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Estimating Freeway Origin-Destination 
Patterns Using Automation Traffic Counts 

PING Yu AND GARY A. DAVIS 

To enable the efficient use of existing roadway capacity, researchers and 
practitioners are developing advanced traffic management systems 
(A TMS), which has led to an increased interest in problems connected to 
the estimation of origin-destination (0-D) flows using information pro­
vided by freeway surveillance and control systems. A number of methods 
based on a linear traffic assignment model have been applied successfully 
to single intersections, and some of these estimators were extended to a 
section of freeway. The results from Monte Carlo simulation suggest that 
ordinary least squares (OLS) and expectation-maximization approaches 
were either biased or inefficient. A nonlinear least squares (NLS) estima­
tor that eliminated model specification error was introduced, and it per­
formed better in terms of statistical efficiency and lack of bias. This 
implies that accurate 0-D estimation may require an accurate traffic flow 
model and that actual implementation may require joint estimation of 
0-D patterns and traffic flow model parameters. On the other hand, a con­
strained approximate maximum likelihood estimator performed better 
than OLS but somewhat worse than NLS, showing some potential for 
providing a simple and yet plausibly accurate approach. 

Traffic congestion is an increasingly serious problem for many of the 
world's urban areas, but fiscal, social, and environmental constraints 
prohibit large increases of highway capacity. Thus the advanced traf­
fic management systems (ATMS) and advanced driver information 
systems (ADIS) initiatives in the United States, and similar programs 
in other nations, have as one of their major objectives the efficient 
use of existing highway capacity. This is to be achieved by an 
increased availability of high-quality real-time information about 
traffic conditions, along with a more intimate linking of traffic con­
trol with travel demand management tactics. The success of such an 
approach will depend heavily on the availability of practical models 
describing the interaction between travel demand and traffic flow 
phenomena, models that can give real-time predictions of the effects 
of proposed traffic management actions. Most traffic models use 
some form of an origin-destination (0-D) matrix as the basic 
description of the demand for travel, which has led to an interest in 
using the data collected by traffic surveillance systems, especially 
traffic counts, to generate real-time estimates of 0-D matrices. 

In particular, it is hoped that the availability of time-series data of 
traffic counts will permit development of 0-D estimators that have 
desirable statistical properties, such as consistency, efficiency, and 
lack of bias, and that will be able to track changes in the 0-D pat­
terns. For general networks, constructing such 0-D estimators can 
be a difficult task, because of the possibility that many routes may 
connect any given 0-D pair [Davis (J)], but the problem is simpli­
fied somewhat when one considers simple "linear" networks, such 
as single intersections, transit routes, and freeway segments, where 
each origin and destination are connected by at most one route (2). 
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Since urban freeways carry a large fraction of total urban travel, 
it is not surprising that estimation of freeway 0-D patterns has been 
receiving increased attention (3-6); one has available time-series 
data of on-ramp, off-ramp, and mainline traffic counts, and can infer 
the 0-D pattern that generated them. The freeway 0-D problem is 
similar to that of estimating turning movement volumes from enter­
ing and exiting counts at single intersections, a problem that has 
been treated extensively during the past decade (7-J J). Particularly 
relevant here is the paper by Nihan and Davis (10) that described a 
Monte Carlo study comparing several variants of ordinary least 
squares (OLS) estimators of turning movement proportions. Nihan 
and Davis found that although the OLS-based estimators tended to 
be consistent and unbiased, data from 50 to 60 time points were 
needed before the standard error of estimate could be reduced to a 
usefully low level. This finding indicated a possible bound on the 
ability of time-varying implementations of OLS to track within-day 
changes in the 0-D pattern, so that, even if a recursive estimator is 
consistent (i.e., converges eventually to the true values of the 
unknown parameters), when the rate at which its standard error of 
estimate goes to zero is slow compared with the time variation of 
the underlying parameter, the estimated values are not likely to be 
close to the (unknown) true values. This in tum suggests that a naive 
embrace of recursive estimation procedures without due considera­
tion of their convergence properties is as likely to inject error into 
travel demand modeling as it is to inject truth. 

When applied to freeway segments, the simple linear traffic 
assignment model takes the form 

(1) 

where 

yj(t) = predicted traffic count at off-ramp j during time interval 
t, j = 1, ... , n; 

q;(t) = actual traffic count at on-ramp i during time interval t, i = 

1, ... , m; and 
b;j = probability that a vehicle entering at i is destined for j. 

