ~n advance of the intersection, and is 
removed from the system after crossing the intersection. 

The traffic control subsystem is represented by traffic signal 
indications, loop detectors, and advance ~arning signs with or with­
out flashers. It has a traffic control processor to coordinate the func­
tions of all traffic control devices. Signal indications, detector calls, 
advance warning signs, and distance to traffic control devices are 
important factors that affect driving behavior. If a vehicle is pass­
ing over a loop near the end of the green phase, a detector call is sent 
to the controller, which then gives several seconds of green time 
extension (depending on the detector configuration and the speed 
limit). This process can be repeated until the maximum green time 
is reached. The flashers on the active advance warning sign are 
timed with the controller so that the flashers begin to flash shortly 
before the end of the green phase and continue to do so until the next 
green phase begins. 

The driver behavior subsystem consists of a speed update proces­
sor and a set of trained neural networks, which take the current 
vehicle position, flasher and signal indications, and related factors 
as inputs and estimate the response of the driver, which is repre­
sented by the vehicular speed in the next time unit or speed zone. 
This processor provides communications between the vehicle sub­
system and the neural networks. 
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FIGURE 3 Model structure. 

The roadway subsystem was represented by a roadway segment 
that begins in advance of the intersection (called an entry point) and 
ends at the stop line, which includes the number of lanes, roadway 
curvature (if any), width of lanes, and existence of exclusive left 
tum lanes (if any). 

Additionally, the system update processor scans all activities in 
the system, compiles data for generating statistics, and updates the 
system information, including the number of vehicles in the system, 
average speed, queue length, volume, and traffic delay in the sys­
tem. Finally, the reporting processor generates printed outputs of 
the simulation results. 

NEURAL NETWORK DEVELOPMENT 

In the past the neural network technology has been found to give 
good results in engineering applications owing to its capability to 
learn and recall (11). In the present study neural networks were 
trained and tested to estimate speeds in various speed zones of high­
speed signalized intersections, which could be recalled for specific 
applications by the simulation model. The speeds are estimated in 
response to the current driving environment such as geometric con­
ditions (tangent or curved approach), signal indications, flasher in­
dications, distance of the vehicle to the intersection, and type and 
location of the advance warning sign(s) (Figure 2). 

A neural network works on a learn and recall basis and is differ­
ent from conventional computer programs. The basic component of 
a neural network includes a processing element (PE) that has the 
ability to learn the relationship between the given inputs and the 
correct output and to use the relationship to estimate an output when 
a set of new input data is given. A typical neural network usually 
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consists of one input layer, one output layer, and one or more hid­
den layers. Detailed descriptions on the theory and practice of the 
neural network have been provided previously (12,13). 

Field data were needed for the training and testing of neural 
networks. The data used in the study were collected for a research 
project on active advance warning signs at four rural, low-volume, 
isolated high-speed signalized intersections in Ohio (2). The data 
contained the following information: 

1. Vehicle type: light or heavy; 
2. Geometric condition: curved or tangent approach, with or 

without exclusive left tum lanes; · 
3. Travel time or speed in each speed zone; 
4. Advance warning sign: four types of signs as described be­

fore; 
5. Flasher indication: active or inactive (when the vehiCle ar­

rived at the advance warning sign); 
6. Turning movement: through, left, and right; 
7. Signal indication: green, yellow, and red (when the vehicle 

arrived at the beginning of the dilemma zone or at the stop line); 
8. Stop: whether the vehicle stopped or proceeded; 
9. Conflict: run red light, abrupt stop, and acceleration through 

yellow; and 
10. Time period: morning, midday, afternoon, and night. 

The intersections where the data were collected consisted of 
roadways with different geometrics and advance warning signs. For 
a detailed description of the data collection and results of the study 
see Pant and Huang (2). 