Traffic conservation considerations require that 

i = 1, ... , m, j = 1, ... , n 

i = 1, ... ,m 

(2a) 

(2b) 

Generally, on-ramp counts q;(t) and off-ramp counts yj(t) will be 
available from a freeway's surveillance system, and unconstrained 
OLS estimates of the unknown bij can be computed by minimizing 
the sum of squares function 

(3) 
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while constrained OLS would minimize Equation 3 subject to Equa­
tions 2a and 2b. Unfortunately, even though unconstrained OLS and 
its variants give plausible estimates when applied to simple inter­
section counts, they tend to fail when applied to counts obtained 
from freeway on- and off-ramps. Table 1 presents unconstrained 
OLS estimates for a short section of Interstate I-35W with four on­
ramps and two off-ramps, where by convention the upstream main­
line boundary is denoted as On-Ramp 1 while the downstream 
mainline boundary is denoted as Off-Ramp 2. The estimated pro­
portions given in Table 1 were obtained by minimizing Equation 3 
using 5-min on- and off-ramp counts. Since this section was about 
1 mi (1.7 km) long, most of the vehicles entering during a 5-min 
interval will have exited during that same interval, and one would 
expect that time-varying travel times would not be a factor. 

Clearly, these estimates show serious violations of the conserva­
tion conditions in Equations 2a and 2b, and although it would still 
be possible to minimize Equation 3 subject to Equations 2a and 2b, 
a usefully consistent or unbiased estimator should be able to pro­
duce reasonably close estimates without such devices. Thus it 
appears that when applied to freeway data, OLS estimators can lose 
the consistency and unbiasedness properties shown when applied to 
single intersections, and it has been the authors' experience that 
such results are the norm rather than the exception when using OLS 
and the linear traffic assignment model to estimate freeway 0-D 
proportions. This situation is unfortunate because from a practical 
standpoint, recursive versions of OLS are very easy to implement 
and tend to be computationally fast (JO). 

This discussion has identified two basic statistical issues with 
regard to freeway 0-D estimators. The first concerns whether an 
estimator is unbiased or consistent, that is, whether on the average 
or in the long run the estimated 0-D parameters will equal the true 
underlying values. A primary cause of bias or inconsistency is model 
specification error, in which the model that is assumed to generate 
the data differs substantially from the process actually generating the 
data. The linear traffic assignment model just described neglects the 
fact that the travel time between 0-D pairs will differ both as a func­
tion of the distance separating the origin from the destination and as 
a function of the intervening traffic conditions. ~uch specification 
error may be responsible for the apparently biased estimates gener­
ated by OLS. But even if two estimators are unbiased, they may dif­
fer in efficiency, measured by the standard errors of the estimates as 
functions of sample size. The estimator with the lower standard error 
of estimate is more likely to generate estimates that are "close" to 
the true values when finite data sets are used. For example, in a lin­
ear regression model with heteroscedastic, normally distributed 
errors, simple OLS remains an unbiased estimator of the regression 
coefficients but is no longer efficient, the corresponding maximum 
likelihood estimator having smaller standard error. 

This paper describes a Monte Carlo evaluation of four different 
approaches to estimating freeway 0-D proportions bu, the objective 
being to decide which of the methods, under practically useful con-

T ABLE 1 OLS Estimates for Typical 
Freeway Data 

Off-Ramp 

On-Ramp 2 

1 0.0 0.79 
2 -0.10 2.22 
3 0.34 2.43 
4 0.0 1.35 

TRANSPORTATION RESEARCH RECORD 1457 

ditions, tend to be unbiased and to assess their relative statistical 
efficiency. Attention is restricted to off-line estimates of time-· 
invariant parameters because the algorithms used to track time­
varying 0-D patterns are, for the most part, simply recursive ver­
sions of their off-line counterparts (12). For instance, the extended 
Kalman filter approach described by Chang and Wu (5) can be 
viewed as a recursive implementation of a nonlinear weighted least­
squares approach, whereas the Kalman filter method tested by 
Ashok and Ben-Akiva (6) is a recursive implementation of a linear, 
multilag least-squares approach. A biased or inefficient estimator 
will not lose these properties when implemented recursively, but a 
good off-line estimator is a good candidate for recursive imple­
mentation. In particular, there is a natural connection between the 
efficiency of an off-line estimator and the convergence rate of its 
recursive counterpart, in that the standard error of estimate for the 
off-line estimator obtained with a sample of size N is a lower bound 
for the standard error of the recursive estimator after N iterations. 

Of the four candidate estimators considered here, three are based 
on the simple linear assignment model-and hence are subject to 
specification error-but differ as to the optimization criterion used 
to compute the estimates. The fourth minimizes the same least­
squares criterion used by OLS, but the predicted off-ramp volumes 
are computed by a nonlinear model that eliminates specification 
error, which is possible because simulated data are being used. The 
objective is to determine if the computational simplicity of the lin­
ear model can be retained by shifting to a different optimization cri­
terion or whether its inherent specification error is so serious as to 
make it unusable. 

The authors first describe the simulation model used to generate 
the Monte Carlo sample, then describe the four estimation proce­
dures. Results of the estimators' performance on the simulated data 
are presented next, and the paper ends with a discussion of these 
results. 

STOCHASTIC FREEWAY TRAFFIC 
SIMULATION MODEL 

As noted earlier, the objective of this study is to assess the statisti­
cal properties of several candidate procedures for estimating free­
way 0-D parameters. The primary method of assessment is Monte 
Carlo simulation, in which a sample of simulated freeway on-ramp 
and off-ramp counts is generated, and then each candidate estima­
tionprocedure used to compute estimates from each simulated data 
set. This produces a pseudorandom sample of estimates for each 
procedure, and these samples are used to determine the presence or 
absence of desirable statistical properties. To produce simulated 
data that preserve both the random assignment of vehicles to off­
ramps and the general features of traffic flow, the authors developed 
the STOMAC (stochastic macroscopic) simulation model, which is 
described in.the following. 

Before the model is introduced, it is necessary to clarify the fol­
lowing notation and terms. N time intervals (e.g., 5 min each) are 
assumed during the period of interest; let t = 1, .. ·. , N index these 
intervals. Each of the N intervals is in turn divided into T subinter­
vals, each of duration Ll. Let these subintervals be indexed by 'T = 

1, ... , NT. The intervals represent the level of aggregation at which 
count data is available, and the subintervals are the basic time unit 
of the simulation model. 

Figure 1 shows a section of freeway with m on-ramps (including 
the upstream boundary of the section of freeway) and n off-ramps· 
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~-----Freeway section ---------i 

FIGURE 1 Freeway section with m on-ramps and n off-ramps, 
divided into p segments. 

(including the downstream boundary), listed as i = 1, ... , m and 
j = 1, ... , n, respectively. The upstream boundary will be treated 
as the first on-ramp and the downstream boundary will· be the last 
off-ramp. The section of freeway has been divided into p segments, 
indexed by k = 1, ... ,p, such that on-ramps are located only at the 
upstream boundary of a segment and off-ramps leave only at the 
downstream boundaries of segments. A further division of segments 
may be necessary to ensure that geometric features are constant 
within the segments. 

The notation is defined as follows: 

q;(t) = traffic entering at on-ramp i during time interval t 
q(t) = m-dimensional vector whose elements are q;(t) 

y/t) = traffic exiting at off-ramp j during time interval t 
y/t) = forecast of traffic exiting at off-ramp j, during t 
x;/t) = traffic entering on-ramp i and destined for off-ramp j, 

during time interval t 
bij = probability that a vehicle entering from on-ramp i is des­

tined for off-ramp j, 
B = m X n dimensional matrix whose elements are bij 

BT= transpose of B 
b; = m-dimensional vector containing b;j, j = 1, ... , n 

y(t) = n-dimensional vector containing yj(t),j = 1, ... , n 
V(t) = n X n covariance matrix of y(t), given q(t) 

Pb) = probability that a vehicle in segment k exits during 
subinterval T 

Zk/T) = number of vehicles in segment k destined for j at begin­
ning of subinterval T 

zh) = Lj Zkj(T) 
q;/T) = number of vehicles entering at on-ramp i and destined 

for j during subinterval T 

q;('T) = Lj qij(T) 
ykj('T) =number of vehicles exiting from segment k and heading 

for j during subinterval T 

· yb) = Lj Ykj(T) 
Lk = length of segment k 

Mk = number of lanes in segment k 
_!_h) =traffic density in segment k = zh)l(Lk *Mk) 
Ue(r) = equilibrium speed and density function 