Figure 4 shows the structure of a neural network that was devel­
oped by the study. It has an input layer with 27 input PEs, an out­
put layer, and two hidden layers. The 27 PEs represent the coding 
for the different variables affecting the speed of a vehicle in a given 
zone. All variables except speed and distance were of the categori­
cal type and were coded in the 1-of-N forms as shown, 

• Input variables 
1. Current speed (ft/sec). 
2. Vehicle type: truck = 0, 1; passenger car = 1,0. 
3. Existence of flashers: yes = 1,0; no = 0, 1. 
4. Flasher indication when vehicle reaches advance warning 

sign: active= 1,0; inactive= 0,1. 
5. Signal indication when vehicle reaches beginning of 

dilemma zone: green = 1,0,0; yellow = 0, 1,0; red = 0,0, 1. 
6. Signal indication when vehicle reaches stopline: green = 

1,0,0; yellow = 0, 1,0; red = 0,0, 1. 
7. Turning movement: left = 1,0,0; through = 0, 1,0; right = 

0,0,1. 
8. Vehicle stopped or proceeded: proceeded = 1,0; stopped 

= 0,1. 
9. Tangent or curved approach: tangent = 1,0,0; modest 

curve= 0,1,0; high curve= 0,0,1. 
10. Existence of additional PSSA sign: yes = 1,0; no = 0, 1. 
11. Existence of CFSSA sign: yes = 1,0; no = 0, 1. 
12. Distance of flasher from stopline (ft). 
13. Distance of PSSA sign (if any) from stopline (ft). 

• Output variable was the speed in the next speed zone (ft/sec). 

Three neural networks--one each for estimating speed in Zones 
2, 3, and 4-were developed. The back-propagation method (10) 

TRANSPORTATION RESEARCH RECORD 1456 

was used to develop the neural networks. In all cases the best results 
were obtained with the hyperbolic tangent transfer function and the 
normal-cumulative-delta rule. The root mean square error varied 
between 1 and 5 percent, and the number of iterations required for 
training the neural networks varied between 5,000 and 15,000. The 
sample consisted of 8,900 observations at the four high-speed 
signalized intersections. In a random selection process, 6,200 
observations were used for training the neural networks and the 
remaining 2,700 observations were used for testing. The estimated 
and actual speeds were tabulated for each neural network, and 
t~tests were performed at the 5 percent level of significance. The 
tests showed that there were no significant differences between the 
estimated and observed speeds. Hence, the trained neural networks 
were accepted. They were translated into FORTRAN codes, com­
piled within the SLAM II simulation shell, and interfaced with the 
simulation model. 

SIMULATION PROCEDURE 

The model begins simulation with a randomly selected initial con­
dition, processes the data after a warm-up period of 500 sec in sim­
ulation time units, and terminates the simulation when the statistics 
reach a stable status. At each time unit all vehicles in the system are 
scanned, beginning with the first vehicle closest to the intersection 
and ending with the last vehicle at the most upstream segment of the 
approach. All vehicle attributes and system information are updated 
and statistics are computed. A sample of tracing data is listed in 
Table 2, which provides records of a light vehicle traveling in the 
through direction on a tangent approach of a high-speed signalized 
intersection system with an exclusive left-tum lane. 

The inputs required for runping the simulation model are listed 
as follows: 

1. Traffic conditions: traffic volume, headway distribution, 
traffic composition, and time of day. 

2. Roadway conditions: number of lanes, width.of lanes, curva­
ture, exclusive tum lane, and posted speed limit. 

3. Traffic control: 
-Number and location of loop detectors; 
-Active advance warning signs-type, location, and timing of 

flashers; and 
-:Signal timing--cycle, phase split, sequence, change interval, 

green extension, maximum green. 

The available outputs are 

1. Total number of vehicles simulated, 
2. Probability of being caught in dilemma zone, 
3. Average speed in each speed zone, 
4. Acceleration or deceleration in each speed zone, 
5. Vehicle conflict rate, 
6. Queue length and delay, 
7. Number of maximum green time-outs and gap-outs, and 
8. Other user specified statistics and graphic outputs. 