The basic idea was to treat traffic flow on a freeway as the out­
come of a type of stochastic process known as a Markov compart­
ment process (13). In this model, each segment of the section of the 
freeway was treated as a Markovian compartment, from which 
vehicles exit with probability PiT). Given the size of the compart­
ment population at T, each vehicle makes its exit independently of 
the others, so that the number of vehicles exiting is a binomial ran-
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dom variable with parameters Zk(T) and Pk('T). To derive plausible 
forms for the exit probabilities Pk('T), imagine that vehicle l in seg­
ment k at the beginning of T has a speed uk1 and a location sk1 that 
denotes the distance from vehicle l to the end of the downstream 
boundary of segment k. Also assume that the speeds ukl and ski are 
assigned to the vehicles as independent, identically distributed ran­
dom variables with density functions fk(u) and gt(s), respectively. 
Since vehicle l will exit segment k only if sk1 < ukl * d, the exiting 
probability Pb) is 

(4) 

and if it is assumed that the locations of vehicles are uniformly dis­
tributed, so that gt(s) = l/Lk> this double integral can be easily eval­
uated to produce 

(5) 

Here UiT) denotes the space mean speed of vehicles in segment k 
at the beginning of T. This connection between the exit probability 
for a segment and its space-mean speed implies that a stochastic 
version can be formulated for any traffic flow model that describes 
space-mean speed. More detailed discussion of the ideas underlying 
Equation 5 can be found elsewhere (14,15). 

In STOMAC, the state variables are Zkj('T), the number of vehicles 
in segment.!_ destined for off-ramp j at the beginning of the subin­
terval, and Uk(T), the space-mean speed of the vehicles in segment 
k. Assume that the random arrivals at on-ramps follow Poisson dis­
tributions and that the random exits from segments follow binomial 
distributions. That is, 

(6) 

%(T) = Poisson [bij * q;(T)] (7) 

In each segment, the number of vehicles satisfies the conservation 
equation 

(8) 

where W;k = 1 if on-ramp i joins segment k, and 0 otherwise. 
Finally, Payne_) discretized momentum equation (16) describes 

the evolution of Uk(T), 

lft('T + 1) =Uh) + dUk('T) Uk- i(T) - Uh) 
Lk 

d - dkrk+1 (T) - rb) 
+ f { Ue[rb)] - Ub)} - vd Lkf[rb) + KMd (9) 

where dk = Mk/Mk+ 1 and r, K, v are momentum equation parame­
ters; which generally must be estimated. 

STOMAC can be used to generate a series of simulated on-ramp 
volumes, distribute these volumes to off-ramps, and then propagate 
these destination-specific subflows. These simulated data make it 
possible to investigate the statistical properties of estimators for 
the 0-D parameters, B. FORTRAN source listings for STOMAC 
and other computer programs used in this study can be found else­
where (17). 
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DESCRIPTION OF ESTIMATION APPROACHES 

Ordinary Least Squares 

As pointed out earlier, the problem of estimating freeway 0-D pat­
terns is analogous to the problem of estimating the turning move­
ment proportions for single intersections, where methods based on 
OLS can give useful estimates. The basic idea behind this approach 
is that from the standpoint of the traffic manager, the actual desti­
nations selected by the vehicles arriving at an on-ramp are 
unknown, and if all that is known are the 0-D proportions bij and 
the arrival volumes q;(t), the 0-D demands xij(t) can be viewed as 
generated by multinomial random outcomes. Ignoring travel time 
lags, the expected values of the off-ramp volumes are then as given 
in Equation 1 and the OLS estimates of the bij are found by mini­
mizing Equation 3. This problem is solved easily using standard lin­
ear regression software. 

Expectation-Maximization 

Under reasonably general conditions, maximum likelihood (ML) 
estimates tend to be asymptotically efficient, which suggests that 
ML estimates may be more effective in tracking time-varying 0-D 
patterns. Since, under the linear model, the off-ramp counts are sim­
ply sums of independent multinomial outcomes, the likelihood 
function of the off-ramp counts is theoretically available; in prac­
tice, however, since it will have the form of a multidimensional con­
volution, it will be very difficult to compute. The expectation­
niaximization (EM) algorithm has been recommended for problems 
of this type (18), and its basic idea is as follows. If one were able to 
observe the individual 0-D-specific traffic flows xij(t), the ML esti­
mator for the 0-D parameters would simply be 

i = 1, ... , m, j = 1, ... , n (10) 

The practical problem, however, is to estimate bij when no xij(t) can 
be observed directly and only the entering counts q;(t) and the exit­
ing counts yj(t) are known from the freeway surveillance and con­
trol systems. Note that since 

j = 1, ... , n 

this is an incomplete data problem, in which the sufficient statistics 
L;Xij(t) are not observed directly. The authors' implementation of 
the EM algorithm begins with an initial estimate B0 and then esti­
mates the conditional expectations of the xij(t) using normal distri­
bution methods: 

L 1Xij (t) = E{L1X;j(t) I B, y(t), t = 1, ... , N} (11) 

The B0 is then reestimated by substituting L 1X;j(t) in Equation 10 for 
L 1X;j(t). The process iterates between Equations 10 and 11 until a 
convergence criterion is satisfied. For single intersections, where 
the travel time differences between each 0-D pair can be ignored, 
this EM estimator tends to give 0-D estimates with considerably 
less sampling variability than does the OLS estimator. More 
detailed presentation of the EM formulas can be found elsewhere 
(3,10). 
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Constrained Approximate Maximum Likelihood 

The EM algorithm was based on a multinomial likelihood function . 
but used a normal approximation for the probability distribution of 
the xij(t). Alternatively, a normal approximation could be used for 
the yj(t) and approximate ML estimates could be computed via the 
resulting likelihood function. A description of this estimation 
approach, called constrained approximate ML (CAML), is pre­
sented in the following. 

Given the on-ramp observations q(t), the expected value of y(t) is 

y(t) = E[y(t) I q(t)] = BT* q(t) (12) 

where the covariance matrix ofy(t) can be obtained as 

V(t) = cov[y(t) I q(t)] = L;q;(t)[diag{b;} - b; *bf] (13) 

Since y(t) is the sum of multinomial random vectors, for large val­
ues of q;(t) it will be approximately normally distributed, with 
approximate likelihood function 

L = flr[(21T)ID- 1 * I V(t) I ]--0·5 * exp{-0.5 

* [y(t) - BT* <i.CtW * v-1(t)[y(t) - BT* q(t)]} (14) 

Taking the logarithm of Equation 14 and simplifying results in the 
final objective function: Minimize 

LL = L,{log I V(t) + [y(t) - BT* q(t)Y 

* v-1(t)[y(t) :_ BT* q(t)J} 

subject to the constraints of Equation 2. 

(15) 

The B matrix that solves this problem will be the CAML esti­
mates for the 0-D parameters. Both the EM and CAML estimators 
can be viewed as constrained quasi-ML methods in which the 
underlying data generation process is approximated by the simple 
linear assignment model. Thus they can be viewed as attempts to 
preserve the simplicity of the linear model on the assumption that 
inefficiency rather than bias is responsible for the poor performance 
of OLS in Table 1. 

Nonlinear Least Squares 

One of the major dissimilarities between traffic flow at a single 
intersection and that on freeways is that the travel times between 
each freeway 0-D pair will vary depending on the intervening traf­
fic conditions. The three estimation procedures described earlier 
achieve computational simplicity by ignoring this travel time vari­
ability. As a benchmark, it was desirable to have an estimator that 
was not subject to specification error but still optimized with respect 
to the least-squares criterion. This led to the following nonlinear 
least-squares (NLS) approach. 

Given a current estimate of B, forecasted off-ramp counts were 
computed by performing the STOMAC recursion with the Poisson 
and binomial random numbers replaced by their expected values. 
Forecasted off-ramp counts for the subintervals were aggregated to 
produce forecasted 5-min counts y/t), and the sum-of-square func­
tion was computed as 

(16) 
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A final B matrix that minimized Equation 16 was computed itera­
tively by the nonlinear optimization routine E04JAF, which is con­
tained in the NAG Workstation Library. By comparing the perfor­
mance of NLS with that of EM and CAML, it should be possible 
to separate the effects of specification error versus an inefficient 
optimization criterion on 0-D estimator performance. Software 
implementing STOMAC and the four estimators was written in 
FORTRAN, and all computations were carried out on a Sun Sparc­
station 1 +. 