SUMMARY OF FUNCTIONS OF ARTIFICIAL 
NEURAL NETWORKS AND SIMULATION MODEL 

The PBCDZ is defined as a major measure of effectiveness for the 
evaluation of dilemma zone problems, because PBCDZ is related to 
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FIGURE 4 Structure of neural network. 

the potential of accidents at high-speed signalized intersections 
(HSSls). 

A simulation-neural network model was developed in the study 
to obtain PBCDZ and other statistics for the evaluation of dilemma 
zone problems. The model consists of a simulation model, a set. of 
artificial neural networks, and a group of supporting programs. 

A microscopic simulation model was developed. It can precisely 
simulate traffic flow, traffic control devices, and roadway condi­
tions in HSSI systems, trace every vehicle that has been caught in 
the dilemma zone, and calculate PBCDZ and other statistics needed 
for further analysis. 

The artificial neural networks (ANNs) are used to estimate vehi­
cle speeds at different segments of the intersection approach during 

simulation. The ANNs are trained and tested by field data and in­
terfaced with the simulation model to provide the speed estimation 
for each vehicle in the simulation. For example, if a passenger car 
is traveling at 55 mph under free-flow condition during a daytime . 
nonpeak hour on a tangent approach equipped with a PTSWF sign, 
the neural network would allow for estimation of the vehicle speeds 
along the remaining segments of the intersection approach under 
these conditions. First, a program sends the current information on 
the vehicle, roadway, and signal and flasher indications to the ANN. 
Then the ANN estimates the vehicle speeds at the downstream seg­
ment (for instance, 50 mph) and sends the result back to the simu­
lation model. The estimated speeds are used to guide the movement 
of the vehicle through the system. The applications of the ANNs 
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TABLE 2 Simulation Tracing Data 

Simulation Current Current Headway Activity Description 
Clock Speed Location (ft) 
Time (ft/sec) (ft to HSSI) 
(sec) 

5938 85.2 1340 577 Next vehicle arrival in 14 seconds; 
current vehicle filed in system; speed 
estimated 81.3 fps at 844 ft by neural 
network; and unit speeds reduced 
accordino to this speed pattern. 

5944 81.3 844 559 Vehicle in free flow, no signal change; 
speed reduced at each simulation time 
unit; speed estimated 68.7 fps at 522 ft. 
by neural network. 

5949 68.7 522 NA PTSWF sign is flashing, signal is still 
green, decision made to process on 
yellow, speed estimated 70.6 fps at 192 
ft; controller not accepting detector calls. 

5951 67.9 350 NA PTSWF is flashing, signal still green, 
the vehicle begins accelerating. 

5954 70.6 192 NA Signal is yellow, the vehicle continues 
accelerating. 

5957 71.5 0 NA The vehicle proceeds through the 
intersection on yellow interval. 

Note: This is the tracing data of one vehicle when at least one major event took place. 
NA = no headway available. 

allow improvements to be made in the quality of the simulation 
model, through which PBCDZ is calculated. For a detailed descrip­
tion of the applications of the ANNs refer to Huang (14). 

The integrated simulation-neural network model is capable of 
evaluating various traffic control plans by using a non-accident­
based procedure and providing traffic control design options with 
minimum PBCDZ. 

CASE STUDY 

Several case studies were conducted to test the model and to com­
pare the outputs of the model with field data. The case studies were 
performed to cover various types of high..:speed signalized intersec­
tions including those with tangent and curved approaches, different 
posted speed limits, and traffic control strategies (advance warning 
signs, flashers, detector configurations, change interval, etc.). The 
result of a case study performed at the westbound approach of the 
intersection of US 33 at US 127 in Mercer County, Ohio, is 
described in the following paragraphs. 