EVALUATION AND COMPARISON OF 
PARAMETER ESTIMATORS 

Generation of Simulated Data Sets 

So that the statistical properties of these estimators could be evalu­
ated under plausible conditions, it was decided to calibrate 
STOMAC to an existing section of freeway rather than to construct 
a hypothetical example. Figure 2 depicts a seven-origin, four­
destination section of northbound Interstate I-35W in south Min­
neapolis, Minnesota. The section is 2.5 mi (4.2 km) long and has a 
somewhat complicated 0-D pattern. A sequence of 36 five-minute 
counts was obtained from the Minnesota Department of Trans­
portation (MNDOT) for a typical morning weekday peak period 
from 6:00 to 9:00 a.m. 

For STOMAC to be used to simulate traffic flow on this freeway 
section, two sets of model parameters must be determined. The first 
set governs the traffic flow properties of the freeway and consists of 
estimates of capacity and free-flow speed, needed for the equilib­
rium speed-density relationship, and the momentum equation pa­
rameters r, K, v. The second set of parameters consists of the 0-D 
proportions bu. For this example, a capacity of 2,000 vehicles per 
lane per hour and free-flow speed of 65 mph ( 108 km/hr) were used, 
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FIGURE 2 Freeway section with 
seven on-ramps and four off-ramps on 
I-35W, northbound. 
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and values for the momentum equation parameters were taken from 
the paper by Cremer and May (19). Given these values, the 0-D 
proportions were estimated using the 5-min count data provided by 
MNDOT via the NLS procedure described earlier; as a rough check 
of the plausibility of this model, Figure 3 displays the actual 5-min 
traffic counts for the downstream boundary of this freeway seg­
ment, along with the predicted values obtained using the parame­
terized model. The predicted values track the actual ones reasonably 
well. These estimates were then used in STOMAC to generate 50 
data sets, each consisting of a simulated 3-hr sequence of 5-min on­
and off-ramp counts, with the mean value of the Poisson arrivals 
being set equal to the actual 5-min on-ramp counts. 

Comparison and Evaluation of Results 

By running each estimator mentioned earlier on each of the 50 data 
sets, the authors obtained samples of the estimators' behavior. From 
these samples, the sample means and standard deviations were com­
puted in order to evaluate the statistical properties of unbiasedness 
and efficiency. Efficiency of an estimator is defined here in term of 
its sampling variance, which estimates the standard error. That is, 
the standard deviation of estimated parameters from the sample 
should be small in order for the estimator to be recognized as effi­
cient. An unbiased estimator should be able to produce estimates 
that on the average equal the "true" parameter values. These results 

. are displayed in Table 2. As an aggregate measure of the joint effect 
of bias and inefficiency, Table 2 also presents the root mean square 
(RMS) error between the true value and the estimates, which is 
computed by 

and can be interpreted as the average distance separating an estimate 
from the true value. The average CPU times needed to compute esti­
mates for one data set are given here: 

700 
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Q) 

0 
:c 
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Estimator 
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NLS 
EM 
CAML 

Average CPU 
Time (sec) 

0.18 
2394.4 

60.1 
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FIGURE 3 Comparison between observed and predicted 
mainline traffic volumes. 
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TABLE2 Performance of Freeway 0-D Parameter Estimators 

OLS 

True Mean S.Dey 

bll .056 .055 .003 
b12 .134 .133 .041 
b13 .019 .025 .056 
b14 .790 .671 .123 
b22 .291 .388 .321 
b23 .290 .250 .346 
b24 .419 .993 .902 
b32 .223 .225 .055 
b33 .148 .140 .047 
b34 .629 .618 .146 
b42 .194 .203 .129 
b43 .240 .208 .138 
b44 .566 .646 .354 
b53 .263 .248 .077 
b54 .737 .825 .191 
b63 .284 .297 .376 
b64 .716 .841 1.07 

EM 

bll .056 .056 .002 
b12 .134 .176 .012 
b13 .019 .137 .022 
b14 .790 .630 .031 
b22 .291 .193 .041 
b23 .290 .167 .064 
b24 .419 .639 .074 
b32 .223 .182 .018 
b33 .148 .134 .043 
b34 .629 .685 .042 
b42 .194 .201 .071 
b43 .240 .220 .092 
b44 .566 .579 .099 
b53 .263 .105 .031 
b54 .737 .895 .031 
b63 .284 .123 .084 
b64 .716 .877 .084 

Table 2 indicates that the NLS estimator, for which specification 
error was not present, appears to be unbiased and is more efficient 
than the other approaches. Although the OLS approach seems to 
produce unbiased estimates, the high sampling variability makes 
even substantial differences between the sample average and the 
true value appear statistically insignificant. For practical purposes, 
the OLS estimates are essentially useless. For example, the "true" 
value of b44 is 0.566 and the mean and the standard deviation of OLS 
estimate are 0.646 and 0.354, respectively. The means that, appeal­
ing to the approximate normality of the OLS estimates, 95 percent 
of the estimates for b44 would fall in the interval [-0.62, 1.35], an 
interval that includes the true value; but, practically speaking, 100 
percent of the estimates should fall in the interval [0, 1]. . 

For the EM estimator, the efficiency is comparable to NLS, but 
EM tended to give highly biased estimates, a tendency that Nihan 
and Davis also reported in their in.tersection study. One interesting 
finding is that the CAML estimator appears to be a useful compro­
mise between the accurate, but computationally ·demanding, NLS 
procedure and the computationally simple, but inaccurate, OLS pro-

NLS 

RMS Mean S.Dey RMS 

.003 .055 .004 .004 

.041 .136 .022 .022 

.056 .020 .030 .030 

.171 .798 .042 .043 

.335 .303 .055 .056 

.348 .295 .080 .080 
1.07 .409 .062 .063 
.055 .234 .034 .036 
.048 .145 .028 .028 
.146 .619 .045 .046 
.129 .195 .038 .038 
.142 .232 .055 .056 
.363 .574 .059 .060 
,078 .260 .047 .047 
.210 .743 .054 .054 
.376 .281 .029 .029 
1.08 .715 .058 .058 

CAML 

.002 .057 .005 .005 

.044 .133 .031 .031 

.120 .032 .031 .034 

.163 .778 .043 .045 

.106 .246 .121 .129 

.139 .293 .134 .134 

.232 .461 .151 .157 

.045 .219 .043 .043 

.045 .138 .041 .042 

.070 .644 .043 .046 

.071 .266 .158 .174 

.094 .263 .138 .140 

.100 .470 .181 .205 

.161 .254 .054 .055 

.161 .746 .054 .055 

.182 .329 .175 .181 

.182 .671 .175 .181 

cedure. For the proportions corresponding to On-Ramps 1, 3, and 5, 
CAML has an efficiency of the same order of magnitude as NLS. 
This suggests that, at least for fairly short freeway segments, switch­
ing to an approximate ML approach can partly compensate for the 
effects of specification error. 

The results given in Table 2 can also be interpreted as giving 
bounds on the expected accuracy of recursive, tracking algorithms. 
For example, after processing 3 hr worth of 5-min observations, one 
could expect an NLS estimate of b22 to be in the interval [0.29 -
0.11, 0.29 + 0.11] = [0.18, 0.40]. If b22 had changed during this 
period, then any estimate of these time-varying values, being based 
on fewer observations, would be less accurate than this. 

CONCLUSIONS 

This paper began by pointing out the importance of parameter esti­
mation for A TMS practice, with attention to the fact that uncertainty 
in model parameter estimates will affect the effectiveness of control 
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policies and their potential benefits. As with all simulation studies, 
these results should be considered illustrative rather than definitive. 
Certainly one can imagine constructing examples for which the out­
come might be different. However, the simulation example used 
here was based on an existing section of freeway and on a traffic 
flow model that most would regard as plausible, if not conclusive, 
so there is good reason to expect that these results are more likely 
to be typical rather than anomalous. 

Probably the most challenging aspect of these results is that no 
matter what 0-D estimation procedure is used, a nontrivial amount 
of uncertainty concerning the actual parameter vafoe will remain 
after processing 3 hr of data, and if the 0-D parameters are in fact 
time-varying, this residual uncertainty will only increase. This calls 
into question the common practice of "certainty equivalent" pre­
diction and control, in which parameter estimates are treated as 
known constants rather than as the uncertain quantities that they are 
and suggests that forecasting and control models that explicitly treat 
parameter uncertainty may improve on current practice. 
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