The intersection approach under study was a tangent section of a 
high-speed signalized intersection with an unusually high percent-

. age (about 39 percent) of truck traffic and a posted speed limit of 55 
mph. First, a PSSA sign existed at 1,340 ft upstream of the inter­
section. Later, the Ohio DOT installed a PTSWF sign 660 ft up­
stream of the stop line. The flashers were activated 9 sec before the 
end of the green interval, and the detection system was temporarily 
shut down during the flashing period. One detector loop existed near 
the stop line and another 554 ft upstream of the intersection, from 
which each call would give a 5-sec green extension. US 33 ·and US 
127 are important arterials; however, the study approach was con­
sidered minor and received 15 sec of minimum green to 45 sec of 

maximum green, depending on detector calls. The intersection was 
located in an isolated area, was surrounded by cornfields in a flatter­
rain, and had a history of higher-than-average accidents before the 
active advance warning sign was installed. The mean traffic volume 
was 192 vehicles per hr, with a standard deviation of 32.6 vehicles 
per hr. Thirty-nine percent trucks was included in the traffic com­
position . 
. The estimated speeds of light vehicles in the through direction 

were tested against the observed speeds for each of the following 
groups (Table 3): 

1. Speed at the entry point to the roadway system (1,340 ft 
upstream), 

2. Speed at the first speed checkpoint (844 ft upstream), 
3. Speed at the second speed checkpoint (522 ft upstream), 
4. Speed at the third speed checkpoint (192 ft upstream), and 
5. Speed at the exit point of the roadway system (at stop line). 

The result showed that the relative error between the observed 
and estimated speeds in each group was less than 5 percent. t-tests 
were performed to test the differences between the observed and es­
timated speeds, which showed that they were not significantly dif­
ferent at the 5 percent level of significance. The result indicated that 
the neural networks performed well under each specific condition. 

Vehicle conflict rates estimated by the simulation model were 
compared with those observed at this intersection (Table 4). How­
ever, the result was not conclusive because a previous study (2) in­
dicated that in the short term vehicle conflict rates at an intersection 
could vary by a wide margin (as much as 60 percent) without any 
change in the advance warning sign or other traffic control devices. 
In the present study the relative error between the simulated and 
observed vehicle conflict rates was found to vary between 22 and 



TABLE 3 Analysis of Selected Speeds for Case Study of US 33 Westbound at US 127 

signal travel proceed- observed simu- speed relative 
indica- direc- ing without speed lated check errore 
tiona tionb st ope speed pointd 

(ft/sec) (ft/sec) 

G TH y 87.7 87.6 ENT. 0.1% 
G TH y 80.1 79.4 CHK1 0.9% 
G TH y 61.4 60.6 CHK2 1.3% 
G TH y 62.3 61.4 CHK3 1.4% 
G TH y 62.6 62.5 EXIT 0.2% 

y TH y 83.0 83.1 ENT. 0.1% 
y TH y 71.1 • 72.5 CHK1 1.9% 
y TH y 59.8 60.0 CHK2 0.3% 
y TH y 66.9 65.4 CHK3 2.2% 
y TH y 72.0 70.1 EXIT 2.6% 

R TH N 79.9 80.3 ENT. 0.5% 
R TH N 69.8 70.1 CHK1 0.4% 
R TH N 59.9 58.0 CHK2 3.2% 
R TH N 33.7 35.1 CHK3 4.2% 
R TH N 0 0 EXIT 0.0% 

Note: Only light vehicles are selected. 

a Signal indication: G=Green, Y=Yellow, R=Red 
b Travel direction: TH= Through direction 
cvehicles proceeding without stop: Y=Yes, N=No 
d Location where speeds were checked: 

ENT .=Entrance of system, 1344 ft upstream of intersection 
CHK1 =Check point1, 844 ft upstream of intersection 
CHK2=Check point2, 522 ft upstream of intersection 
CHK3=Check point3, 192 ft upstream of intersection 
EXIT =exit point of system 

e Relative Error: (observed - simulated)/(observed)*100% 
t NS=Not Significant in T-Test, S=Significant at 5% level 

TABLE 4 Observed and Simulated Vehicle Conflict Rates for US 33 at US 127 

signi­
ficance 
in t-testf 

NS 
NS 
NS 
NS 
NS 

NS 
NS 
NS 
NS 
NS 

NS 
NS 
NS 
NS 
NS 

Vehicle 
Conflict 

Observed Simulated Relative 

Abrupt Stop 

·Acceleration 
on Yellow 

Running Red 
Light 

TOTAL 

Conflicts 
per 1000 
Vehicle 

1. 8 

28.0 

1. 7 

31. 5 

Conflicts Error 
per 1000 
Vehicle 

2.2 22 % 

40.1 43 % 

2.5 47 % 

44.8 42 % 

Note: Relative Error (observed - simulated)/(observed) 
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47 percent. The factors contributing to the errors can be summarized 
as follows: 

1. Instability of field data: the conflict rates may not be stable for 
a day or even for several days. Hence, it was not clear whether the 
model or the field data were causing the errors. 

2. Human judgment: the conflicts were manually recorded at the 
site by observers. Because these observations involve subjective 
judgments, some differences between the observed and estimated 
rates may exist. 

3. Logit model: the logit model was developed by a previous 
study (15) with limited field data. In the future it may be possible to 
improve the accuracy of the logit model by calibrating it with a sig­
nificantly larger data base. 

The simulation study showed that PBCDZ was 2.7 percent. Be­
cause PBCDZ was not observed during the field study the model 
could be validated only by examining the estimated and observed 
speed profiles and conflict rates. The result showed that the PBCDZ 
was sensitive to the traffic control devices on the intersection 
approach. For example, PBCDZ was reduced by about 19 percent 
when the PTSWF sign was installed 100 ft upstream of the original 
location or was reduced by about 28 percent when 1 sec of addi­
tional flashing time and a 1-sec longer yellow interval was provided. 
A user-inserted subroutine was developed to trace back, upon 
request, the characteristics of speed patterns and related traffic con­
ditions for vehicles caught in the dilemma zone (Table 2). Hence, 
the most likely causes of a vehicle being caught in the dilemma zone 
can be examined by tracing back the records. The results indicated 
that the simulation model could be used to evaluate potential traffic 
control strategies that could result in a lower PBCDZ at the inter­
section approach. 

CONCLUSION AND RECOMMENDATION 

Presented in this paper is a simulation-neural network model for 
evaluating dilemma zone problems at high-speed signalized inter­
sections. The measures of effectiv~ness were PBCDZ, vehicle 
speeds in various segments of the intersection approach, and vehi­
cle conflict rate. The advantage of using PBCDZ in the study is that 
it reflects the potential of accident risk, because it represents the 
chance of rear and right-angle collisions. It also represents the 
effects of various traffic control devices including advance warning 
signs, flashers, detectors, and signal timing. Therefore, the model 
can be used as a non-accident-based safety evaluation procedure for 
high-speed signalized' intersections. It is particularly important to 
use a non-accident-based method for evaluation if an intersection 
lacks a sufficient number of accidents within a specified period for 
conducting a rigorous statistical analysis. Because PBCDZ is avail­
able through the model, an algorithm for searching the traffic con­
trol strategy that would result in the minimum PBCDZ should be 
developed. tn this way the model can provide help to the user in 
finding optimal traffic control alternatives that conventional simu­
lation models usually cannot provide. 

The use of the neural networks made the simulation of vehicle 
movements more closely resemble the situation observed in the 
field. By interfacing the neural network with the simulation model, 
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the quality of the simulation was improved. The method used in the 
present study has significance for future traffic simulation studies 
because it can better reflect drivers' responses to various traffic con­
trol strategies and can improve the accuracy of simulation. The 
technique of simulation interfaced with a neural network can be ex­
tended to other traffic control studies, for example, traffic control 
for urban signalized intersections or highway work zones. The tech­
nique can be used in intelligent vehicle-highway system (IVHS) 
projects that involve new technologies including detection, real­
time control, and communication that would influence a driver's be­
havior. Because large amounts of traffic data are required for neural 
network training and testing, future efforts should include collec­
tion of traffic data by automatic traffic detection systems. With the 
development 0f IVHS technology, such data collecting systems are 
increasingly available. For additional information on this research, 
the reader is referred to the work of Huang (14). 
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